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Abstract

Coronal mass ejections (CMEs) are large-scale eruptions of plasma and
magnetic field that can produce adverse space weather at Earth and other lo-
cations in the Heliosphere. Due to the intrinsic multiscale nature of features
in coronagraph images, wavelet and multiscale image processing techniques
are well suited to enhancing the visibility of CMEs and supressing noise.
However, wavelets are better suited to identifiying point-like features, such
as noise or background stars, than to enhancing the visibility of the curved
form of a typical CME front. Higher order multiscale techniques, such as
ridgelets and curvelets, were therefore explored to characterise the morphol-
ogy (width, curvature) and kinematics (position, velocity, acceleration) of
CMEs. Curvelets in particular were found to be well suited to characterising
CME properties in a self-consistent manner. Curvelets are thus likely to be
of benefit to autonomous monitoring of CME properties for space weather
applications:
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1. Introduction

Coronal mass ejections (CMEs) are spectacular ejections from the so-
lar atmosphere of coronal material containing plasma threaded by magnetic
fields, but despite over thirty years of study, the basic physics that expels
these plasma clouds into the solar system is still not well understood (Kunow
et al., 2006). Precise measurements of CME properties, such as their rate of
occurance, basic morphology and kinematics, first became possible with the
launch of the Large Angle Coronagraph—Spectrograph (LASCO; Brueckner
et al., 1995) on SOHO in December, 1995. Further progress in understanding
CMESs, and their three-dimensional properties in particular, was made pos-
sible with the Sun-Earth Connection Coronal & Heliospheric Investigation
(SECCHI; Howard et al., 2008), flown aboard NASA’s recently launched So-
lar Terrestrial Relations Observatory (STEREQO). The SECCHI instrument
combines solar disk, coronagraph, and heliospheric observations from two
distinct perspectives and is well suited to exploring the physics of CMEs,
both at their source on the solar disk, and during their propagation to Earth
(e.g. Maloney et al., 2009).

CME kinematics have typically been determined manually using simple
point-and-click methodologies-such as those used in creating the LASCO
CME Catalog (Gopalswamy et al., 2009). That is, using a mouse, the sci-
entist clicks along a particular CME feature, such as the apex or front, in
order to determine their positions in an image. The position of a given fea-
ture can then be plotted as a function of time to create height-time and
velocity-time curves. Many authors have used point-and-click techniques to
reconstruct the height-time profile of CMEs, and consequentially to derive
CME velocities and accelerations projected onto the plane-of-sky (Gallagher
et al., 2003; Schrijver et al., 2008; Temmer, Preiss, & Veronig, 2009). The
draw-backs of this method are that is it slow, open to observer bias, and
only allows a small number of points on the CME front to be tracked. In
fact, the apex of the CME is the only feature usually tracked. This method
is therefore not suitable for tracking the complex morphologies and kine-
matics of CMEs. Furthermore, they are certainly not practical for realtime
operations, or the requirements of space weather monitoring and forecast-
ing (e.g., at the NOAA Space Weather Prediction Center). We envisage
that automated image processing techniques could be used to automatically
identify and track CME leading-edges in images from coronagraphs such as
SOHO/LASCO or STEREO/COR1/2. Image processing techniques enable



us to automatically measure CME properties such as angular distribution
about the occulting disk, the position angles over which it was launched, and
its velocity up to approximately 30 solar radii. These CME properties are
known to be associated with its probability of impacting the Earth, its ar-
rival time at 1 AU, and how geoeffective it may be. For example, Halo CMEs
and events with a large western angular extent are more likely to be directed
towards the Earth, while fast CMEs are likely to be more geoeffective (Moon
et al., 2005).

Due to the large quantity of data from LASCO and SECCHI, image
processing techniques are essential for accurately identifying and character-
ising CME properties. Robbrecht & Berghmans (2004) developed a system
that autonomously detects CMEs in image sequences from LASCO. Their
software, Computer Aided CME Tracking (CACTus'), relies on the detec-
tion of bright ridges in CME height-time maps using the Hough transform.
The main drawback of this method is that the Hough transform imposes
a linear height-time evolution, thereby forcing constant velocity profiles for
each bright feature. This method is therefore inappropriate for studying
CME kinematics in the low corona, where non-constant acceleration may
be at play (Byrne et al., 2009). A complimentary system, the Solar Erup-
tive Event Detection System (SEEDS; Olmedo et al., 2008), is an automatic
detection based on LASCO/C2 running difference images again unwrapped
into polar coordinates:” The algorithm uses a simple intensity threshold to
segment the images and hence determines the CME’s height, velocity and
acceleration profiles.. A major disadvantage of these systems is that neither
report information on the morphological properties of CMEs or their pre-
dominant direction of propagation. This is a disadvantage for space weather
purposes, as CME width and direction are known to be of importance to
predicting geoeffectiveness at 1 AU (e.g., Michalek et al., 2008; Kim et al.,
2008).

