
Workflow Semantics of Peer and Service Behaviour

Antonio Brogi and Razvan Popescu∗
Computer Science Department, University of Pisa, Italy

Abstract

In this paper we introduce SMoL, a simplified BPEL-
like language for specifying peer and service behaviour in
P2P systems. We define a transformational semantics of
SMoL in terms of YAWL workflows, which enables the simu-
lation (e.g., testing possible execution scenarios) and anal-
ysis (e.g., verifying reachability or lock freedom) of the be-
haviour of P2P peers and services.

1 Introduction

The goal of the Secure Middleware for Embedded Peer-
To-Peer Systems (SMEPP) Project (www.smepp.org,
[1]) is to develop a middleware that will have to be secure,
generic and highly customisable, allowing for its adapta-
tion to different devices (from PDAs and smart phones to
embedded sensor actuator systems) and to different do-
mains (from critical systems to consumer entertainment or
communication). Furthermore, SMEPP aims to provide a
high-level, service-oriented model to program the interac-
tion among peers, thus hiding low-level details that concern
the supporting infrastructure.
The key features of the model are the notion of group of

peers, the notion of service offered by peers (or by groups),
and the concern of security. In short, the model defines a
set of security-aware primitives for peer management (e.g.,
create peers), for group management (e.g., create, join, or
leave groups), for service management (e.g., publish and
unpublish services), and for message and event handling
(viz., send or receive messages, or subscribe, unsubscribe,
raise, and receive events), to be implemented by one or
more APIs. Such primitives are the basic bricks for con-
structing the code of P2P entities1.
The SMEPP model is equipped with a high-level lan-

guage (SMoL — SMEPP Modelling Language) for spec-
ifying how to orchestrate SMEPP primitives into peer or
service code. The availability of a high-level specification

∗Work partly supported by the SMEPP project (EU-FP6-IST 0333563).
1We shall use the term “entity” to refer to peers or services.

language notably simplifies the time-consuming and error-
prone task of specifying the interactions of a complex P2P
system. Most importantly, the definition of a formal seman-
tics for such a language in term of workflows (the subject
of this paper) enables the simulation and the analysis of the
behaviour of peers and services, thus featuring the possibil-
ity of developing not only secure, but also a priori verified
SMEPP specifications. Furthemore, the availability of auto-
matic translators (e.g., the prototype SMoL2Java compiler)
greatly simplifies the generation of executable code, which
can be further completed to express data-related details in
peer/service behaviour.
This paper briefly describes the SMEPP primitives and

modelling language (Section 2), and it then focuses on the
translation of SMoL programs into YAWL workflows (Sec-
tion 3). Section 4 briefly describes the translation of a sim-
ple SMoL example. Section 5 presents some concluding
remarks.

2 SMEPP Primitives and Modelling Lan-
guage

The analysis of current state-of-the-art models in P2P
systems (e.g., [2, 3, 6, 7, 8, 10]) revealed the fact that ex-
isting frameworks for the development of P2P applications
generally: (1) do not provide a simple, high-level service
(interaction) model that presents a suitable level of abstrac-
tion to ease the development of P2P applications, or (2) do
not model all the concepts mentioned in Section 1 (such as
group management, or message and event handling), or (3)
do not provide a (formal) abstract language that can be used
for simulating and verifying the behaviour of peers and ser-
vices, and their interactions, as well as for application pro-
totyping.
In order to tackle such limitations we defined a SMEPP

service model that features a set of abstract primitives,
which can be used to develop P2P application specifications
in a simple, high-level manner. We aim at deploying such
primitives as different (language dependent) APIs, which
will allow the deployment of SMEPP specifications as real
(executable) applications.

2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-3249-3/08 $25.00 © 2008 IEEE

DOI 10.1109/TASE.2008.28

143

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on April 12,2010 at 13:45:31 UTC from IEEE Xplore. Restrictions apply.

2.1 SMEPP Primitives

// Peer Management
pId newPeer(creds)
pId getPeerId(id?)
pId[] getPeers(gId)

// Group Management
gId createGroup(grDescr)
gId[] getGroups(grDescr?)
grDescr getGroupDescription(gId)
void joinGroup(gId, creds)
void leaveGroup(gId)
gId[] getIncludingGroups()
gId getPublishingGroup(id?)

