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Abstract—TinyTorrents integrates Wireless Sensor Networks
with the BitTorrent Peer-to-Peer protocol and is designed to
respect the resource constrained environment which characterises
many WSN’s. This paper describes the architecture and design
which underpins the TinyTorrents system and explores many
of the technical challenges that arise in the fusion of such
distinct data dissemination networks. The key behaviours and
features of both Peer-to-Peer and Wireless Sensor Networks are
first explored and evaluated. TinyHop, the protocol used for
inter-node routing within the WSN, is presented. Experimental
resource optimization and system analysis is performed for
message overhead, resource coordination, peer selection and
tracker functionality. The system advertises available node and
network data via both Web 2.0 service interfaces and through
BitTorrent tracker networks. The system has been validated
and demonstrated using multiple networks and multiple clients
accessing data on a global scale.

I. INTRODUCTION

Wireless Sensor Network (WSN) and communication tech-
nologies underpin many of the advances currently being made
in the field of data communications. Such infrastructures seek
to make data available in a timely, accurate and secure fashion.
The use of wireless sensor networks in unreliable environ-
ments may preclude the deployment of persistant network
gateways. Instead, mobile temporal gateways can be used
to retrieve data from different points of the network (e.g.
data mules [1]). The monitoring of glaciers [2] is one such
application domain. Unless data is gathered to a gateway
continuously, data may be lost when ice blocks break away
from the main ice shelf. In this scenario, the deployment of
expensive, Internet-connected, gateway devices is intractable
and a mechanism to store data within the WSN would prove
extremely beneficial. To this extent, TinyTorrents [3] has
been proposed by the authors for the reliable, redundant and
distributed dissemination of WSN data across the WSN and
the Internet. TinyTorrents extends existing peer-to-peer (P2P)
methodologies, where data is encapsulated into torrents and
spread across the network in a redundant fashion. In the Tiny-
Torrents system, data accessibility is federated and mediated
according to both device capabilities and the prevailing needs
of end-users. Node and network data and capabilities are
characterised and advertised, allowing end-user applications
to access, consume and aggregate data from multiple, diverse
WSN sources. Torrent clients and Web 2.0 user agents are

supported actuators in the current implementation. The Tiny-
Torrents infrastructure currently incorporates a high reliability
WSN routing layer (TinyHop) which delivers the bi-directional
data communication features required to support the Tiny-
Torrents architecture within the WSN. This paper focuses
on evaluating and parameterising torrenting concepts, and the
BitTorrent protocol in particular, in a WSN domain. System
Integration and WSN power conservation issues form a key
element of this analysis. Wireless Sensor Network and Peer-
to-Peer concepts are briefly introduced in Section II. BitTorrent
behaviours and WSN power management and conservation
strategies are then specifically detailed. The TinyTorrents
system is then described and the role, purpose and operation of
TinyHop documented. The behaviour of specific aspects of the
torrenting protocol in a WSN environment are then explored
and recommendations provided for future research in the field.

II. BACKGROUND
A. Wireless Sensor Networks

A wireless sensor is a small device that is commonly
constrained by both limited battery life and short transmission
range. Wireless Sensors can be viewed as producing data, con-
suming data or collaboratively routing data. Sensor Networks
are networks of sensor devices that are characterized by three
key features: the ability to gather sensory data about their
surroundings; data processing (and possibly discrimination)
capabilities; and the capacity to communicate with neighbour-
ing devices [4]. Wireless Sensor Networks (WSN) require that
such communications take place wirelessly - most commonly
using Radio Frequency technologies. WSN devices (often
referred to as motes) expend considerable power engaging
in such communication and their available power capacity is
often the defining characteristic of their lifespan. Thus much
research in the area of WSN’s focuses on reducing the power
expended in communication, thereby increasing the lifespan
of a sensor, or the network as a whole. There are a broad
range of WSN platforms and technologies available, with those
from XBow systems being most commonly referenced [5],
[6]. Mica2 and MicaZ wireless sensor hardware from XBow
is used for the live deployment testing of TinyTorrents. These
sensors are battery powered and are additionally constrained
in that they have very limited program memory, slow CPU’s
and short radio communication ranges. Consequently system,
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protocol and power optimization methodologies are of great
importance in this environment. Applications and protocols
must be designed to be as power efficient as possible. Different
techniques have been adopted to reduce the power consump-
tion of both the motes and the WSN as a whole. In [7], three
main schemes for energy management are identified: i) Battery
Management, ii) Transmission Power Management, and iii)
System Power Management. Suggested strategies include the
use of sleep mode operation whenever possible, avoiding
retransmissions, minimizing control packet size and using
power efficient error control techniques. Radio communication
is the most power hungry operation that most wireless sensors
engage in. The radio is active when transmitting, receiving or
eavesdropping on the transmissions of other nodes. The radio
also has two other states - idle and sleep. Where possible,
the radio should be kept in sleep mode to conserve energy.
For instance, the Mica2 radio draws considerably (orders of
magnitude) less power in sleep mode than when fully active
and communicating [6]. In the same vein, onboard processing
and storage operations are much more power efficient than
communication operations. These characteristic behaviours
of WSN’s and their nodes will be used in optimizing the
performance of the TinyTorrents protocol.

