Supporting Context-Awareness: A Taxonomic
Review

Eamonn Linehan

Distributed Systems Group, Department of Computer Science, Trinity College
Dublin, Dublin 2, Ireland.

Shiu Lun Tsang

Distributed Systems Group, Department of Computer Science, Trinity College
Dublin, Dublin 2, Ireland.

Siobhan Clarke

Distributed Systems Group, Department of Computer Science, Trinity College
Dublin, Dublin 2, Ireland.

Abstract

Context-aware applications realise the vision of ubiquitous computing by utilising
information gathered from their environment to automatically adapt behaviour. To
support the development of such applications, researchers have developed infras-
tructures, architectures, middlewares, and toolkits. This paper presents a taxonomy
based on a review of these support infrastructures for context-aware computing.
The taxonomy is organised as a set of categories, each of which is responsible for
classifying context-related functionality at the software component level. It provides
the nomenclature of terminology used to describe the features that characterise in-
frastructures for context-aware computing. The taxonomy supports the design of
context-aware systems and provides a convenient way to compare and contrast mid-
dleware support for context-awareness.

Key words: Architecture, Context-Aware, Infrastructure, Taxonomy
1991 MSC: 68N01, 68M99

Email addresses: Eamonn.Linehan@cs.tcd.ie (Eamonn Linehan),
ShiuLun.Tsang@cs.tcd.ie (Shiu Lun Tsang), Siobhan.Clarke@cs.tcd.ie
(Siobhén Clarke).

URLs: https://www.cs.tcd.ie/Eamonn.Linehan/ (Eamonn Linehan),
https://www.cs.tcd.ie/ShiuLun.Tsang/ (Shiu Lun Tsang),
https://www.cs.tcd.ie/Siobhan.Clarke/ (Siobhan Clarke).

Preprint submitted to Elsevier 28 February 2008

1 Introduction

The vision of ubiquitous computing, according to Weiser, is one of many small
devices, seamlessly integrated into the environment, and working “invisibly” in
the background to aid users with their everyday tasks (75). The aim is to pro-
vide applications with the ability to gather information from their surround-
ings and to use this “context” to automatically adapt application behaviour.
Pascoe et al. (62) concluded that “the core of a supporting infrastructure
for context-aware computing should be a context information service”. The
responsibilities of such a service would be to gather, model, and provide con-
textual information to context-aware applications to allow them automatically
adapt application behaviour.

This desire to produce a “supporting infrastructure” for context-aware com-
puting has led to a focus on developing middlewares, frameworks, toolkits,
and infrastructures! (all of which support the development of context-aware
applications). In this paper we collectively refer to these systems as types of
context-aware infrastructure, where we define infrastructure as a set of tech-
nologies that act as a foundation for context-aware applications. Riva uses
the term “context provisioning middleware” to label this same group of sys-
tems (65). These infrastructures support context-aware computing by provid-
ing “uniform abstractions of common functionality and reliable services for
common operations” in order to make it easier to develop robust applications
even on a diverse and constantly changing set of devices and sensors (40).
However, many context-aware infrastructures have been devised in an “impro-
vised” fashion, with developers choosing methods that are quick and easy over
creating generalisable and reusable components (75). As a result, there are a
large number of context-aware infrastructures with none widely adopted.

There exists a set of common components that form the core of a context-aware
infrastructure. These core components are the building blocks of ubiquitous
computing software. However, there exists a lack of convention in labelling
these building blocks, making direct comparisons between context-aware in-
frastructures difficult. This inevitably leads to increased naive reimplemen-
tation of context-awareness functionality, redirecting development effort to
infrastructural issues and slowing advances in context-aware application de-
velopment and deployment.

Our experience in developing a context-aware infrastructure combined with
a broad review of existing context-aware infrastructures has allowed us to
identify a common system of names and terms for these building blocks. From
this system of names a systematic taxonomic classification of functionally

1 See Hong et al. for a discussion on the differences between these terms (40).

equivalent components based on the similarities in design and processing is
possible.

This paper provides a taxonomic classification of the components of exist-
ing context-aware infrastructures. By classifying their features, we provide
a means to compare different infrastructures based on the components and
functionality they support. The taxonomy is presented as a set of functional
categories, organised hierarchically according to component composition rela-
tionships. That is, each recognisable taxonomic unit is sub-divided based on
a natural classification of the functionality it contains.

The taxonomy has a number of objectives: it supports design by providing a
checklist of components a context-aware infrastructure may need; it supports
implementation by distinguishing the set of approaches (and technologies)
adopted for the realisation of context-aware functionality; it supports discus-
sion and feedback by providing a common terminology by which components
and functions are referred allowing developers to identify synonymous compo-
nents across projects; it aids researchers who are new to the field, providing
an overview of the features that characterise a context-aware infrastructure.

The remainder of the paper is structured as follows. Sections 2 presents related
work. In Section 3, we provide an overview of how the taxonomy should be
interpreted. Section 4, 5 and 6 describe branches of the taxonomy. In Summary
7 we discuss the taxonomy’s contribution and give examples of the conflicting
use of terminology that it can reconcile.

2 Related Work

The first survey of the core features of context-awareness was by Pascoe (61)
(although Schilit had previously identified classes of context-aware applica-
tions (68)). The taxonomies of Pascoe and later Abowd (1) classify individual
applications based on their features. The vocabularies presented in these pa-
pers described the generic features of context-aware applications but can not
be applied to the development of infrastructure-based support for context-
awareness.

The survey of context-aware mobile computing by Chen & Kotz (17) investi-
gates context-aware applications in terms of how they sense and model contex-
tual information. From this survey, a discussion of the infrastructure required
to support context-aware applications was formed. In contrast, our taxonomy
stems from what is now a more mature field. Our taxonomy is not solely con-
cerned with mobile context-aware computing and it does not highlight future
research directions but provides a classification of what has been accomplished

to date.

Anagnostopoulos et al. (2) report on both the software architectures and con-
text modeling issues in context-aware computing. Their report includes a “ref-
erence model for context-aware system architecture” which is presented as
a use case diagram. Each case in the diagram represents a generic class of
context-aware functionality. Like our taxonomy, this reference model unifies
some of the terminology in use. However, their report is mainly concerned with
context modelling and representation issues, whereas our taxonomy covers a
wider range of functionality to support context-awareness.