// Service Management
<gSId, pSId> publish(gId, contract)
void unpublish(pSId)
<gId, gSId, pSId>[]

getServices(gId?, pId?, contract?, maxRes?, creds)
contract getServiceContract(id)
sessId startSession(sId)

// Message Handling
out? invoke(eId, opName, in?)
<cId, in?> receiveMessage(gId?, opName)
void reply(cId, opName, out?, fName?)

// Event Handling
void subscribe(evName?, gId?)
void unsubscribe(evName?, gId?)
void event(gId?, evName, in?)
<cId, in?> receiveEvent(gId?, evName)

Figure 1. SMEPP Primitives.

The SMEPP primitives are given in Fig-
ure 12. Basically, the SMEPP model identifies
peers, groups, and services through unique identi-
fiers. The SMEPP primitives offer support for: (1)
peer management: newPeer, getPeerId, and
getPeers, (2) group management: createGroup,
getGroups, getGroupDescription, joinGroup,
leaveGroup, getIncludingGroups, and
getPublishingGroup, (3) service manage-
ment: publish, unpublish, getServices,
getServiceContract, and startSession, (4)
message handling: invoke, receiveMessage, and
reply, and for (5) event handling: subscribe,
unsubscribe, event, and receiveEvent.

2.2 SMoL: SMEPP Modelling Language

SMoL defines the behaviour of the SMEPP entities
as compositions of basic commands into structured ones.

2The question mark denotes optional parameters, square brackets rep-
resent arrays, and angle brackets composite data structures.

SMoL is inspired by version 2.0 of BPEL [12], which re-
cently became the OASIS standard for describing Web ser-
vice compositions.
Since the BPEL semantics [4] is quite complex (e.g.,

due to synchronisation links and dead-path-elimination),
the analysis of (interactions of) BPEL processes is both
troublesome and very time consuming. Furthermore, the
SMEPP requirements do not request several BPEL con-
structs (concepts). Consequently, we designed SMoL from
BPEL basically by removing the following BPEL con-
cepts: compensations, synchronisation links (and hence
dead-path-elimination), the forEach construct, serializable
scopes, partner links, message properties, and correlation
sets.
Furthermore, by employing the SMEPP primitives as

basic SMoL commands, we allow the SMoL programs to
manage: peers (e.g., peer creation), groups (e.g., group cre-
ation and discovery), services (e.g., service publication and
discovery, state-less and state-full services), messages (viz.,
one-way and request-response operation invocations), and
events (non-blocking, asynchronous communication; event
generators and subscribers).
In the following, we describe the basic and the structured

SMoL commands.

2.2.1 Basic Commands.

primitive
void empty()
void wait(for?, until?, repeatEvery?)
void throw(faultName, faultVariable?)
faultVariable? catch(faultName)
<faultName, faultVariable?> catchAll()
void exit()

Figure 2. SMoL Basic Commands.

Figure 2 illustrates SMoL basic commands. A basic
command is eithera call to any of the primitives shown
in Figure 1, or a call to empty, wait, throw, catch,
catchAll, or exit.
As previously mentioned, SMEPP primitives are basic

commands. Empty is equivalent to a no-op. Wait de-
lays the execution of the caller either for a time interval
(viz., “for”), or until reaching a certain moment in time
(viz., “until”). The repeatEvery parameter serves to re-
peat the delay (see informationHandler in Subsection 2.2.2).
Throw raises an (explicit) fault inside the caller’s pro-
gram; faultVariable identifies the data associated to the
fault. Catch/CatchAll serve to catch and process faults
raised inside the caller’s program (see the faultHandler in
Subsection 2.2.2). Exit terminates the execution of the
peer or service code.

144

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on April 12,2010 at 13:45:31 UTC from IEEE Xplore. Restrictions apply.