A quite different image processing method was described by Colaninno
& Vourlidas (2006) to detect and track CMEs. Their algorithm, based on
optical flow techniques, offers a number of attractive features, such as the
ability to monitor the velocity field of a CME across its entire volume. There
are limitations to the optical flow techniques, though, such as the assump-
tion that the intensity of CME features do not change from frame-to-frame.

Thttp://sidc.oma.be/cactus/



Not only do CME features change as a CME erupts, but the brightness
(from Thompson scattered photospheric photons) decreases systematically
with distance from the Sun. This makes detection of CMEs using optical
flow techniques challenging at large distances from the Sun. The algorithm
has also not been implemented in a realtime manner for use by scientists and
space weather forecasters. The reader is referred to Robbrecht & Berghmans
(2005) for a comrehensive review of traditional CME detection techniques.

CMEs are intrinsically multiscale features, making their detection using
wavelets and other multiscale techniques an attractive proposition: Stenborg
& Cobelli (2003) were the first to apply a wavelet-based technique to study
the multiscale nature of coronal structures in SOHO images. Their method
employed a multi-level decomposition scheme using the a trous wavelet trans-
form. However, their technique only enhances coronal structures. It does not
define, characterise or extract image features. This is a drawback for real-
time applications or when attempting to study the detailed kinematics of
multiple CME features. A number of authors have further explored multscale
techniques to enhnace the visibility of a CME’s front. Young & Gallagher
(2008) used a derivative-of-a-Gaussian approximation of a wavelet to first de-
compose LASCO images into a variety of spatial scales. The gradient of each
scale was then obtained and the CME front or leading-edge then isolated by
identifying local maxima at each wavelet scale. An advantage of this method
is that multiscale techniques can be used in conjunction with bootstrapping
techniques to estimate the uncertainty in CME properties. This is partic-
ularly important, for studies of CME kinematics, where the acceleration is
estimated using inherently noisy numerical differencing schemes. Byrne et
al. (2009) extended these multiscale methods to take advantage of both the
magnitude and angle of the gradient of the multiscale decomposition. Here,
the CME front was found to have a well-defined signature in wavelet mag-
nitude, and in angle. The resulting multiscale vector map as a function of
time could then be used to design a multiscale spatio-temporal filter for CME
front segmentation.

Byrne et al. (2009) showed that the results of the CME detection methods
discussed above can introduce large errors in the kinematics of CMEs. They
showed that for certain events, the results of CACTus, CDAW and SEEDS
can differ significantly from multiscale methods. Existing on-line systems fit
either a linear model to the height-time of the CME apex, implying constant
velocity and zero acceleration (e.g. CACTus) or a second order polynomial,
producing a linear velocity and constant acceleration (e.g. SEEDS). The

4



multiscale decomposition discussed here and by Byrne et al. (2009) minimises
the uncertaintly in the CME height measurements; the resulting errors in
velocity and acceleration are consequently only determined by the numerical
errors associated with the differencing scheme used. Given that the estimated
time of arrival of a CME at 1 AU can be approximated by

1AU
boatr = toun + / dr/u(r). (1)
1

Rsun

an accurate estimation of a CME’s velocity profile in the low corona, v(r), is
essential to producing reliable forecasts of arrival times at Earth and other
positions in the solar system. If autonomous CME tracking is to be used
to more accurately predict CME arrival times at FEarth, the velocity of the
CME must be know to a high degree of accuracy; an uncertainty of only
+10 km s~! in CME velocity corresponds to an uncertaintly in the predicted
arrival time at Earth of more than +3-hours. It should also be noted that
steam interactions in the heliosphere can modify interplanetary CME veloci-
ties (e.g., Maloney et al., 2009). An excellent overview of the physics of space
weather and its effects are given in Bothmer & Daglis (2007).