UbiqgStack (55) is the first example of a high level taxonomy of context-
aware infrastructure components. UbiqStack proposes a convention for label-
ing classes of building blocks commonly used to construct context-awareness
infrastructures. This high level taxonomy has been used as a starting point for
our work. We adopt a number of the infrastructure component classes they
identified to form categories of functionality in our taxonomy (Registration
and Discovery, Context Management & Computation Sharing). However, in
contrast to UbigStack, our taxonomy is not predicated on the belief that com-
plex context-aware infrastructures can be developed by selecting appropriate
subsystems from each taxonomy category.

In 2006 Baldauf published a “Survey on Context-Aware Systems” (4). In this
survey, a five layer conceptual design framework is presented and used to ex-
plain the different elements common to context-aware infrastructures. Where
our taxonomy is, as far as possible, implementation independent, Baldauf et
al. chooses a ubiquitous computing environment based on Chen’s architectural
approaches to acquiring context (19) and limits the survey and classification
to systems that have adopted similar environment architectures. Our taxon-
omy is a finer grained analysis of the common elements at a component level
and includes infrastructures irrespective of their architecture.

The most recent related work was the “general software infrastructure for
ubiquitous computing” by de Costa et al. in 2008 (21). This work shares our
goal of “helping the [ubiquitous computing] community develop and assess
middleware and frameworks”. In contrast to our taxonomy, de Costa et al.
identify the challenges in ubiquitous computing. Based on these challenges a
set of requirements for the components that should be present in a context-
aware infrastructures are defined. Hence, their set of required components is
aspirational rather than based on existing infrastructures. As such, it may be
used to identify required features in future infrastructures.

This paper provides a more complete picture of the components? that may be

2 We define components to be any general feature of context-awareness infrastruc-
tures defined along a functional boundary. These components are referred to as

included in context-aware infrastructures along with a hierarchical taxonomy
categorising functionally equivalent components and how they are composed.

3 Overview of the Taxonomy

The taxonomy is the result of our experience in developing a framework for
building context-aware mobile applications (27) and an investigation into sup-
porting software infrastructures for context-awareness. The categories of the
taxonomy are organised hierarchically. Each category constitutes a distinct
branch of the taxonomy, representing a grouping of a common context-related
functionality. Branches are subdivided to reflect more specific processes. Rect-
angular nodes in the taxonomy diagrams represent branches which we further
divide, while oval nodes represent leaf nodes and as such group functionality
in which we have not identified a decomposition. The order in which the cat-
egories of the taxonomy are presented is intended to reflect the context data
flow through a typical context-awareness support infrastructure. Each cate-
gory of the taxonomy is presented in context of its neighbours and includes
examples of instances of components in the literature implementing the clas-
sified functionality along with any synonyms and implementation options.

The taxonomy divides the processes involved in supporting context-awareness
into three categories: Adaptation, Administration and Gathering (Fig. 1).
These categories form a grouping of context-related functionality along high
level boundaries. The categories are structured in a data-flow fashion, with
control passing from one category to the next as context enters the infras-
tructure (Gathering) and conceptually travels through Administration and
Adaptation processes, eventually leading to application adaptation. Security
¢ Privacy (including trust and authentication) is a crosscutting concern that
applies to functionality in all three sub categories of context-aware infras-
tructure. In general, such concerns “are best addressed by each individual
component in a way that is meaningful to that component” (55).

3.1 Security & Privacy

Traditional concerns regarding security and privacy are amplified in context-
aware applications which are predicated on access to a wide range of sensitive
data, and involve ad-hoc collaborations between unknown entities®. Privacy

components, modules or layers in the literature.
3 See Langheinrich (50) for a more thorough characterisation of the privacy problem
in ubiquitous computing.

Context-aware
Infrastructures

I Security &
| Privacy

|

[Gathering] [Administration] [Adaptation]

Fig. 1. Context-aware infrastructure taxonomy root.

is reported to be the “most often-cited criticism” of ubiquitous computing
(41). Because of this it has been argued that support for privacy constraints
must be provided by context-aware infrastructures and not applications (51).
However, traditional approaches to security and privacy are too rigid, often
depending on the existence of enterprise borders which disappear in the ubig-
uitous computing world.

Security and Privacy concerns can not be isolated as a single block of func-
tionality within existing context-aware infrastructures. Instead, provisions are
made within other components. For this reason, the taxonomy considers Secu-
rity and Privacy concerns to be crosscutting and as such, illustrates them as
an assistant rather than subordinate element in the taxonomy (Fig. 1). Where
support for Security & Privacy has appeared in context-aware infrastructures,
it has generally been based on addressing one or more of the three topics:
Confidentiality, Trust or Identity .

Confidentiality: Confidentiality in context-aware infrastructures concerns
enabling secure associations to be created between devices in order to pro-
tect privacy sensitive data in an untrusted computing environment. The
most basic support for confidentiality is to protect the communication chan-
nels. Merino (49) features encryption of raw sensor data to support personal
security. The use of physically constrained channels has also been proposed
to provide for confidentiality by securing spontaneous interactions (46; 70).
In addition data-centric protection mechanisms® based on the application
of digital rights management technologies to context elements have been
developed (26; 41). These techniques are based on perceiving context infor-
mation as intellectual property and enforcing privacy and ownership. CoBrA

4 A study of all the possible security and privacy approaches is beyond the scope
of this paper. Yamabe et al. (76) surveys emerging security and privacy enhancing
technologies in ubiquitous computing environments.

% Also referred to as containment-aware security in literature.

(19) adopts a policy-based approach to protect privacy, allowing users to
control the granularity of the information that is shared through the use of
a policy ontology.

Trust: One approach being explored in providing decentralised security man-
agement to mobile entities is based on the human notion of trust (12). In
such a scenario, a formalised human notion of trust (featuring partial in-
formation and uncertainty) can be used to design security mechanisms for
ubiquitous computing.

Identity: Identity management can provide for trust by enabling access con-
trol and authentication (60). Hoffmann (39) proposed a user-centric iden-
tity management framework for context-aware mobile services, which makes
it possible for the user to control personal data. JCAF (5) uses digital
signatures to provide authentication and verification of identity, enabling
context access control to be implemented. Solar, Gaia and Context Tailor
(18; 67; 51) also implement role-based access control privacy models. Con-
versely, the absence of any form of identity management has been proposed
as a means of protecting privacy (77). Anonymity of users and devices may
be provided through pseudonyms (15). IrisNet (56) supported anonymity by
actively anonymising streams from sensors to remove any personally iden-
tifiable information, for example, detecting and masking peoples faces in
video streams.