2.2.2 Structured Commands.

Figure 3 illustrates SMoL structured commands3.
Sequence provides basic sequential control-flow,
while flow provides concurrency in the control-flow of the
modelled program. While and repeatUntil provide
looping mechanisms. If provides conditional control-flow
(deterministic choice). Assign defines one or more copy
commands, which copy the value of the source from into
the target to variable. From can specify a variable, an
expression, or a literal (inline text to be assigned to the
target variable, such as a number). The opaque keyword
serves to hide the source of the assignment. Pick defines
a non-deterministic global choice in the control-flow of
the modelled program. In short, the execution of the pick
resumes to executing a message or event branch upon the
reception of a corresponding message or event. Further-
more, the expiration of a timer triggers the corresponding
wait (viz., alarm) branch. InformationHandler is
somewhat similar to a pick. However, the informationHan-
dler has an associated command that dictates its lifetime.
As long as the associated command executes, the informa-
tionHandler can execute message, event, or alarm branches
(one or more times). The repeatEvery keyword sets the
time interval after which the alarm goes off periodically.
FaultHandler also encloses an associated command.
A fault raised by the execution of the associated command
triggers the execution of the first matching (in lexical order)
catch or catchAll branch. Catch basically matches
the name of the fault, while catchAll matches every
fault. In case no such match exists, the fault is propagated
at the enclosing faultHandler. In [5] we proposed a
first semantics for (an abstract version of) SMoL. Such
semantics formally establishes whether a set of SMEPP
processes (viz., peer or service codes) can be executed
together without locking, and it provides a solid ground to
develop tools for the analysis and verification of SMEPP
specifications.

3 Translating SMoL Programs into YAWL
workflows

3.1 A Brief Introduction to YAWL

The Yet Another Workflow Language (YAWL) is a rel-
atively new proposal of a workow/business processing sys-
tem, that supports a concise and powerful workow language
and handles complex data, transformations and Web ser-
vice integration. YAWL extends Petri nets by introduc-
ing some workow patterns (for multiple instances, com-
plex synchronisations, and cancellation) that cannot be eas-

3Note that this is a high-level notation. SMoL actually employs an
XML Schema based on the schema defined by BPEL 2.0.

COM ::=
Sequence COM+ EndSequence |
Flow COM+ EndFlow |
While boolCond COM EndWhile |
RepeatUntil boolCond COM EndRepeatUntil |
If boolCond COM Else COM EndFlow |
Assign [Copy FROM TO EndCopy]+ EndFlow |
Pick [pickGuard COM]+ EndPick |
InformationHandler

COM [infoGuard COM]+
EndInformationHandler |
FaultHandler COM [catchGuard COM]+ EndFaultHandler

boolCond ::= logicalExpression
FROM ::= variable | expression | literal | opaque
TO ::= variable
pickGuard ::= receiveMessage(gId?,opName) |

receiveEvent(groupId?, evName) |
wait(for?, until?)

infoGuard ::= receiveMessage(gId?,opName) |
receiveEvent(groupId?, evName) |
wait(for?, until?, repeatEvery?)

catchGuard ::= catch(fName) | catchAll()

Figure 3. SMoL Structured Commands.

ily expressed using (high-level) Petri nets. Petri net based
tools such as [17], and YAWL-based tools such as [16] can
be employed to formally analyse YAWL workows (viz.,
verify properties such as reachability, soundness, or lock-
freedom) [13]. Furthermore, not being a commercial lan-
guage, YAWL supporting tools (editor, engine) are freely
available (www.yawl-system.org). More details on
YAWL will be given in Subsection 3.2.

3.2 The Core of SMoL2YAWL

SMoL2YAWL is a pattern-based compositional trans-
lator of SMoL programs into YAWL workflows. In
the following we describe the YAWL patterns used by
SMoL2YAWL for the translation of both basic and struc-
tured SMoL commands.