B. Peer-to-Peer Protocols and BitTorrent

Global data dissemination networks and infrastructures can
be realised using Peer-to-Peer (P2P) technologies over TCP/IP.
P2P architectures are commonly characterised as moving the
resource management to the edge of the network, i.e. to the
“peers”. This is achieved by allowing direct communication
among peers, which encourages them to cooperate amongst
each other in managing the resource. The managed resource
is most commonly bandwidth, data or computing power. Peers
in a P2P system operate autonomously, which means that such
systems exhibit greater reliability and availability, as they are
more resistant to individual node failures. Peer autonomy also
means that peers are often equipped with discovery protocols,
which allow them to find functioning peers in the network
when neighbouring peers have failed. This ability of “self-
organisation” greatly adds to the reliability of P2P systems. It
also means that the central node is relieved of much of the
management burden. Ideally, a P2P network has no central
nodes at all, with decentralised functionality being provided
through Distributed Hash Tables (DHT) on all participating
nodes. For these reasons, P2P systems generally scale better
than corresponding client-server systems. This is most clearly
seen in file-sharing applications in which the cost of publishing
and transferring data is spread across all the nodes in the
P2P network. BitTorrent is a content distribution network
based on the peer-to-peer model. BitTorrent is intended for
efficient data dissemination on the Internet and was originally
designed by Bram Cohen [8]. Its key components are the peers
(who cooperate in replicating content across the network)
and a tracker (which provides a means for peers to discover
each other). BitTorrent allows peers to cooperate directly in
transferring data, and ensures fairness among peers using a tit-

for-tat algorithm. Content is broken into pieces, each of which
are treated independently. This allows different portions of the
same file to be downloaded at the same time, and maximises
bandwidth utilisation. The goal of BitTorrent is to replicate
the content as quickly as possible among the peers, thereby
reducing the burden on the original publisher of the content.

The main elements in the BitTorrent architecture are the
torrent file, the tracker, the set of peers, and the seed peer.
BitTorrent distinguishes peers into two groups: seeders and
leechers. Peers which have a complete copy of the file being
distributed are called seeders. Leechers are peers which do
not yet have a complete copy of the content. The tracker is a
centralised component which is responsible for keeping track
of all peers currently involved in distribution of a file. It is the
means by which peers discover one another, using the tracker
protocol which may be layered on top of HTTP. The tracker
is not necessarily directly involved in distributing the content.
BitTorrent does not include a file search mechanism as other
P2P content distribution networks do. Instead, it relies on users
acquiring a “torrent” file, which contains metadata about an
item of content published through BitTorrent. The torrent file
is acquired externally to the BitTorrent system. BitTorrent can
be broken down into a number of key elements and behaviours:

1) Publishing Data: In order to publish content in Bit-
Torrent a “.torrent” file is constructed. This “.torrent” file is
made available outside of the BitTorrent network, typically by
hosting it on a standard web server. At least one peer that has
the full fileset must be available. This peer is the seed for the
torrent.

2) Tracker Protocol: The tracker protocol is used between
peers and trackers, and signals the intent of a peer to join a
torrent. The tracker keeps track of the peer membership in the
torrent. Peers attempt to join a torrent using the information
about a torrent contained in the “.torrent” file. In particular, the
address of the tracker responsible for the torrent is provided.
Once a peer has contacted a tracker, the tracker randomly
chooses a set of peers from the torrent and communicates this
back to the joining peer. Once a peer has joined a torrent, it
will periodically inform the tracker of its status and progress.
This ensures that the tracker’s global view of the torrent is
kept up-to-date.