In this paper a new set of multiscale transforms, namely wavelets, ridgelets,
and curvelets, are used toddentify the kinematic and morphological proper-
ties of CMEs to a high degree of accuracy. In Section 2, the wavelet, ridgelet
and curvelet transforms are described, while their application to CME front
enhancement and detection are discussed in Section 3. Our conclusions and
prospects for future work are then given in Section 4.

2. Multiscale Methods

CMEs are diffuse features that evolve in shape and size over time-scales
of minutes. This therefore makes their detection difficult using standard im-
age processing techniques. Traditionally, solar physicists have used running-
and base-differencing schemes to highlight moving features between frames.
Unfortunatley this numerical differencing can enhance noise to a level com-
parable to the signal. The noise can be supressed using a standard box-car or
median filter, but this has the effect of smoothing out small-scale CME fea-
tures, such as sub-structure along the CME front and its environs. An addi-
tional issue resulting from differencing is the introduction of spatio-temporal
cross-talk in difference frames. Differencing is used to detect image features



that are non-stationary in space and time. That is, if a feature moves from
one spatial position to another during the acquisition of subsequent images,
a difference image will show a signature at the position that the feature once
was and a signature at the position where the feature has moved to. As the
signature of motion in the difference map depends on both the time between
frames and by how many pixels the feature has moved, the difference map
can be considered to blend spatial and temporal information in a non-trivial
manner. This effect is referred to as spatio-temporal cross-talk. Although not
widely discussed in the literature, this important effect can lead to blurring
of CME features and ambiguity in estimating feature positions and times.
The latter is critical when attempting to derive CME accelerations to a high
level of accuracy (e.g., better than a few m s72).- See Aschwanden (2009)
for a review of image processing and feature recognition techniques in solar
shysics

Data analysis seeks to represent a signal, I(#;y), by linear combinations
of a basis, frame, dictionary or elements (i.e. sines, cosines, wavelets, etc.),

I(l‘,y) :Zakbk(‘r7y>7 (2>

k

where the coefficients, ay,-are determined by convolving the signal, I(z,y),
with an analyzing function, by:

ar ://I(x,y)bk(x,y)dxdy (3)

Analysis of the signal is through the statistical properties of the coef-
ficients. ~The analyzing functions (basis, frame, elements) should extract
features of interest. Approximation theory wants to exploit the sparsity of
the coefficients. This means that if we made a histogram of the absolute
value of the coefficients as a function of index k, we would find a few large
coefficients for lower order k and very many coefficients that are small or
zero for higher order k. This idea is illustrated in Figure 1. We seek sparsity
because it facilitates data compression, feature extraction and detection, and
image restoration (i.e. deconvolution).

Wavelets (and other multiscale transforms) are one such representation
with many useful properties (Starck, Murtagh, & Bijaoui, 1998). They can
represent smooth functions or singularities. Wavelet basis functions are well
localized in both time (or space) and frequency (or scale). This makes many
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Figure 1: This figure illustrates the idea of sparsity. For a sparse representation a his-
togram of the absolute value of coefficients as a function of index would contain a few big
coefficients for lower order indices and very many small or zero coefficients for higher order
indices.

algorithms on wavelet coefficients naturally adaptive to inhomogeneities in a
signal. Wavelets and newer multiscale transforms such as curvelets are near
optimal for representing a variety of signals (Starck, Donoho, & Candés,
2003; Willett & Nowak, 2003; Demaret et al., 2005) . This makes wavelets
and other multiscale transforms a reasonable choice when little is known
about a signal

Multiscale methods in the form of wavelets exploded onto the signal
processing scene over 20 years ago (Mallat, 1997). They were first used by
seismologists to study transient waves. Over the past 10 years, wavelets have
become a common tool for time-series analysis in solar physics (Ireland et al.,
1999). More recently, 2-D wavelets are important tools for image analysis in
solar physics and astrophysics (Starck, Donoho, & Candés, 2003; Stenborg
& Cobelli, 2003; Young & Gallagher, 2008).

2.1. The Wavelet Transform

The edges of image features often contain the most important information
in object recognition, as is the case for CMEs. Mallat & Hwang (1992)
showed that the maximum modulus of the wavelet transform is equivalent
to the well-known Canny edge detector. This algorithm detects points of
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sharp variation in an image by calculating the modulus of the gradient vector
convolved with a Gaussian. This gives curves in the image parallel to the
direction of maximum change, a property of particular use in tracking CMEs
and other moving features in solar image sequences.