3.2.1 Basic Command Patterns

Each SMoL basic command (but primitives) translates to a
single atomic YAWL task. (Intuitively, YAWL tasks corre-
spond to Petri net transitions.) Figure 4 illustrates the pat-
terns of the SMoL basic commands previously defined in
Subsection 2.2.1.
For example, the Empty pattern consists of a dummy

task with no inputs and outputs, while Wait consists of a
task that inputs the duration of the timeout. Furthermore, in
order to terminate the execution of the workflow translating
a SMoL program,Exit is to be connected to the output con-
dition of the workflow (see Subsection 3.2.2). (Intuitively,
YAWL conditions correspond to Petri net places.) The can-

145

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on April 12,2010 at 13:45:31 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Basic Command Patterns.

cellation set4 of Exit makes sure there are not tokens left in
the workflow in case of an abnormal execution of the work-
flow.
Each SMEPP primitive translates to a Call task linked

through a deferred choice to two other tasks – Return and
RaiseFault. Call models the start of the primitive’s execu-
tion, and it inputs the primitive’s inputs. Its execution places
a token in the deferred choice condition. Then, the environ-
ment (viz., the client of the workflow) decides whether the
primitive terminates successfully – by executing the Return
task, or whether the primitive raises a fault – by executing
the RaiseFault task. On the one hand, Return has to forward
a token to the pattern of the command whose execution fol-
lows the primitive in the SMoL program, as defined by their
parent pattern (see Subsection 3.2.2 for details on how the
structured patterns link their children patterns). On the other
hand, RaiseFault signals a fault to the parent FaultHandler
(if any, otherwise to the default one) by forwarding a token
to the fault condition of the enclosing FaultHandler (again,
see Subsection 3.2.2 for details on the FaultHandler pat-
tern).

3.2.2 Structured Command Patterns

In this subsection we describe the patterns translating the
SMoL structured commands previously defined in Subsec-
tion 3.2. As one would expect, the patterns of the structured
SMoL commands are compositionally constructed by suit-
ably linking the patterns that translate the children activities
of the structured commands.
Sequence and Assign. Figure 5 sketches the Sequence
pattern. The dummy Begin(Sequence) and End(Sequence)
tasks mark the beginning of the SMoL sequence, and its

4YAWL cancellation sets serve to remove tokens from a workflow.
When a task is executed, all tokens from its cancellation set (if any) are
removed.

termination, respectively. Each child command of the
SMoL sequence translates to a (possibly structured) pat-
tern5. These patterns are linked sequentially, in lexical
order of occurrence of their corresponding commands in
the sequence. Begin(Sequence) is in charge of enabling
for execution the pattern of the first command in the se-
quence. The termination of the first Command pattern en-
ables for execution the second Command pattern, and so
on, until the last Command pattern, whose execution en-
ables End(Sequence). The Assign pattern is quite similar; it
simply employs atomic Copy tasks instead of child Com-
mand patterns. Each Copy maps an input from variable
onto an output to variable, as in the corresponding SMoL
copy. (Note that SMoL, similarly to BPEL and YAWL, uses
XPath and XQuery for data manipulation.)

Figure 5. The Sequence pattern.

Flow. Figure 6 graphically depicts the Flow pattern. Sim-
ilarly to previous structured patterns, it employs Begin and
End tasks, which mark the initiation and the termination,
respectively, of the flow command. Furthermore, each child
command defined in the SMoL flow translates to a possi-
bly structured Command pattern. Begin(Flow) employs
an AND-split construct6 so as to enable for execution all
children Command patterns. Dually, End(Flow) employs
an AND-join construct7 so as to make sure that the Flow
terminates only when all children Command patterns have
finished their execution.

Figure 6. The Flow pattern.

While and RepeatUntil. Figure 7 illustrates theWhile pat-
5In the following figures, we will represent the pattern of a generic

(basic or structured) command by a “cloud”.
6YAWL tasks employ split constructs, which can be EMPTY, AND,

OR, or XOR. Intuitively, the split construct of a taskT species “how many”
tasks are to be executed after T finishes. For example, in case of an AND-
split, a token is generated on all the output links.

7YAWL tasks also employ join constructs, which can be again EMPTY,
AND, OR, or XOR. Intuitively, the join of a task T species “how many”
tasks before T are to be terminated in order to execute T . For example, a
task with an AND-join can execute only after receiving at least one token
on each of its input links.