4 Gathering

A recurring challenge for context-aware applications is to gather information
on the state of their environment. This information is required to enable
context-aware applications to appropriately adapt to any relevant events in
its surrounding environment. Gathering is the process of collecting informa-
tion from the environment. It includes services for the discovery of context
sources (peer devices, sensors or network services), the matching of context
sources to system needs, and subsequent retrieval of context data.

The taxonomy has a Gathering category that may be used to classify com-
ponents with these responsibilities. The Gathering category is further decom-
posed into: Discovery & Registration, Communication, Acquisition and Data
Formatting. The complete process of gathering a single piece of context may
involve invoking functionality from each of these categories.

Existing context-aware infrastructures provide functionality similar to the
Gathering class we have defined. The PACE infrastructure (35) for exam-
ple features a context gathering layer with equivalent functionality. This same
functionality has been termed raw data retrieval in a similar layered concep-
tual framework by Baldauf et al. (4).

[Gathering]
Discovery & [Communicamion] @ @
Registration

Fig. 2. The Gathering category of the taxonomy

4.1 Discovery € Registration

A problem for many ubiquitous computing systems is how to deal with mo-
bility. This is particularly evident in environments where heterogeneous, dis-
tributed mobile devices are communicating using various wireless networking
technologies with limited range. This highly dynamic networking environment
is characterised by serendipitous connection and disconnection with no guar-
antee of reconnection with peers. For context-aware applications to gather
contextual information, they must meet the challenges of discovering and in-
teracting with the relevant sources of context. Discovery & Registration is the
process of finding relevant context sources in a previously unseen environment.
It includes both device and service discovery.

When a device enters a ubiquitous computing environment of which it has
no prior knowledge, a process on that device must probe the environment for
other devices. In the essay by Hong et al. (41), proximity-based discovery is
cited as one of the basic context-aware infrastructural services. This function-
ality is included in Hermes (27), which provides a discovery component that
uses [P Multicast to broadcast messages to peers, advertising context informa-
tion. The Context Toolkit incorporates discoverer within its component-based
framework (25). Gaia (67) also includes a discovery service that uses a similar
heartbeat mechanism of sending periodic presence notifications on a device
presence channel.

In addition to proximity-based devices discovery, service discovery discovers
invokable services. Service discovery is the binding of data and computation
services to a network address. These services are then made available to other
devices. This approach is taken in NeXus (58), which describes an area service
register that that servers a particular geographic area. The Strathclyde Con-
text Infrastructure (71) uses a ranges metaphor to achieve a similar geographic
partitioning of context servers.

Discovery & Registration functionality can also be implemented via a registry-
based discovery service, that mediates between service requesters and devices

offering services by caching the service descriptions and bindings. Registry-
based discovery protocols such as those implemented by Jini, RMI and CORBA
can be used by context-aware infrastructures (14). The Context Toolkit (25)
featured a centralised registry at a known network address and port with which
all widgets, aggregators, and interpreters register. The registry then pings each
registered component at a pre-specified frequency to ensure that each com-
ponent is functioning correctly. Guide (28) provides a context database that
serves as a registry for available context services and classifies services accord-
ing to context type.

Synonyms: registration & discovery (55), area service register (58), service
locating service (34), discovery service (23), range discovery (59),
Spontaneous Interaction (69).

4.2 Communication

In order to facilitate communication between peer devices and sensors over var-
ious network interfaces (when acquiring context information), context-aware
applications require functions that are responsible for the transporting of
data between hosts. In particular, applications will be required to connect
and transfer data with heterogeneous devices, manage different network in-
terfaces, and deal with the various data formats that are used by different
context sources. Communication is the process of establishing a connection
for transferring data with context sources in the environment. This includes
functionality to transport data, manage addressing, and support various mes-
sage protocols.

It should be noted that the Communication category does not classify possible
inter-layer or inter-component communication mechanisms within a context-
aware infrastructure. The goal of Communication related functionality is to
mask the complexity of interacting with multiple operating systems and net-
work communication stacks.

Infrastructure components with functionality belonging to the Communication
category of the taxonomy have appeared in context management systems, la-
belled with various synonymous terminology. Technology for Enabling Aware-
ness (TEA) (16) includes a signal layer which is concerned with maintaining
communication channels with sensors. The Cocoa architecture (6) applied the
label, communication drivers layer to its communication functionality.

The taxonomy further subdivides Communication into three subcategories:
Transport, Addressing and Message Protocols (Fig. 3).

[Communication]
. Message
Transport Addressing Protocols

Fig. 3. The Gathering > Communication category of the taxonomy

4.2.1 Transport

Transport classifies components that handle connecting to devices and the
transporting of data between devices. This includes the transport of sensor
data between sensors, peers, and hosts over short range low bandwidth radio
interfaces or over high bandwidth wired links. Transport components are at
the heart of any infrastructure’s communication functionality and are often
implemented in a plugable manner. It is common for context-aware infrastruc-
tures to draw on distributed system middleware technologies to supply this
functionality.

Transport components are can be either synchronous or asynchronous. Syn-
chronous transport mechanisms deliver data immediately to its recipient (do
not store and forward). Examples of synchronous transport mechanisms in-
clude distributed object technologies and streaming middlewares. CORBA is
extended by the Gaia middleware for active spaces (67) with a presence ser-
vice. A streaming middleware is proposed by UbiqStack (55) as a transport
mechanism. RPC technologies such as SOAP are used by Active Campus (33)
and Java RMI in JCAF (5).

Asynchronous transport mechanisms deliver messages at irregular intervals
and are often forwarded with a time delay. Such transport mechanisms in-
clude event-based middlewares® and other message passing schemes. STEAM
(52) is an event-based communication middleware used by MoCoA (69) and
the Sentient Object Model (SOM) (8) to transport context. EasyLiving (11),
Context Fabric (Confab) (41), Hermes (27) and Active Campus (33) all use
message passing over HT'TP to transport context. Guide (20) uses a broadcast-
based message protocol to deliver read-only location specific content in a round
robin manner to all devices within range of a transmitter.