3) Peer Interaction: Once a peer has joined the torrent
and obtained a list of peers, it proceeds to establish TCP
connections with its peer set, over which all peer—to—peer
interaction will take place. All peer-to-peer connections are
bidirectional. The peer interaction begins with a handshake
process. The handshake messages contain a fixed header,
followed by the SHA1 hash of a portion of the “.torrent”
file, which uniquely identifies the content. If both peers do
not agree on this hash, they sever the connection. Once the
handshake is complete, the peers begin exchanging data with
each other. They do this by interchanging pieces of the file
with each other. Whenever a peer completes a piece, it informs
all the peers in its peer set. This is important, as it allows peers
to keep track of the status of other peers and thus make better
decisions regarding piece selection. Two important aspects of
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the peer protocol are now highlighted, piece selection and
fairness.

4) Piece Selection: The piece selection strategy is the
mechanism by which a peer decides in what order it should
request pieces of the content. In order to select the piece to be
downloaded next, peers in BitTorrent use a rarest first strategy.
This means that peers choose to download the pieces which
the fewest of their own peers already possess. Peers must
inform each other when they obtain a new piece. The rarest
first approach makes sure that peers have pieces which their
peers are likely to want as well as ensuring that the pieces
are rapidly duplicated across the network. This means that
redundant copies of all pieces are made as quickly as possible,
thus reducing the likelihood of content loss due to node failure.
The rarest first approach also means that the burden on the
initial seed is reduced much more quickly, thus reducing the
flash crowd problem [9].

5) Fairness: Choking and Unchoking: In BitTorrent, peers
essentially barter with each other for pieces of the content.
Each peer-to-peer connection in BitTorrent is associated with
two states at each end: choked or unchoked, and interested
or not interested. The interested status indicates if the peer
at the other end of the connection has a piece that this peer
still needs. Peers decide to whom they should upload using a
tit-for-tat algorithm. They do this using “choking”, which is
a temporary refusal to upload to a peer. Once a connection
is unchoked, then uploading can take place again. In this way
peers reciprocate by uploading to peers which upload to them,
thus encouraging fairness. Data transfer between two peers
will only occur if the sending end of the connection is not
choked, and if the receiving end is interested. Maintaining the
choking state is key to BitTorrent achieving its goal of fairness
as it allows peers to interact with each other and promotes fair
participation in the network [10].

C. Advantages of the BitTorrent design within WSN

Like other P2P content distribution protocols, BitTorrent
helps to balance the communication load and avoid network
partition. These features correspond exactly to two of the
key WSN design goals. BitTorrent also employs the rarest
piece algorithm which introduces a higher degree of efficiency
in data replication. The BitTorrent approach of segmenting
data files into pieces, adds an extra level of inner security to
the system. A node which does not contain all pieces of a
data file provides only meaningless data when tampered with.
Replication policies can be set up so as to avoid peers storing
entire data files, thus achieving this added level of security.
One additional advantage in using the BitTorrent design is
that if every segmented data piece can be transported within
a single packet, the probability of successful data delivery in
the network increases and, hence, the reliability.

III. TINYTORRENTS

The TinyTorrents architecture proposes a new approach
to addressing data availability concerns in a sensornet envi-
ronment. In TinyTorrents, each sensor is an element of the

BitTorrent global peer-to-peer (P2P) network[1]. Data is only
published to the network when it is requested by a peer, or
when the sensor deems it necessary. In the current implemen-
tation, trackers and requesting clients maintain state vectors
pertaining to the propagation of a published segment. The
architecture provides for prioritisation of “rarer” pieces e.g.
if imminent sensor failure is likely, or an event of significance
has occurred, transfer of the sensor’s remaining data can be
prioritised. The TinyTorrents infrastructure incorporates a high
reliability WSN routing layer (TinyHop) which delivers the bi-
directional data communication features required to support
the TinyTorrents architecture. TinyHop presumes that any
mote can act as a gateway (sink). Mobile or static elements
(like data mules [1]) which implement the TinyTorrents system
can integrate with the network from any location, thereby
helping to balance the traffic load and avoiding energy-based
network partition. TinyTorrents operates in tandem with the
routing layer, realising a peer-to-peer communication capabil-
ity between any two nodes in an ad-hoc mesh network. Tiny-
Torrents assumes a highly dynamic environment incorporating
node mobility. Thus the routing protocol used must work in
scenarios where nodes can be mobile and routes may have to
dynamically (re)discovered.