146

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on April 12,2010 at 13:45:31 UTC from IEEE Xplore. Restrictions apply.

tern. Begin(While) computes the value of the boolean guard
condition, as defined in the SMoL while. Begin(While)
employs a XOR-split8 so as to enable for execution ei-
ther the child Command pattern – if the guard holds
true, or End(While) – otherwise. Similarly, End(While) re-
computes the boolean guard and it re-enables for execution
the child Command pattern – if the guard holds true, or it
terminates theWhile – otherwise. Note that theWhile pat-
tern imposes a slight modification to the child Command
pattern. If the child Command is a basic pattern, then the
respective task has to employ a XOR-join. Otherwise, if
Command is a structured pattern, then its Begin task has
to employ a XOR-join. The XOR-join makes sure that the
Command pattern gets enabled either by Begin(While) –
in the first cycle, or by End(While) – for subsequent cy-
cles. The RepeatUntil pattern differs from While in that
Begin(RepeatUntil) patterns simply forwards a token to the
child Command pattern without checking any guard. Fur-
thermore, End(RepeatUntil) forwards a token to the child
Command provided the guard holds false.

Figure 7. TheWhile pattern.

If. Figure 8 presents the If pattern. Begin(If) computes
the boolean guard defined by the SMoL if command to
be translated, and it either enables for execution the Com-
mand pattern corresponding to the then branch – if the guard
holds true, or the Command pattern corresponding to the
else branch – if the guard holds false, otherwise. The ter-
mination of the selected Command enables for execution
End(If).

Figure 8. The If pattern.

Pick. Figure 9 depicts the Pick pattern. In short, each mes-
sage or event branch consists of a Receive pattern linked to
a Command pattern, corresponding to a message or event

8Roughly, tasks with XOR-splits employ predicates (viz., logical ex-
pression) that guard the output links. Only one token is to be sent on the
predicate holding true.

branch of the SMoL pick to be translated. Furthermore,
each alarm branch consists of a Wait pattern linked to a
Command pattern. Begin(Pick) enables from the control-
flow viewpoint all the Receive andWait patterns. The ex-
ecution of a Receive (by the environment) corresponds to
receiving a message or an event on the respective branch.
Consequently, the Receive cancels all control-flow tokens
of the other message and event branches, as well as it
cancels all the alarms. Furthermore, the execution of the
Pick continues with the Command of the selected mes-
sage branch. On the other hand, the termination of aWait
cancels the control-flow tokens of all message and event
branches, as well as it cancels all other alarms. Then, the
Pick continues by executing the Command of the selected
alarm branch. The termination of the selected message or
alarm branch enables End(Pick), which marks the end of the
Pick.

Figure 9. The Pick pattern.

InformationHandler. Figure 10 represents the Informa-
tionHandler pattern. InformationHandler is somewhat
similar to Pick. Begin(InformationHandler) enables the
Receive and Wait patterns, whose execution roughly cor-
responds to selecting a message/event, or alarm branch, re-
spectively. The execution of a Receive enables, on the one
hand, the Command of the respective message or event
branch, and on the other hand, it re-enables the Receive.
While the former starts the execution of the branch Com-
mand, the latter gives the possibility of re-executing the
same branch. The execution of a Wait enables the Com-
mand of the respective alarm branch, as well as the Re-
peatEvery task (if any). Furthermore, each completion of
the RepeatEvery task leads to re-executing the branchCom-
mand.
Begin(InformationHandler) also enables the Information-
Handler’s Command. The completion of the latter leads
to cancelling all control-flow tokens that enable message
and event branches, as well as all running alarms. In this
way, no other message, event or alarm branches can be se-
lected for execution. However, the Command patterns of

147

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on April 12,2010 at 13:45:31 UTC from IEEE Xplore. Restrictions apply.