6 The event-based communication paradigm provides anonymous, loosely coupled,
many-to-many communication between application components via asynchronous
event notifications.

10

4.2.2 Addressing

In an environment where there are many devices communicating over different
network interfaces with network addresses that are constantly changing, there
is a need to uniquely address a device. IPv6 and MobilelP go some way to
tackling this problem in IP networks but the same techniques do not apply
to other network interfaces. Also, it is becoming common for devices to have
multiple network interfaces, each with their own address. A device addressing
mechanism enables devices to be addressed independently of the underlying
network. An example is InConcert, the communication middleware solution
implemented by Easy Living (11), which uses a naming and lookup service
to achieve machine independent addressing based on Instance IDs. The Con-
text Toolkit (25) uses programming-language independent handles to address
individual widgets and Gaia (67) relies on the naming services provided by
CORBA to address objects across devices.

4.2.8 Message Protocols

The format in which context is transported is dictated by the messaging pro-
tocol bound to the transport middleware in use. The Multi-User Publishing
Environment (MUPE) (73) is a multi-user context-aware application platform
that features the context exchange protocol, an XML-based messaging API. A
similar XML-based messaging protocol is adopted in Hermes (27) and HyCon
(9). In other cases, messaging protocols are defined to facilitate simple seriali-
sation of context. In such cases the format of messages is tightly coupled to the
method used to model the context information (See Section 5.2). Examples
include the context modeling language of PACE (35), the XML context tuples
defined by the Confab architecture (41) and the SGML representation in the
Stick-e document framework by Brown (10)

4.8 Acquisition

Once context sources are discovered and a communication channel has been
established, the next task is to manage the reception of data. Challenges at-
tributed to this task include: providing a uniform interface to receive multiple
context types from multiple context sources; eliminating irrelevant sources by
semantically matching the types of context desired by the application to the
context types supplied by context providers; deciding which set of all dis-
covered context providers to use; deciding on the need for data acquisition,
trading off the cost of communicating with context providers against the cost
of deriving context; and deciding on the frequency of data acquisition.

Acquisition is the collection of processes involved in receiving data from con-

11

text sources and forms the third branch of the Gathering category of the tax-
onomy. Acquisition components abstract the details of how context is sensed
and hide the low level concerns associated with information retrieval. For Ex-
ample, the Context Tailor (51) uses a context service for managing its acquisi-
tion. The context service provides a set of context drivers designed to interface
with a single type of context source. A dispatcher is responsible for match-
ing context types desired by an application with the corresponding context
driver. Aura has a conteztual information service (43) that provides an acqui-
sition architecture consisting of a query synthesizer that provides clients with
the ability to construct rich queries. The aim is efficient acquisition, enabling
clients to acquire information from a variety of sources without incurring large
communication and computation expenses. The SOCAM (34) and Gaia (64)
architectures both provide a set of context providers responsible for interact-
ing with context sources. Different context providers abstract the low level
details of different context sources. Similarly Dey defines widgets and aggrega-
tors for acquisition functionality (25). Functionally synonymous components
in the literature include:

Synonyms: signal layer (16), smart sensor layer (49), sensory capture (8),
sensor service (14), context event service (41), context acquisition
(6), sensor listeners (29), sensor and terminal layer (9), adaptor
layer (38), environment module (62), realm containment modeling
layer (26).

4.4 Data Formatting

Crucial in easing the development of context-aware applications is the provi-
sion of software components which abstract away from physical device proto-
cols, and support the conversion of data into higher-level symbolic representa-
tions. In general, context-aware infrastructures address the challenge of Data
Formatting by providing a formatting process that transforms all acquired
data into a uniform format, enabling it to be internally processed, manip-
ulated, represented and understood. Data Formatting classifies functionality
that converts low level information acquired from devices and sensors into an
interpretable format.

In some infrastructures, data formatting functions are combined with acquisi-
tion processes. CASPEr (26) performs its acquisition and data formatting at
its realm containment modeling layer. JCAF (5) implements a context moni-
tor component to both acquire data and to translate data into Java objects,
while the Stick-e document framework (10) provides SeSensor components for
acquiring and converting of sensor data into its SGML representation. Other
infrastructures provide a separate distinct entity dedicated to data format-

12

ting. The framework developed by Henricksen (35) has a context reception
layer that converts acquired context into a fact-based internal representation.
Finally some infrastructures combine data formatting and aggregation func-
tionality (administration category of the taxonomy) into a single function
(8; 69; 6; 47; 19; 34; 42; 41). Section 5.1.2 provides more information on rea-
soning.

Synonyms: context service (51), source nodes (18), senselets (56), acquisition
(27), entity modelling (33), citron worker (76), federation layer
(57), smart sensor layer (49), measurements layer (37), data layer
(9), sensor reporting component (33).

5 Administration

Context-aware applications are likely to receive multiple types of information
from a variety sources. Once received, the challenge is to interpret, manipu-
late, and store this information. Administration is the process of managing
context information. It includes services for aggregating data, for represent-
ing and persisting information in an easily accessible manner and for making
computational sharing decisions.

The Administration category of the taxonomy groups all functionality related
to the management of context information. This is the second high level cate-
gory of the taxonomy, residing between Gathering (Section 4) and Adaptation
(Section 6). Conceptually, context acquired by Gathering functions are deliv-
ered to functions of Administration for storage and manipulation. Context is
then accessed by Adaptation functionality for making application behaviour

decisions.
l Administration l
. C tati
Aggregation Modelling @

Fig. 4. The Administration category of the taxonomy

The Administration category of the taxonomy (Fig. 4) is further decomposed
into five subcategories, all related to the management of context: Aggregation,
Modelling, Persistence, Access and Computation Sharing.

13

5.1 Aggregation

When data arrives from a context source, it is generally unusable by an ap-
plication in its external state. Acquired data may be inaccurate, imprecise,
ambiguous, or meaningless. The challenge of context-aware applications is to
combine and scrutinise acquired information in order to better manage any in-
herent uncertainty and to interpret information for use in application decision
making.