The continuous wavelet transform of an image can be defined as

w(s,a,b) = /I(x,y)wsya,b(x,y)dmdy (4)

where 1s(z,y) is the mother wavelet, s is a term describing scale at a posi-
tion (a,b), and w(s,a,b) are the wavelet coefficients of the image (I(z,v)).
The mother wavelet can take several forms, depending on the application
and include the Morlet, Paul and Mexican hat. “For convenience, we use
wavelets that are the first derivatives of a smoothing function, 6(z), where
the smoothing function is a discrete cubic spline approximation of a Gaussian.
This allows us to write the wavelets in 1D as

_ dby(z) _ dbs(y)
bs(z) = — — and 4(y) = 0y (5)
where the mother wavelet is assumed to be separable, i.e., ¥(x,y) = ¥ (x)(y)
and s is the wavelet scale.<The wavelet transforms of I(z,y) with respect to

x and y at scale s can then be written,

Wesl(z,y) = Ys(z) * I(2,9) (6)
Wy I(x,y) = s(y) * 1(z,y),

where * denotes a convolution.
Following Young & Gallagher (2008), the gradient of the image at scale
s can-therefore be written in the form:

VIl = (WeaT (@, 9)° 4 Wyl 2,9))' ©
as(z,y) = arctan(W, I (z,y) /Wy I (x,y)).

where |VI(z,y)|s is the magnitude of the gradient at a particular scale, s,
and a(x,y) gives the edge direction at (x,y). Once the wavelet transform was
applied to the images, the edges of the CME were calculated using the local
maxima of the image gradient at each scale. This enables us to determine
the properties of a CME front, such as it angular width or opening angle, its
distance from Sun centre, and its velocity. In particular, this method can be



used to track a set of points that define the CME front as a function of time
and hence reconstructs its detailed kinematics.

Figure 2 shows the edges of a CME detected using the multiscale trans-
forms detailed above. Although the dynamic range of the instrument is large,
there is a large, slowly-varying background that makes faint objects difficult
to identify. Applying the multiscale methods above, the faint eruption can
be detected and its edges identified without the need for background sub-
traction. Figure 2(a) shows the raw, unprocessed C2 image; while Figure
2(b) is a processed LASCO C2 image of a CME with a background model
applied. Figure 2(c) is a running difference image of the CME. A wavelet
transform, often called the dyadic wavelet transform, was applied to the raw
C2 image. This wavelet approximates the first derivative (in the horizontal
and vertical directions) at multiple scales. Using the horizontal and vertical
wavelets allows the calculation of a multiscale gradient. Figures 2(d) and (e)
show the magnitude and angle of the multiscale gradient respectively (at one
scale). Figure 2(f) shows the edges calculated using this multiscale gradient.
These calculated edges were then used to objectively determine a height-time
curve.

2.2. The Ruidgelet Transform

Despite their ease of application, wavelets have inherent limitations with
2-D data. Wavelets are well suited for describing point singularities, but
lines or curves describe much of the interesting information in an image. The
ridgelet transform takes the multiscale concept of wavelets but applies it to
1-D objects (lines) instead of 0-D objects (points) (Candes et al., 1999). Sim-
ilarly, the curvelet transform applies to multiscale curves (Starck, Donoho,
& Candés, 2003). The ridgelet (or curvelet) transform takes a similar math-
ematical form to the wavelet transform given above (i.e., convolution of an
image with a pre-defined basis function) but they are directionally sensitive
and anisotropic. The ridgelet uses a radon transform, which transforms lines
into points. Then a wavelet transform is applied to the result since wavelets
provide a sparse representation of a point. The ridgelet basis function takes
the form:

Vepo(z,y) = s V2((x cosh + ysinf — b)/s) (8)
The ridgelet is constant along lines z cosf + ysinf = const. The ridgelet
coefficients R;(s, b, 0) are then defined by the convolution,

R;(s,b,0) ://[(:E,y)z/zs7b7g(x,y)d$dy (9)
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Figure 2: (a) Unprocessed LASCO/C2 image from 18 April 2000 at 16:54 UT showing a
CME: (b) Processed LASCO C2 image of a CME with a background model applied. (c)
A running difference image of the image. (d) and (e) show the magnitude and angle of
the multiscale gradient respectively (at one scale) respectively. (f) Edges calculated using
this multiscale gradient.
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Figure 3 shows several examples of ridgelets. These ridgelets amount to
wavelets stretched along a line.