Figure 10. The InformationHandler pattern.

branches selected for execution prior to the completion of
the InformationHandler’s Command are allowed to ter-
minate. This is achieved through the use of variables, and
through the cycle involving the Absorber task and the de-
ferred choice condition. On the one hand, each selection
of a branch increments a numInst variable, which is ini-
tially set to 0. On the other hand, the termination of the
InformationHandler’s Command places a token in the
deferred choice, input of the Absorber task. Then, each
completion of a branchCommand enables theDummy task
and further Absorber, which now has both its input to-
kens. The Absorber task either places a token back into
its input condition – if there are branch Commands still to
be completed (viz., numInstances > 0), or it enables the
End(InformationHandler) task – if all running branchCom-
mands have completed their execution (viz., numInst = 0).
The execution of the End(InformationHandler) marks the
termination of the InformationHandler pattern.

FaultHandler. All SMEPP primitives may raise exceptions
(e.g., invalidGroupId, accessDenied, or callerNotInGroup).
However, due to space limitations we did not represent them
in Figure 1. For details on the SMEPP exceptions please
see [15].
Figure 11 depicts the FaultHandler pattern. Be-

gin(FaultHandler) enables the FaultHandler’sCommand,
as well as, it also enables from the control-flow view-
point the first Catch/CatchAll task. The Catch/CatchAll

tasks are linked sequentially, in lexical order of occur-
rence of their corresponding catch/catchAll elements in the
SMoL faultHandler to be translated. The FaultHandler’s
Catch/CatchAll can only be executed upon the reception
of a fault. In order to model such behaviour, the first
Catch/CatchAll task also inputs a flow condition. The can-
cellation set (associated to the first Catch/CatchAll in the
FaultHandler) interrupts the execution of the main com-
mand when a fault is being raised inside the FaultHandler.

Figure 11. The FaultHandler pattern.

We assume that the erroneous execution of the Fault-
Handler’s Command places a token in the fault con-
dition of the FaultHandler. Consequently, the first
Catch/CatchAll task executes. If the name of the fault
defined by the respective Catch (viz., fName in the fig-
ure) matches the name of the fault raised by the Fault-
Handler’s Command, then the execution of the Fault-
Handler continues with the Command of the respective
catch branch. Otherwise, its execution continues with the
nextCatch/CatchAll task. Note that aCatchAll task matches
all faults. It is also important to note that if a fault raised by
the FaultHandler’s Command cannot be processed by the
FaultHandler; in this case, End(FaultHandler) is in charge
of forwarding the fault to the enclosing FaultHandler (if
any, or to the default FaultHandler associated to the entire
SMoL program). The scenario is similar if the execution of
a Catch/CatchAll raises a fault.

4 Example

Consider the SMoL code in Figure 12 describing a moni-
toring service (MS). MS first waits to receive from its client
the id of a group in which it has to monitor the ambient tem-
perature. Then, it subscribes to the “temp10s” event raised
in this group9, and it waits to receive events during one
hour, after which it unsubscribes from the monitored event.

9For space limitations we do not present here the SMoL code of the
entities raising “temp10s” events.

148

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on April 12,2010 at 13:45:31 UTC from IEEE Xplore. Restrictions apply.

Finally, it signals the termination of the monitoring period
to its client. Figure 13 depicts the YAWL workflow corre-
sponding to MS10. One may note the default FaultHandler
that catches faults raised by the service. One may also note
two cancellation sets: one in charge of aborting the execu-
tion of the workflow (see CatchAll), and another one that
disables the reception of events in the InformationHandler
(see EndSequence).

Sequence
<ownerPeer, gid> = receiveMessage(“monitor”)
subscribe(“temp10s”, gid)
InformationHandler
Sequence
wait(“PT1H”)
unsubscribe(“temp10s”, gid)

EndSequence

<cId, temp> = receiveEvent(gid, “temp10s”)
// Use temp for something

EndInformationHandler
reply(ownerPeer, “monitor”)

EndSequence

Figure 12. Monitoring Service (SMoL).

Figure 13. Monitoring Service (YAWL).

10The figure uses abbreviated task names and it does not display task
inputs and outputs.