Aggregation is the process of managing uncertainty in acquired context infor-
mation. It includes services filtering unnecessary information, for interpret-
ing information and for augmenting information with meaningful meta-data.
The Aggregation category of the taxonomy classifies functionality related to
managing context uncertainty. Aggregation has been referred to as sensor or
information fusion in literature (8). Fig. 5 shows three sub classifications of
Aggregation: Filtering, Reasoning and Augmentation. Filtering and Reason-
ing classify functions that involve processing contextual data and make use
of probabilistic reasoning techniques such as Bayesian networks, fuzzy logic,
and neural networks. Augmentation classifies processes that involve tagging
context with additional, often quality related, information.

[Aggregation]

Filtering Reasoning Augmentation

Fig. 5. The Administration > Aggregation category of the taxonomy.

5.1.1 Filtering

Data acquired from context providers such as sensors and devices is inher-
ently noisy and imperfect. Consequently, many frameworks provide a layer
of functionality dedicated to addressing this problem. Probabilistic reasoning
techniques are generally used for filtering and validating context by identifying
redundant and contradictory data. That is, a client may choose to disregard
certain context if it exceeds any particular quality thresholds such as accuracy,
precision, certainty, or confidence. We term such processes Filtering. Existing
infrastructures support various contrasting methods for performing this func-
tion. For example, the SOCAM (34) architecture provides a contezt interpreter
which contains a set of context reasoners, which are responsible for resolving
context conflicts and maintaining the consistency of information. The Sentient

14

Object Model (8) provides a sensory capture component that uses Bayesian
networks to validate data and handle uncertainty. Context providers in Gaia
(64) validate context using fuzzy logic or first order logic. The context man-
agement infrastructure presented by Anagnostopoulos et al. (3) includes a
filtering process that merges contextual data based on inter-ontology seman-
tic similarity.

Synonyms: smoothing (69), context inference engine (19), context refiner (42),
service-specific-filtering (56), smart sensor layer (49), fusion layer
(37).

5.1.2 Reasoning

Data derived from sensors certain sensors can be far removed from the level
of abstraction employed by context management. Therefore processing is re-
quired to raise its level of abstraction (deduce higher level, more meaning-
ful information by fusing or relating lower level context data). For example,
detecting that a meeting is taking place from calendar, location, and noise
context. We classify components responsible for this process as Reasoning.

Gaia’s context infrastructure (64) provides various reasoning techniques. Ap-
plications can apply rules written in one of several logic-based formats such
as first order logic, temporal logic, description logic, higher order logic, fuzzy
logic etc. The architecture also supports machine learning techniques including
Bayesian networks, neural networks, and reinforcement learning. The Location
Stack (37) provides an arrangements and contextual fusion layer for reasoning.
These layers provides an engine for probabilistically reasoning about the rela-
tionships between objects to deduce higher level context details. The sensory
capture component of the Sentient Object Model (8), and the fusion service
of MUSE (14) both use Bayesian networks to perform reasoning.

Synonyms: context interpreter (25; 34), automatic path creation (41), con-
text reasoning engine (19), context inference service (23), situation
modelling (33), context merging service (47), context transformers
and context aggregators (5), transforming or merging (3), context
reasoners (54), context abstractors (48), context agents (28).

5.1.83 Augmentation

Context-aware infrastructures will augment acquired context with additional
data or meta-information, describing its quality. Meta-information is used by
Adaptation components (Section 6) when determining the context to use for
making decisions. For example, the Context Tailor (51) tags context with a
time stamp to indicate data freshness and a confidence value. The contertual

15

information service of Aura (43) supports accuracy, confidence, update time,
and sample interval meta-attributes. The context refiner of Context Shadow
(42) and context exchange protocol of MUPE (73) tag information with a
certainty factor and a timestamp to indicate the freshness of data. In HyCon
(9) context is augmented with meta-data describing creation and modification
timestamp.

5.2 Modelling

“Much of UbiComp relies on having access to a consistent view of the world
so that applications might correctly actuate themselves” (55). Context models
form the core of any context management infrastructure by facilitating the
construction of such a “view of the world”. They are critical to the effective-
ness of a context-aware application as they structure the context that drives
application behaviour. The structure determines not only how context will be
stored but also the formats in which it is exchanged, and has implications
for semantic interoperability, query languages, context data storage, context
interpretation, extensibility and context visualisation.

Modelling classifies the functions that represent context information so that
it can be easily stored, accessed and exchanged. Seven classes of context
modelling functionality are supported by current context-aware infrastruc-
tures. Theses are: Graphical, Logic-based, Ontological, Object-oriented, Tuple-
based, Hierarchical and Geometric.

Graphical context models include a diagrammatic representation, specifying
the structure of a context model. Unlike other modelling techniques, graphical
modelling is a design-time process. As such, a context model that is graphical
in nature requires a translation to some other form of representation during de-
velopment. Henricksen et al. (36) comments that traditional data modelling or
object-oriented modelling techniques are “neither natural nor appropriate for
describing context”. Alternatively they propose a graphical notation referred
to as the Context Modeling Language (CML) (35; 66).

Logic-based models add context as facts and extract context via expressions
or rules. They generally have a high degree of formality and are often tightly
coupled to a context reasoning approach (Section 5.1.2). Logic-based models
provide context in a form that can be directly operated upon by mathematical
expressions. Gaia (67) is an example of a context-awareness infrastructure that
implements its reasoning (Section 5.1.2) using first-order logic operations such
as quantification, implication, conjunction, disjunction, and context predicate
negation. Similarly Gray & Salber (31) propose a sensed context model that
uses a formal first-order predicate logic representation. These logical represen-

16

tations facilitate the composition of individual context expressions into more
complex sensed context expressions. Context in the Sentient Object Model (8)
is represented as a set of discrete logical facts, following a logic-based approach
to context representation.

Ontological context models provide a formal specification that captures the
semantics of context information. Ontological models (also called semantic
context models) have come to be considered the most appropriate method of
modelling context (72; 34). The Ambisense context middleware (47) divided
context into five subcategories (task, social, personal, spatio-temporal, and
environmental) that were integrated to form a domain ontology. A two level
ontology is used to model context in SOCAM (34). The top level of this
hierarchy is a generalised ontology while the lower layer contained domain
specific ontologies which were divided into several subdomains.