A. Application Framework

The system presented in [3] interfaces software on a gate-
way host with a base station mote. The software consists of
a plug-in for the popular BitTorrent client Vuze [11], which
effectively bridges the TinyTorrents protocol running on the
sensor network, with BitTorrent using TCP/IP. An overview
of a typical deployment is depicted in Figure 1.
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Fig. 1. TinyTorrents System - Globally accessible WSN data.

A gateway connects to the sensor network via a base station.
The software running on the node implements the TinyTorrents
protocol and may effectively act as a peer in a file transfer.
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A file available for transfer in the WSN is described by a
concise torrent descriptor containing the number of pieces, the
length of the file, the checksums for each piece and the unique
key associated with the torrent. The unique key is composed
of application-specific metadata. For example, one byte of the
key may indicate the type of data (temperature, moisture etc...)
and another may indicate the location.

The software framework provides for the attachment of
application agents, which provide access to the torrents offered
by the sensor network. An Application Programming Interface
(API) was designed to expedite the development of such
agents. An agent controls which torrents are downloaded
from the WSN. For example, an agent designed to collect
temperature readings may attempt to transfer all temperature-
related torrents published on the network. Alternatively, it may
advertise the availability of such torrents (without actually
fetching the data) and fetch the data on demand. An agent
may additionally aggregate data acquired from the WSN, make
appropriate filtrations and make available the fused resultset.

Integration with Vuze offers a multitude of potential func-
tionalities. Vuze is a feature-rich BitTorrent client that incorpo-
rates comprehensive tracker functionality. Thus, TinyTorrents-
compatible torrents may readily be converted to standard
BitTorrent-compatible torrents, and the latter published to the
tracker. Therefore, remote users can freely access the data.
Such functionality was abstracted from Vuze and incorporated
into the APL

Agents may expose available data to internet clients by a va-
riety of techniques. BitTorrent does not provide any integrated
querying mechanism so the authors implemented SOAP-based
Web 2.0 Services as an effective solution. Facilities for rapidly
deploying complex Web Services over HTTP/HTTPS are
incorporated into the API. Queries are ordinarily based on the
metadata encoded in the torrent’s key. Thus an internet user
may search for all torrents which include temperature readings
at a particular location in a specified sensor environment. An
agent running on the gateway may also publish its own torrents
on the sensor network. For instance, a critical update may be
deployed to the motes in this fashion. However this addition-
ally requires service discovery/querying functionality in the
WSN. A multitude of approaches amenable to TinyTorrents
that realizes such functionality, are presently being investigated
by the authors

B. TinyHop

The TinyTorrents infrastructure relies on the routing layer
to perform peer-to-peer wireless communication in unreliable
network scenarios. A routing protocol called TinyHop [12]
has been designed to operate in an error-prone, lossy radio
communications environment and is intended to provide a
reliable means of end-to-end communication in as power-
efficient a fashion as practicable. TinyHop seeks to minimize
the number of messages necessary to perform routing, thus
extending the life of both individual nodes and the network
as a whole. Careful consideration was given to memory,
computational power, and energy constraints in the design.

It uses an on-demand paradigm, thereby avoiding the expen-
sive (in power terms) periodic beacon messages of proactive
routing protocols [13]. TinyHop is reliable in the sense that
it provides bidirectional communication between any two
nodes in the network and ensures connectivity through local
repair mechanisms. It creates routing paths that work in both
directions. It allows any mote to act as an on-demand base
station or sink (a node that acts as a gateway and routes data
in and out of the network). Base stations in the TinyTorrents
system act as gateways to other networks or the Internet. The
protocol has been implemented in version 2.0.2 of TinyOS
[14] and evaluated both in TOSSIM [15], [16] and in a real
testbed of MicaZ [5] motes, which is the platform used for
the TinyTorrents demonstrator.

TinyHop uses flooding mechanisms which reduce the flood-
ing overhead associated with typical multipath route discovery,
whilst avoiding cycles. In order to achieve bidirectionality
and promote fault tolerance, a local flooding mechanism is
implemented that seeks alternative bidirectional routes within
the neighbourhood of an uncontactable node when route
symmetry is lost. A node is considered uncontactable when
a timeout semaphore expires. The protocol has been designed
to easily incorporate different decision metrics. Such metrics
can inform the next hop and local route rediscovery processes.
Currently the protocol operates using a fastest route response
metric. Packet and route cycles are avoided by design. The
protocol also prevents multiple uncontrolled local discoveries
when acknowledgment packets are not received and employs
retrys and snooping techniques to help prevent the formation
of unusable paths.