5 Concluding Remarks

In this paper we have briefly presented a service-oriented
model to specifiy the interaction among peers in P2P sys-
tems, thus hiding low-level details concerning the support-
ing infrastructure. The core concepts of the model are:

• The SMEPP primitives, which allow peers to create,
join, and leave groups, as well as to publish and unpub-
lish services inside groups. Peers can either communi-
cate directly with other peers, or they can invoke peer
or group services. Furthermore, peers and services can
communicate through event and fault notifications.

• SMoL, which is a language for the orchestration of
SMEPP primitives into peer and service code, which
employs state-of-the-art concepts for the definition of
Web service behaviour. SMoL defines sequential,
flow, (deterministic) conditional, iterative, and (non-
deterministic) choice composition operators. Further-
more, it supports the definition of information (mes-
sage and event) and fault handlers.

Various service and interaction models have been pro-
posed for modelling EP2P systems. Some of them
are inspired by the service-oriented architecture paradigm
(e.g., [6, 11]), others are based on/extend JXTA [9]
(e.g., [2, 3]), while others are data-driven coordinationmod-
els (e.g., [7, 10]).
SOA-based P2P models. Gehlen and Pham [6] model

peer interfaces to the distributed environment through
SOAP components, which serve for exchanging, encrypt-
ing and marshalling SOAP messages. Their approach em-
ploys local and remote registries to store WSDL descrip-
tions of the services deployed in the framework, and remote
services, respectively. Maheshwari et al. [11] propose a ser-
vice model based on a message queue cluster that intercepts
and delivers SOAP messages exchanged by peers (Web ser-
vices) so as to achieve high scalability, availability, fault
tolerance, and load balancing. The main downside of such
approaches is that they do not offer a high-level API to be
used by developers for rapid application prototyping. Fur-
thermore, the use of SOAP and Web service technologies
makes these approaches unusable on low-end devices (e.g.,
PDAs or smartphones).
JXTA-based P2P models. Alda and Cremers [2] de-

scribe DeEvolve, a P2P architecture based on Juxtapose
(JXTA [9]). DeEvolve introduces two languages: CAT – for
expressing peer services as compositions of components,
and PeerCAT – for expressing compositions of peer ser-
vices. A main feature of DeEvolve is that PeerCAT can
define exception handlers to cope with peer failures. Bisig-
nano et al. [3] introduce JMobiPeer, a P2P computing plat-
form developed on top of JXTA. JMobiPeer defines mod-
ules for transport and service protocols, for peer and peer

149

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on April 12,2010 at 13:45:31 UTC from IEEE Xplore. Restrictions apply.

group management, and for peer advertisement and discov-
ery management. Similarly to JXTA, advertisements pro-
vide information of available services, peers and groups,
as well as pipes and end points. These approaches, how-
ever, are tightly coupled to JXTA (protocols and implemen-
tation). Furthermore, the JXTA advertisements do not give
developers the flexibility of defining rich service contracts
that can be used for enhanced service discovery.
Data-driven coordination models. Handorean et al. [7]

introduce follow-me sessions that express the interaction of
a client with a service that is offered by several providers, in
order to achieve a continuity of service provision. The pa-
per discusses techniques for migrating processes between
hosts, or partial results to alternate providers, for allowing
temporary client disconnections while providers continue
processing, and for letting clients use partial results until an
alternate provider is found. Lucchi and Zavattaro [10] de-
scribeWSSecSpaces (W3S), Linda-based interactionmodel
for Web services. The model allows for loosely-coupled
Web services, in the way that a Web service can issue a re-
quest and then terminate. Then, the request is processed at
a later time e.g., by a service that becomes online. These
approaches however focus on continuous service provision,
by decoupling service providers from their interfaces. They
do not aim at providing a simple high-level API for the de-
velopment of P2P specifications.