Object-oriented context models define context using object-oriented program-
ming principles: abstraction, inheritance, polymorphism, composition, and ag-
gregation. Object-oriented context models leverage programming language
constructs. The resulting unification of the infrastructure’s logic and data
model development into a single environment can lead to shorter development
cycles. Object-oriented context models generally contain objects modelling en-
tities (people, places, objects) that contain context items as attributes or sub-
objects. This is how JCAF (5), Hydrogen (38), and Mobility and ADaptation
enAbling Middleware (MADAM) projects (54) organise their object-oriented
context models.

Tuple based context models that are based on a flexible unit of data encapsula-
tion that contains a number of attribute and value mappings and functions as
a single record. Tuple-based (alternatively referred to in literature as key-value
pair) models facilitate the construction of simple record-based persistence
mechanisms and can be queried using template-based queries. Schilit (68)
represents context as dynamic objects which are collections of key value pairs.
The Context Based Storage (44) system includes a logical context data model
that represents context as tuples using four concepts: entities, attributes, rela-
tionships, and groups. Tuples have also been chosen to represent context where
the context is to be made available to multiple processes via a blackboard-
based context access or distribution system. Examples of projects taking a
tuple-based modelling approach for this reason include Context Shadow (42),
Citron (76) and the Confab infrastructure (41).

Hierarchical context models represent context using a tree-like structure of
context types. Hierarchical representations of context facilitate the construc-
tion of context containers that implement efficient searching. An example of
such a hierarchical model is the context model used by Cocoa (6). Cocoa
bases its hierarchy structure on the definition of context categories by Abowd

17

et al. (1). CASPEr (26) featured a containment-based model of the world.
The CASPEr model is built around the concept of a containment tree, which
models the world “by nesting containers to represent higher level entities in
a structured manner”. The Context Toolkit (25) introduced hierarchical cate-
gories of context information: identity, location, status and time. These basic
categories were chosen to facilitate simple inference, or derivation, of context
information from a single known piece of context information.

Geometric context models represent context as attributes of physical entities
that have a dimension. The physical entities are represented by a set of vec-
tor coordinates. The vector coordinates may be organised into shapes such as
point, line, and area features and attribute records may be associated with
individual shapes. Such a model is appropriate where a detailed model of
the real world is important. Geometric models facilitate geometric operations
such as overlap, intersection, containment and distance, which can be used
as part of a spatial reasoning process to determine higher level contexts or
trigger behaviour. Guide (20) makes use of a geometric model that supports
route guidance and provides information about specific physical locations. Ea-
syLiving (11) from Microsoft Research models its context with the FasyLiving
geometric model in which all entities were modeled as extents.

These modelling categories are not mutually exclusive. It is common for con-
text management systems with an object-oriented or ontological model to also
have a graphical representation of the model associated with them. Similarly
geometric and ontological models can be represented as objects. In addition
to these classifications of modelling approaches, a small number of projects
apply informal and unstructured models to context representation. An exam-
ple is CoolTown (45), which models context as web pages intended for human
consumption. Yet others are missing a model entirely, representing context
simply as raw sensor data (56; 74; 37).

5.8 Persistence

Context-aware applications often rely on historical information when making
decisions. Storing information for future retrieval and ensuring appropriate
data replication for fault tolerance are important context-related challenges.

Persistence is the process of storing context in non-volatile memory, in a man-
ner that maintains the semantics it is afforded by the context model (Section
5.2), and in a way that facilitates efficient retrieval. Persistence functions may
structure data differently to Modelling for reasons of performance and gener-
ally exist as a separate category in context-aware infrastructures. Persistence
functions are generally tightly coupled to context models. The choice of a con-

18

text model often determines the appropriate data persistence mechanism. Like
Modelling, functionality classified by the Persistence category of the taxonomy
often have a strong influence on the functionality that the taxonomy classi-
fies under Access (Section 5.4). This is because database systems are often
chosen to implement Persistence components. The query languages and APIs
native to these systems are exploited directly or extended to provide access to
context. Persistence functionality is implemented by components referred to
in literature as context repositories, model repositories (3) or containers (53).
There are two common approaches to persistence that are taken by existing
infrastructures: Centralised and Distributed.

Centralised persistence stores context on a single host, usually on the device
that generated or gathered the context. Centralised context persistence is gen-
erally achieved via a database management system or bespoke record-based
storage mechanism. Both spatial and relational database management sys-
tems have been used, often in a plugable manner, where individual database
providers can be substituted. MiddleWhere (63) uses a spatial database to per-
sist contextual information. PACE (35), Active Campus (33) and CASS (29)
store context, application and user data, domain knowledge, and behaviour in
a relational database. HyCon (9) implements a data layer responsible for con-
verting its object-oriented data model for persistence in a relational database
at the storage layer. SOCAM (34) includes a context database, a relational
database, in which ontological knowledge and context information is stored.
The Context Toolkit’s (25) widgets include such a plugable storage mecha-
nism.

Distributed persistence copies context data to multiple distributed devices. In
this case the context is stored or replicated on many devices and is available
to the context-aware infrastructure components on each device. This is gener-
ally achieved through some form of blackboard-based communication system
or distributed database. Distributed context persistence is appropriate where
there are no privacy issues with sharing context between devices and helps
an infrastructure achieve scalability, robustness and availability. Distributed
context persistence can be leveraged at a higher level to facilitate the collabo-
ration of devices through context sharing. Distributed databases are a common
approach to providing distributed persistence. CAPNET’s context based stor-
age (44) is a distributed physical data store. Gaia (67) includes a context file
system implemented as a hybrid database and file system with an architecture
composed of mount and file servers. Another method of distributed persistence
is the blackboard-based approach. This approach behaves like a distributed
shared memory with a flexible data representation. Processes running on all
devices have shared access to the context. Citron (76) uses a tuple space as its
blackboard-based data model to store context. The Context Shadow system
(42) implements its blackboard-based data store using T'Spaces. Functionality
synonymous with Persistence support in the literature include:

19

Synonyms: context persistence service (23), spatial model server (58), con-
text repository (49), context based storage (44), storage layer (9),
model repositories (3), containers (53).

5.4 Access

Much of the success of context-aware applications is owed to how fast they can
react to changes in the environment. Prompt retrieval of necessary information
is therefore critical to their successful operation.

Access is the process of retrieving context information, either directly from sen-
sors, from a context model representation, or from persistent storage. Many
infrastructures provide a uniform method for accessing context, regardless
of their representation structure or storage location. The Access category of
the taxonomy classifies the context-aware infrastructure components that are
responsible for providing applications and other infrastructural components
access to context. There are three common approaches to implementing Ac-
cess functionality by existing context-aware infrastructures: Unique Identifiers,
Programmatic Routines and Query Languages.