TinyHop was validated using scalable topologies up to 128
nodes. For each topology, scenarios featuring different degrees
of link connectivity were created to simulate local mobility and
to force the protocol to employ its local repair mechanism.
As the topologies increased in dimension, paths were created
from 4 to 23 hops in length. Data such as round trip time
(RTT); overhead in sending and receiving; packet loss; and
number of data packets sent, received and acknowledged were
captured for evaluation of the performance of the protocol.
These showed that data packets were always delivered where
a bidirectional path existed, although the retransmit rate was
seen to increase with hop count. Routes with long hop counts,
and elevated intermediate node mobility, required a greater
number of local rediscovery processes during end-to-end data
transmissions. More impressive results were obtained during
validation in a live 32 node WSN deployment, where the actual
packet retransmission rate was considerably lower than that
indicated by simulation.

As previously noted TinyHop is designed to function in a
power efficient fashion on highly constrained sensor devices.
It requires one routing entry for every path created in each
node. This entry contains minimum information about the
route and the next hop. Inactive, or otherwise expired, entries
are reused on demand. These design considerations mean that
both TinyTorrents and TinyHop work in a cross-layer fashion
and require less than 4KB of RAM on a participating node.
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C. TinyTorrents Protocol

TinyTorrents is a contraction of the BitTorrent protocol tai-
lored for sensor devices. Initial design concepts are established
in [3]. TinyTorrents preserves the core behaviours outlined
in the BitTorrent specification. A unit of data to be shared
(file) is subdivided into regular sized pieces (save for the last
piece). The unit of data is described by concise metainfo,
referred to hereafter as a rorrent file. This torrent file serves
the same purpose as a “.torrent” file in BitTorrent. It includes
information such as the length of the data, the number of
pieces, the checksums for all pieces and a unique key. The
key is composed of application-specific metadata (as opposed
to the SHA1 hash of the shared data used in BitTorrent).
Additionally, the key may incorporate the mote’s address and a
sequence number, to ascertain uniqueness. Finally, the address
of the tracker mote is incorporated in the torrent file, i.e. there
is no statically selected tracker in the WSN, thus multiple
trackers may be deployed to prevent over reliance on a single
power-restricted mote.

A “torrent” comprises a set of peers, collectively referred to
as a swarm. A peer may be one of two types, seeder or leecher.
As mentioned above, a seeder possesses an entire copy of
the file and contributes resources to assist other peers; while
a leecher has an incomplete subset of available pieces and
seeks to procure the remainder, ideally balancing consumption
of resources by sharing its pieces with other peers. In order
for a leecher to obtain pieces, it requires a peer list (a subset
of the swarm). The original BitTorrent specification identified
the tracker as the primary regulator of a torrent and as the
authoritative maintainer of the swarm, enabling clients to
request a list of peers from a centralized location [8]. Thus, the
tracker is the only reliable entity that has impartial knowledge
of all peers in a given swarm.

In BitTorrent, a tit-for-tat algorithm is employed to ensure
fairness. In essence, this is achieved by ‘choking’ a peer i.e.
refusing to provide it pieces until it has uploaded an adequate
amount of data. Peers are notified when the choking status
for another peer is updated. Such notifications result in heavy
traffic in a WSN environment and are thus omitted in the
current TinyTorrents system. Alternative strategies are used to
preserve fairness within the TinyTorrents environment.

In order for peers to identify nodes in possession of a
given piece, BitTorrent requires that each client notify its
leeching peers that it now possesses the piece by sending
‘HAVE’ messages. Such messages generate high volumes
of traffic and low-bandwidth peers may be overwhelmed by
nominal ‘HAVE storms’. Strategies for reducing the frequency
of such messages have been explored [17] in the literature.
TinyTorrents does not directly use ‘HAVE’ messages - rather
bit vectors encoding the pieces possessed by a peer are
employed. For larger files bloom filters have been identified
as most appropriate [18]. A leecher exchanges its bit vector
with another peer in a handshake phase, which precedes any
piece requests made by the former to the latter.

A tracker mote for a torrent has a relatively straightforward

behaviour set. It records a mote’s address and position in the
swarm, and responds to requests for peers with a random
subset of the swarm. The entire protocol operates in three
phases as follows:

1) Acquisition of a peer list. In the protocols simplest form,
a request is made to the tracker and the peer list is
established from the tracker’s response. In addition, the
mote tracks its position in the swarm from the tracker
response.