A thorough comparative analysis of related work in embed-
ded peer-to-peer systems can be found in [14]. Roughly,
we argue that existing service and interaction models gen-
erally either do not take into account key requirements
(e.g., group-aware security, asynchronous, synchronous,
and event-based communication, or service contracts), or
they do not provide an abstract modelling language and API
that pave the way for application prototyping and for sim-
ulating and verifying the behaviour of peers and services,
and their interactions.
In this paper, we have also presented SMoL2YAWL, a

pattern-based compositional translator of SMoL programs
into YAWL workflows. On the one hand, SMoL2YAWL
provides a lightweight semantics for SMoL programs,
which can be used to simulate SMEPP entities (e.g., us-
ing the YAWL engine), as well as to analyse the behaviour
of SMEPP entities by analysing their corresponding YAWL
workflows [13].
In [5] we have defined an abstract semantics for a simple

calculus over the SMEPP primitives. Such semantics for-
mally establishes whether a set of SMEPP processes (viz.,
peer or service codes) can be executed together without
locking, and it is currently exploited to develop a proto-
type MAUDE-based analyser. As we already mentioned,
we have also developed a prototype tool for the transfor-
mation of SMoL descriptions into Java code. Our future
work will be devoted to engineering our proof-of-concept

implementation of SMoL2YAWL, and to integrating it with
YAWL-based simulation and analysis tools, and with the
SMoL2Java prototype. Our more long-term objective is the
development, in the context of the SMEPP project, of a full-
fledged SMEPP middleware based on the service model de-
scribed in this paper.

References

[1] M. Albano, A. Brogi, R. Popescu, M. Diaz, and
J. Dianes. Towards secure middleware for em-
bedded peer-to-peer systems: Objectives and re-
quirements. In Proceedings of RSPSI’07, 2007.
http://www.igd.fhg.de/igd-a1/RSPSI2/
papers/Ubicomp2007_RSPSI2_Albano.pdf.

[2] S. Alda and A. Cremers. Towards composition management
for component-based peer-to-peer architectures. ENTCS,
114:47–64, 2005.

[3] M. Bisignano, G. D.Modica, and O. Tomarchio. JMobiPeer:
A middleware for mobile peer-to-peer computing in manets.
In ICDCS’05, pages 785–791, 2005.

[4] A. Brogi and R. Popescu. From BPEL processes to YAWL
workflows. In M. Bravetti, M. Nunez, and G. Zavattaro, edi-
tors, Proceedings of WS-FM’06, LNCS, volume 4184, pages
107–122, 2006.

[5] A. Brogi, R. Popescu, F. Gutierrez, P. Lopez, and E. Pi-
mentel. A service-oriented model for embedded peer-to-
peer systems. In Proceedings of FOCLASA’07, ENTCS. To
appear, 2007.

[6] G. Gehlen and L. Pham. Mobile web services for peer-to-
peer applications. In Proceedings of CCNC’05, pages 427–
433, 2005.

[7] R. Handorean, R. Sen, G. Hackmann, and G.-C. Roman.
Supporting predictable service provision in manets via con-
text aware session management. JWSR, (3):1–26, 2006.

[8] JXTA. http://www.jxta.org/.
[9] JXTA homepage. http://www.jxta.org/.
[10] R. Lucchi and G. Zavattaro. WSSecSpaces: a secure data-

driven coordination service for Web services applications.
In SAC’04, pages 487–491. ACM, 2004.

[11] P. Maheshwari, S. Kanhere, and N. Parameswaran. Service-
oriented middleware for peer-to-peer computing. In IN-
DIN’05, pages 98–103, 2005.

[12] OASIS. BPEL v2.0. http://www.oasis-open.
org/committees/download.php/23974/
wsbpel-v2.0-primer.pdf.

[13] R. Popescu. Aggregation and Adaptation of Web Services.
VDM Verlag Dr. Müller, 2008. ISBN: 978-3-8364-6280-8.

[14] SMEPP Coalition. D1.1: State of the art and generic mid-
dleware requirements. http://www.smepp.org/.

[15] SMEPP Coalition. D1.2: Security requirements of ep2p ap-
plications. http://www.smepp.org/.

[16] E. Verbeek. WofYAWL V0.3. http://home.tm.tue.
nl/hverbeek/wofyawl03.pdf.

[17] E. Verbeek and W. van der Aalst. Woflan 2.0: A petri-
net-based workflow diagnosis tool. In LNCS, volume 1825,
pages 475–484, 2000.

150

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on April 12,2010 at 13:45:31 UTC from IEEE Xplore. Restrictions apply.