2.83. The Curvelet Transform

While ridgelets are useful, we are interested mostly in structures with
curvature. Ridgelets are not efficient for these types of structures. Curvelets
generalize the idea of the ridgelet to multiscale curves. The first generation
of digital curvelet transform used the ridgelet transform directly. Ridgelets
are applied to subregions of the image where curvelets are locally lines. The
constructed curvelets are basically a pyramid of multiscale ridgelets.

The first generation curvelets are highly redundant and enly approximate
some of the important properties of the integral curvelet transform. Candes
et al. (1999) developed a second generation of curvelet transform that is much
less redundant, has a much simpler indexing structure and is faster than the
first generation curvelets. The second generation curvelets are defined at
scale 277 | orientation [ and position xi’l = Re_ll(Q*jk’l, 279/2}y) by translation
and rotation of a mother curvelet ¢, ‘as

0s00(7) = 9j(Ro,(z — 27)) (10)

where Ry, is the rotation by 6; radians. 6, is the equi-spaced sequence of
rotation angles 0, = 272-U/2[ with integer [ such that 0 < 6, < 27 (note
that the number of orientations varies as 1/v/scale). k = (k1,k2) is the
sequence of translation parameters. The waveform ¢; is defined by means
of its Fourier transform ¢;(v), written in polar coordinates in the Fourier

domain
9li/2lg

b;(r,8) = 2733/ 44p (279 7) (11)

In continuous frequency, the curvelet coefficients of data I(z) are defined
as the inner product

c(j, 1, k) = / / [();(Rov)e™ du. (12)

Figure 4 shows three different curvelets in the spatial domain (left column)
and the frequency domain (right column). The curvelets go from larger scale
(coarser) to smaller scale (finer) moving from top to bottom.
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Figure 3: Examples of typical ridgelets. The second to fourth graphs are obtained af-
ter simple geometric manipulations of the first ridgelet, namely rotation, rescaling, and
shifting.
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Figure 4: Two example curvelets. The left panel represents a curvelet at a finer spatial
scale. The right panel shows a curvelet at a coarser spatial scale.

3. Applications of Methods

The primary and most useful applications of the wavelet transform is im-
age enhancement and image filtering. Multiscale transforms naturally sepa-
rate information on different scale sizes. Using this property wavelet scales
of particular interest can be amplified while leaving the other scales alone.
This allows features at the scale of interest to be enhanced. This scale sep-
aration property of these transforms also makes the removal of image noise
much easier. Noise, by its very nature, tends to exist almost exclusively on
the finer scale sizes and in most cases just the finest scale. By modeling
and understanding the nature of the noise it can be removed and the im-
age reconstructed. This provides a filtered image with noise removed while
preserving the features and structures of interest. We first test filtering and
image enhancement on an observation of the solar corona by the LASCO C2
instrument from SOHO. Figure 5 shows a a raw uncalibrated image on the
right and a background-subtracted image from LASCO on the left . The
zoom-in box on the two images contains a CME and is the region shown in
the processed images in Figures 6 and 7.

In the next set of images (Figure 6) the raw images have been filtered using
an isotropic wavelet (left) and curvelets (right) by removing the coefficients
most probably due to noise. The smoothest scale (dc component) has also
been removed. The wavelets and the curvelets clearly enhance the visibility

13



Figure 5: An uncalibrated LASCO image (right)and background subtracted image (left)
from 18 April 2000 CME at 16:54 UT. The box in the two images contains a zoom-in on
the CME. This is region that has been processed using a variety of multiscale techniques
described in the text and shown in processed form in Figures 6 and 7.

of the CME in the image, and in this case without the need for a background
model. The difference here between the performance of the wavelet and the
curvelet is apparent. Notice how much better the curvelets pick out curved
and extended structures.

In Figure 7 we have contrast enhanced the raw subimage by amplifying
the isotropic wavelet coefficients (left image) and the curvelet coefficients
(right image) at the finer scales. Again the curvelets are much more success-
ful at enhancing the curved or extended structures in the CME. In general
the wavelets used in the filtering and enhancement examples would perform
better if more care was taken to fine tune the method as in Stenborg & Co-
belli (2003). We have purposely been naive in applying both the wavelets
and curvelets in order make an even comparison between the two transforms.
If more care is taken in the denoising, both methods would perform better,
though it is clear here that the curvelets perform better than the wavelets.