2) Handshakes are performed with all peers wherein piece
bit vectors are exchanged.

3) A mote periodically selects the rarest missing piece
that is available from its list of peers. If no piece is
obtainable, phase 1 is re-entered. Otherwise, a peer,
which has the piece, is chosen and a request is sent.

IV. PROTOCOL ANALYSIS

A thorough investigation of TinyTorrents was undertaken to
determine its viability under realistic conditions, particularly
its capability to dissipate duties across the network, and avoid
excessive reliance on individual motes. In this section, the
evaluation environment is briefly outlined, followed by a com-
prehensive analysis of peer selection with the goal of balancing
contributions amongst motes, and minimizing transmissions.
The strategies evaluated include those that utilise contribution
and proximity as peer selection criteria.

A. Evaluation Scenario

To test the application-level efficiency of the protocol, an ad-
hoc simulator, derived from the TinyOS simulator (TOSSIM),
was employed. Various simulations were conducted on ran-
domly generated graphs of 32 nodes consisting of an arbitrarily
nominated tracker and 16 designated peers (an initial seeder
and 15 leechers). For each simulation, the location of the
peers and the tracker were randomized. Ideal routing tables
and zero packet loss configurations were provided. As routing
and network conditions are thereby obviated, a thorough
comparison of the application-level protocol was achieved.

B. Investigation of Balanced Contribution

Once a mote has determined the rarest piece to acquire, a
peer must be selected from which to obtain this piece. In [3], a
peer was chosen at random, and with equal probability, from
the set of available candidates. This strategy was evaluated
over 1000 simulation runs and, as expected, highlights the
excessive burden placed on the initial seeder. This can be
seen in Figure 2. The x-axis denotes the position at which
a peer enters the swarm. Thus the primary seeder is always at
position 0. The initial seeder must support full transfer to the
first leecher, and potentially contribute 1/n'" of the support
for the n'" leecher. As energy conservation is paramount
in a WSN environment, compensating for the contribution
of seeders prolongs network life. It is therefore desirable to
reduce the load on the seeder and dissipate the burden of data
transfers and network overhead evenly. Important factors for
peer selection include the peers relative position in the swarm,
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Fig. 2. Peer selection with equal probabilities. The initial seeder at position
0 bears most of the load.

its number of available pieces and the number of concurrent
leechers.

One strategy for seeder compensation involves aligning
the selection probabilities of each peer with the inverse of
its piece count. However, this method is overly simplistic
and is influenced by the number of simultaneous leechers.
For example, if a leecher enters a swarm of two seeders,
the piece count of the latter nodes will be equal and both
seeders are chosen with equal probability. The older (possibly
original) seeder is not differentiated and therefore does not
benefit from a proportionate reduction in load. Hence, piece
count alone is an insufficient criterion. Much improved results
emerge from basing the probabilities on peer position. Figure
3 demonstrates the outcome of simulations to evaluate the
effect of peer position sensitive strategies. The reduced load
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Fig. 3. Peer selection with probabilities proportional to starting position

on the seeder is evident, transmitting an average of 25 pieces
as opposed to 55, see Figure 2. The 95% confidence interval
for the mean is 21.98 — 28.12, while the standard deviation is
1.9. In Figure 3, there is a noticeable peak at position 3 arising
from the maximum permissible size of a peer list being set to
4 in the simulations. In general for a maximum peer list size
s and position p, increasing the sensitivity of the probabilities
to p results in a peak in the region where p = s. In the figure,

s = 4, and the weight function which ranks each peer is the
power function p2. The weight function performed well when
defined as a power function w of s and p, as follows:

w(p, s) = p'os)

A tracker notifies peers of their position in the swarm through
ordinary peer list responses, and such information is ex-
changed amongst peers in handshakes. Motes are therefore
afforded the opportunity to dynamically adjust seeding duties
in accordance with declining battery life or excessive piece
requests. Under normal circumstances a mote is expected to
indicate its actual status to ensure overall network fairness.
The Figure 3 findings resulted in some modifications to the
protocol. Firstly, the tracker was adapted to record the position
of each joining peer in the swarm, and to include this informa-
tion in peer list responses. Secondly, the handshake phase was
modified to incorporate the positions of both peers. Finally,
the weight function derived from the analysis was factored
into the peer selection strategy employed by the motes.