Unique Identifiers are used to access context where context elements can be
located by an associated identifier. Merino (49) provides access to objects on
their local and distributed context servers using a URN. In Solar (18), context
is stored as a set of directories and is accessed using a sequence of context
labels from the root directory. Gaia (67) and CAPNET (44) also use logical
paths to access context and enable context to be accessed based on specific
context attributes similar to the SQL where clause.

Programmatic routines provide a set of predefined procedural calls for con-
text access, usually in the form of an API, masking details about how data
is accessed from the user. These routines are tied to a particular program-
ming language. For example, JCAF (5) provides a Java event-based API,
enabling developers to use EntityListeners as hooks for extending the frame-
works functionality. Components register themselves with the ContextService
as EntityListeners. A similar approach is supported in the Context Toolkit
(25) for accessing context from aggregators and interpreters with a sendTo-
Subscribers() function sending new context to subscribing parties.

Query Languages in contrast provide specifically designed languages for access-
ing context. Unlike Programmatic Routines, Query Language access requires
the developer to have some knowledge about the structure of stored data. How-
ever they do facilitate the decoupling of context access from the programming
language and internal data representation. The type of Persistence mecha-
nisms that are used by infrastructures will have a defining influence on how

20

context is accessed, and this is particularly true for Query Language Access.
CASS (29), PACE (35) and Active Campus (33) store context in relational
databases and hence use SQL as the query language to access and manipulate
information. The Contory middleware features a SQL-like context query lan-
guage (65). NeXus (57) provides an Augmented World Model Query Language
(AWQL) to access context from its augmented world model. Access to data in
CASPEr (26) is through operations supported by the data analyser and type
warden components implemented in its XML storage subsystem. Standard
XML tools such as DOM, SAX, or XPath are supported for data access.

Synonyms: context query service (23), Structured 1/O (32), context service
(51), environment module (62), context management (27).

5.5 Computation Sharing

Many ubiquitous computing applications contain mobile components. Mobile,
context-aware applications are limited by processing and battery power of
the devices they run on. To overcome this problem there is growing support
for infrastructure functionality designed to improve the user experience of
context-aware applications without adversely effecting the battery life of mo-
bile devices. This is achieved by sharing or offloading certain computation
processes to other devices.

Computation Sharing is the process of delegating computation to other de-
vices. The Computation Sharing category of the taxonomy classifies func-
tions that enable applications to make use of remote computational resources,
enabling ubiquitous computing applications adapt to the dynamism of re-
sources on mobile devices and the mobility of the user. There are two main
approaches supported by some current context-aware infrastructures for Com-
putation Sharing: Proxying and Migration.

Prozying delegates computation tasks to other devices which perform them on
their behalf and return the results. For example, Aura (30) terms its compu-
tation sharing functionality cyber foraging. Aura’s cyber foraging environment
can make use of servers located near the client device, called surrogates, to
assist in its tasks. It is a remote execution environment designed for pervasive
applications that monitors four resources: CPU, network, battery, and cache
state; and uses this information to decide how to optimise device performance.
The Strathclyde Context Infrastructure (71) takes advantage of its peer-to-
peer environment by using peer resources as proxies for processing context
information.

Migration, in contrast, is a mechanism of moving computation to another
operating environments where processes are long-lived and results are not ex-

21

pected to be returned. The migration service in One.world (32) is an example
of computation sharing functionality we term Migration. One.world provides
the ability to move or copy an environment and its contents to another device.
Migration makes use of serialisation to capture an applications environment
and execution state. Deserialisation occurs on the target device with the en-
vironment and execution state restored. CARMEN (7) supports migration of
processes when mobile entities move with its shadow prozxy.

6 Adaptation

Weiser’s vision for ubiquitous computing is a future where computers are
widespread and integrated with the environment (75). For this vision to be
realised applications need the ability to automatically adapt to changes in an
environment. The nature of a dynamic environment means that context-aware
applications are required to function under a myriad of different situations and
conditions and adapt accordingly to any changes.

Adaptation is the process of altering the behaviour of the application in re-
sponse to relevant context changes in the environment. Many of the surveyed
context-aware infrastructures only provide functions for Gathering and Ad-
ministration with Adaptation functionality delegated to the application itself
(25; 16; 43; 38; 19; 5; 42; 56; 76; 49; 33; 58). Infrastructures that do provide
Adaptation functionality usually do so either by providing support for Rules
or for Machine Learning algorithms.

Rules support enables applications to define set of context to behaviour map-
pings indicating behaviour that should occur in a given context. based on
event-condition-action model (24). Rules are specified by developers during
the implementation phase, and application behaviour is restricted to actions
specified in rules. The Context Tailor (22) provides an API containing contex-
tual, learning classification, temporal, and statistical components for specifying
rules, termed patterns. The pattern activator matches context retrieved from
the context service with conditions stated in patterns retrieved from the pat-
tern repository to determine the actions to trigger. In the framework by Kor-
pipda et al. (48), a rule script engine defines rules in XML format. The engine
matches the condition clauses in rules with the current context retrieved from
the context manager. CASPEr (26) provides a policy model for its adapta-
tion. It uses the ponder policy language for specifying its policy rules. The
policy editor, policy specification interface, and policy manager, TFFST mod-
ule and policy deployment module are components of the framework dedicated
to managing policies and adaptation. The CARISMA infrastructure provides
adaptation support in the presence of conflicting rules (13). It supports a re-
flection based adaptation process that enables intra-profile and inter-profile

22

rule conflicts to be resolved.

Machine Learning provides support for probabilistic techniques that enable
the application to be trained, learning how to behave in different situations.
Ambisense (47) uses the case-based reasoning for adaptation. The premise of
case-based reasoning is to retrieve a known context or case to decide what
action to take in the current context. Cases along with related context and
solution information will be stored or classified for future retrieval and com-
parisons. Ambisense uses a two-tier reasoning mechanism: on-line and off-line.
On-line reasoning will classify new cases on the user’s mobile device while off-
line reasoning makes use of persistent storage on the user’s home system to
classify and group common cases. Gaia (64) also supports machine learning-
based adaptation. Bayesian approaches, neural networks, various clustering
algorithms, and reinforcement learning are supported so that applications can
automatically adapt themselves to changing situations. Learning can be per-
formed offline with training examples or online as the application is in opera-
tion.