4. Discussion and Conclusions

Scientists and space weather forecasters primarily monitor solar activity
using simple but robust image and signal processing techniques (e.g., Both-

14



Figure 6: Filtered raw images using an isotropic wavelet (left) and curvelets (right) by
removing coefficients most probably due to noise.

Figure 7: Contrast enhanced raw images by amplifying the isotropic wavelets coefficients
(left) and the curvelet coefficients (right) at the finer scales.
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mer & Daglis, 2007). Straightforward autonomous systems, such as SolarSoft
Latest Events? and SolarMonitor® (Gallagher et al., 2002) have proven to be
very popular for a number of reasons. They continuously deliver data, such
as images, event movies, and flare times and positions, in a near-realtime
manner and with a consitent level of accuracy. The latter is particularly
important for large-scale statistical studies of, for example, active region or
solar flare properties over an entire solar cycle. The data are thus not sub-
ject to observer bias or periods that were not well observed or characterised
manually. For the purposes of operational space weather monitoring, such as
at NOAA’s Space Weather Prediction Center, solar data products must be
continuously available and be produced in a self-consistent manner. Systems
such as SolarMonitor have gone some way to achieving these goals.

In this paper, a number of multiscale transforms have been evaluated in
terms of their appropriateness for detecting the morphology and kinematics
of CMEs. The wavelet-based technique was found to offer a fast and robust
method for decomposing coronagraph images into a set of predefined length-
scales. This was effective at removing noise and isolating particular CME
features. Due to their isotropic symmetry and localization in space, wavelets
are very sensitive to noise, cosmic ray hits and background stars. The wavelet
transform can also be sensitive to small-scale symmetric features in CMEs,
such as knot-like structures along a CME front, and so must be used with
some care. An additional source of error can be introduced when deciding
which wavelet scales to use when isolating the CME front, as the front width
and visibility relative to the background varies with scale. In our work, we
have selected scales that maximise the contrast of the front, although other
criteria could equally well be allied. A particular difficulty with wavelets
is their unsuitability for detecting the curvilinear structure of many CME
features. Omne finding regarding the wavelet transform was that CME fronts
can become disjointed features in scale-space. Ridgelets and curvelets avoid a
number of these issues. The ridgelet transform in particular was found to be
well suited to identifying the curved structures observed in CMEs. Not only
can curvelets be used to enhance the contrast of CMEs, but the coefficiants of
the transform give important morphological properties of a CME front, such
as the positions of all points along the front, its curvature, its inclination,

http://www.lmsal.com/solarsoft /last_events
3http://www.SolarMontitor.org
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etc. As with all transforms, ridglets and curvelets also have their draw-backs.
For example, these transforms require an expert user to manually select the
particular filter properties that best match the shapes that one desires from
the images. Furthermore, the application of transforms that are optimised to
detect particular features (e.g., localised or curved shapes), may suppress the
innate complexity of the emitting structures that we see in images of CMEs.
These advanced image processing techniques are likely to be of use for

real-time space weather operations, and in addition, to the analysis of large
data-volumes from future ground- and space-based imagers. For space weather
applications, advanced image processing techniques can be used to identify
and track a plethora of features and events related to selar activity. For
example, Lockheed’s Latest Events service identifies flare locations and oc-
currence times using EUV and X-ray imaging data, and then automatically
determines the source active region. For space weather applications, accu-
rate flare occurrence times and locations is important for making forecasts
of their possible impact at Earth. Of particular importance to forecasting
space weather effects at Earth is identifying the properties of CMEs. The
methods discussed in this paper are capable of measuring CME properties
that are known to be related to adverse space weather at Earth. These CME
properties include leading-edge position, angular width and launch position
angle. See for example Moon et al. (2005), Michalek et al. (2008), and (Kim
et al., 2008) for detailsof how these properties relate to space weather effects
at Earth. While data rates from spacecraft such as SOHO are low enough to
make human analysis of images feasible (<1 GB per day), missions such as
the Solar Dynamics Observatoy (SDO), will have significantly highter data
rates. SDO for example has projected data rates that make an interactive
analysis impossible (~2 TB per day). The multiscale methods discussed
in this paper naturally lend themselves to the automatic identification and
characterisation of features related to solar activity, and therefore provide a
stepping-stone to future autonomous monitoring of solar activity for space
weather purposes.
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