Reducing the burden on the primary seeder for wired
networks has been explored for BitTorrent. A super-seeding
technique was evaluated in [19], this ensures that the initial
seeder only sends a single copy of each piece. Likewise, the
approach adopted here significantly reduces the probability
of the initial seeder sending duplicate pieces. To completely
eliminate such a likelihood would be inappropriate as the
availability of all, or any, of the secondary seeders can not be
assured in a mobile communications environment. Moreover,
the above approach offers an acceptable solution to the flash
crowd problem. This problem arises when a resource achieves
sudden unexpected popularity, resulting in excessive demand
on the provider, and possibly incapacitating the node. Its
effects have been studied in the context of BitTorrent in [20].
Our results demonstrate rapid dissipation of duties amongst
peers in TinyTorrents thereby reducing the likelihood of a mote
being overwhelmed by an unprecedented burst of interest.

In a WSN, location-based decisions are fundamental to
energy conservation. Choosing peers based on hop count, or
other proximity metrics, can reduce the number, and power, of
transmissions. As evident in Figure 4, the number of packets
sent grows linearly with the size of the network. However,
there is a trade-off between overall reduction in transmissions
and the load borne by each mote. Factoring hop count into the
above weight function determination further reduces the total
transmissions whilst preserving load balancing functionality.
However, the reduction in transmissions was only 3% on
average. When the additional complexity arising, and slight re-
duction in packets sent, are considered together, location-based
selection strategies are not included in the implementation of
the TinyTorrents protocol described herein.

V. SYSTEM INTEGRATION

Once the key system messaging principles and data struc-
tures for the TinyTorrents system were established, it was
integrated with TinyHop using TinyOS version 2.0.2 [14].
Simulations were executed in TOSSIM, the TinyOS discrete
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Fig. 4. Variation of transmissions with the size of the network for both
regular selection and location-based selection (probabilistically favouring
nearby peers)

event simulator using the Crossbow MicaZ platform [21]. A
key initial goal was to determine the data efficiency of the
system i.e. deduce the implicit TinyTorrents overhead.

A. Management Overhead

Experiments were carried out to determine the overhead
of the protocol i.e. the aggregate amount of control bytes
transmitted. The maximum theoretical data vs. control effi-
ciency of a request/receive protocol using single-hop TinyOS
active messages is 64.4% [3]. Extra overhead is incurred
for the routing layer in multihop paradigms. Irrespective of
such invariable additions, the amount of application payload
arising from various stages of the protocol was investigated.
A topology of 12 motes was configured as shown in Figure
5. One was designated as the tracker, another as a primary
seeder and a further 5 as leechers. TinyHop was employed at
the routing layer. Three sets of tests were performed requiring
torrenting of files of 4, 8 and 16 pieces respectively. The size of
each piece was 16 bytes. The entry of leechers into the swarm
was randomized for each simulation, as this factor governs the
concurrent number of leechers and therefore affects medium
contention and interference characteristics. Simulations were
repeated 20 times and the results averaged. The results of
the simulations for transfers with different numbers of pieces
are presented in Table I. The third configuration, based on a

TABLE I
PERCENTAGE OF CONTROL BYTES VS. DATA IN THE APPLICATION
PAYLOADS OF TORRENT TRANSFERS INVOLVING 4, 8 AND 16 PIECES

Percentage Bytes
4 pieces | 8 pieces | 16 pieces
Requests to tracker 3.14 1.82 0.99
Responses from tracker 7.29 4.25 2.38
Handshakes 16.43 9.47 5.23
Piece Requests 12.74 15.26 17.13
Pieces 60.41 69.18 74.27

torrent of 16 pieces, resulted in a high volume of simultaneous
transmissions, thereby providing a challenge for TinyHop’s
failure recovery modalities. End—to—end delivery was the key

Fig. 5. 12-node Topology. The edges indicate bidirectional reachability

metric of interest from an application perspective. The data
in Table I shows the gain in efficiency that results from files
with more pieces. This characteristic behaviour is shared with
BitTorrent. The percentage of bytes transmitted to and from
the tracker in an entire torrent transfer is just 3.37% for 16
pieces and decreases in inverse proportion to the number of
pieces. Therefore, the load on a tracker mote is relatively
insignificant. The findings (in Table I) reinforced several
design decisions pertaining to the protocol. In particular,
the overheads associated with the handshake phase decrease
significantly in accordance with the number of pieces. The
routing layer and Active Message header overhead imposed
by TinyOS accounted for 54% of all bytes transmitted, the
remaining 46% being apportioned as in Table I. Much of
that arises from the initial flooding to establish the primary
network topology. Clearly, overheads on this scale are difficult
to justify or sustain in a WSN environment. Consequently,
further optimization approaches were examined.

TABLE II
AVERAGE PIECES SENT PER SIMULATION OF A COMPLETE TORRENT
TRANSFER INVOLVING 5 LEECHERS FETCHING 16 PIECES. IN THE SECOND
SIMULATION BATCH, PIECES WERE ADDITIONALLY CACHED EN-ROUTE

Mean Pieces 95% Confidence Standard
Sent Interval for the Mean | Deviation
Simulation Batch 1 93.68 89.82 - 97.54 4.29
(No interception)
Simulation Batch 2 76.71 68.66 - 84.76 6.06
(Interception)

B. Interception and Aggregation

As all motes in the WSN may serve as routers, traffic that
is being forwarded may be cached by intermediary nodes
if required. In particular, if a mote is a leecher for some
torrent and receives a piece of the file which is in transit
to another mote, then storing (or caching) this piece may
reduce future interactions with the seeder. To establish the
potential benefit of this technique, and assess its likely impact,
slight modifications were made at the routing layer to pass en-
route packets of a specific type to the application. A 12-mote
topology was employed comprising a tracker, primary seeder
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and five leechers. Assignments were randomized for each
simulation. In order for the 5 leechers to acquire a full file of
16 pieces, the minimum number of pieces that must be sent is
80(16x5). Two batches of 20 simulations were performed. The
second batch exploited the interception technique described
above. Table II establishes the mean reduction in pieces sent
as approximately 18%, a considerable reduction in messaging.
The 95% confidence interval for the mean for both batches of
simulations is provided. This confidence interval is, naturally,
wider for the second batch of simulations since the randomized
positioning of leechers per simulation exclusively governs the
extent of interception. Nevertheless, the upper limit of this
interval is appreciably less than the lower limit of the interval
for the first batch of simulations, and consequently affirms that
reasonable gains are attainable by employing this approach.
Exploiting this technique offers many opportunities to reduce
the aggregate network and per node power consumption.

VI. FUTURE DIRECTIONS

TinyTorrents offers considerable scope for improvement. A
major weakness of the protocol, as described herein, is its
reliance on a tracker. Decentralization is a significant goal in
the pursuit of fault tolerance and scalability. [22] establishes
that Distributed Hash Tables (DHT) are not an efficient option
for sensor networks domains. An alternative strategy for
peer discovery, known as Peer Exchange (PEX), has been
implemented in some BitTorrent clients [23]. PEX entails
querying present peers to find others. In this regard, it has some
parallels with the presented caching behaviour. It is, however,
susceptible to the formation of articulation points, whereby the
failure of a peer partitions the swarm into disjoint components.
It thus becomes necessary to flood in order to re-discover
remaining peers. Our research suggest the deficiencies of PEX
are more pronounced in the context of TCP/IP networks than
for WSNs, as the existence of a recovery mechanism, albeit
a suboptimal one, within TinyTorrents offers a functional
solution where the probability of partition is reasonably low.
There is also considerable scope for community contribution in
the area of efficient, integrated querying. Investigation of more
efficient routing protocols than TinyHop, which incorporate
inexpensive querying functionality, is ongoing. Efficient com-
pression mechanisms, like Bloom filters, are being employed
to replace the pieces bit vector; while the impact of both piece
length and the number of segmented pieces per data file on
system performance is being studied.

VII. CONCLUSION

This paper presents TinyTorrents as a means of interfacing
Wireless Sensors and Wireless Sensor Networks with the
global Peer-to-Peer network, BitTorrent. The background and
rationale underpinning the conception and design of TinyTor-
rents is established and a strategy for interfacing the plat-
forms presented. TinyHop, the protocol that underpins inter-
node communications in TinyTorrents, is introduced and its
key features summarised. Key messaging behaviours required
by BitTorrent are assessed and corresponding functionality

documented in TinyTorrents as appropriate. Specific peer and
seeder selection strategies are evaluated in a WSN context
prior to a system level evaluation of the overall scheme.
The resulting optimisations focus on reducing the number of
messages and transmissions required by the system — thereby
improving network and node lifetime.
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