Functionality synonymous with Rule based adaptation support in the litera-
ture include:

Synonyms: inference engine (29), trails (27), context-aware mobile services
(34), policy (3), adaptation control (28), adaptation manager (54),
context scripts (73), migration policies (7), intentions (37).

7 Summary

In this paper we have presented a taxonomy that provides a generalisation
of the capabilities of current context-aware infrastructures in order to aid fu-
ture research, design, and discussion of context-aware systems. Through the
taxonomies categories, an overview of the features that characterise a context-
aware infrastructure is provided. The paper provides a classification of existing
context-aware infrastructures using the taxonomy. This classification provides
a clearer understanding of different infrastructures, the components and func-
tionality they support, and where components and processes are located. This
information can be used to help identify limitations of existing approaches
and make decisions on where it may be appropriate to reuse approaches in the
future. The nomenclature of terminology used to describe the features that
characterise middleware support for context-awareness has been provided. We
have shown there to be significant problems in the way infrastructures use
terminology. For example, what one author refers to as “context provisioning”
(65), another calls “context service” (51). Yet another author uses the term
“context management” (27) which naively seems similar but in this case is used

23

to label a system that is responsible solely for what the taxonomy classifies
as Administration. Similarly, the “adaptor layer” (38) in the hydrogen project
provided Acquisition functionality, whereas, the “adaptation manager” (54) in
Mikalsen et al. provides Adaptation functionality. The taxonomy allows the
identifications of synonymous components across projects, supporting the de-
sign of context-aware systems and providing a convenient way to compare and
contrast middleware support for context-awareness.

Acknowledgements

This work is supported in part by the Irish Research Council for Science,
Engineering and Technology (IRCSET) and Intel Corporation.

References

[1]

2]

13l

4]

5]

(6]

7]

8]

G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, P. Steggles,
Towards a better understanding of context and context-awareness, in:
HUC ’99: Proceedings of the 1st international symposium on Handheld
and Ubiquitous Computing, Springer-Verlag, London, UK, 1999.

C. Anagnostopoulos, A. Tsounis, S. Hadjiefthymiades, Context awareness
in mobile computing: A survey, in: Mobile HCI '04, Mobile and Ubiquitous
Information Access, 2004.

C. Anagnostopoulos, A. Tsounis, S. Hadjiefthymiades, Context manage-
ment in pervasive computing environments, in: International Conference
on Pervasive Services, 2005. ICPS ’05., 2005.

M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware sys-
tems, International Journal of Ad Hoc and Ubiquitous Computing.

J. E. Bardram, The java context awareness framework (jcaf) - a service
infrastructure and programming framework for context-aware applica-
tions., in: H.-W. Gellersen, R. Want, A. Schmidt (eds.), Pervasive, vol.
3468 of Lecture Notes in Computer Science, Springer, 2005.

P. Barron, V. Cahill, Using stigmergy to co-ordinate pervasive computing
environments, in: WMCSA ’04: Proceedings of the Sixth IEEE Workshop
on Mobile Computing Systems and Applications (WMCSA’04), IEEE
Computer Society, Washington, DC, USA, 2004.

P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, Context-aware mid-
dleware for resource management in the wireless internet, IEEE Transac-
tions Software Engineering 29 (12).

G. Biegel, V. Cahill, A framework for developing mobile, context-aware
applications, in: PERCOM ’04: Proceedings of the Second IEEE Inter-

24

national Conference on Pervasive Computing and Communications (Per-
Com’04), IEEE Computer Society, Washington DC, USA, 2004.

[9] N. O. Bouvin, B. G. Christensen, K. Grgnbak, F. A. Hansen, HyCon:
a framework for context-aware mobile hypermedia, Hypermedia 9 (1)
(2003) 59-88.

[10] P. J. Brown, The stick-e document: A framework for creating context-
aware applications, in: In Proceedings of Electronic Publishing, vol. 8,
1996.

[11] B. Brumitt, B. Meyers, J. Krumm, A. Kern, S. A. Shafer, Easyliving:
Technologies for intelligent environments, in: HUC, 2000.

[12] V. Cahill, E. Gray, J.-M. Seigneur, C. D. Jensen, Y. Chen, B. Shand,
N. Dimmock, A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis,
P. Nixon, G. di Marzo Serugendo, C. Bryce, M. Carbone, K. Krukow,
M. Nielsen, Using trust for secure collaboration in uncertain environ-
ments, IEEE Pervasive Computing 02 (3) (2003) 52-61.

[13] L. Capra, W. Emmerich, C. Mascolo, Carisma: Context-aware reflective
middleware system for mobile applications, IEEE Transactions on Soft-
ware Engineering 29 (10) (2003) 929-945.

[14] P. Castro, R. Munz, Managing context data for smart spaces, IEEE Per-
sonal Communications 7 (5) (2000) 44-46.

[15] C. Chatfield, R. Hexel, User identity and ubiquitous computing: User
selected pseudonyms, in: Workshop on UbiComp Privacy, The Seventh
International Conference on Ubiquitous Computing (Ubicomp 05), 2005.

[16] D. Chen, A. Schmidt, H.-W. Gellesen, An architecture for multi-sensor
fusion in mobile environments, in: Proceedings International Conference
on Information Fusion, Sunnyvale, CA, USA, 1999.

[17] G. Chen, D. Kotz, A survey of context-aware mobile computing research,
Tech. Rep. TR2000-381, Dartmouth College, Hanover, NH, USA (2000).

[18] G. Chen, D. Kotz, Solar: Towards a flexible and scalable data-fusion in-
frastructure for ubiquitous computing, In Workshop on Application Mod-
els and Programming Tools for Ubiquitous Computing at the Third In-
ternational Conference on Ubiquitous Computing (UbiComp 2001), 2001.

[19] H. Chen, T. Finin, A. Joshi, An intelligent broker architecture for context-
aware systems, in: Adjunct Proceedings of Ubicomp 2003, Seattle, Wash-
ington, USA, 2003.

[20] K. Cheverst, N. Davies, K. Mitchell, A. Friday, Experiences of develop-
ing and deploying a context-aware tourist guide: the guide project, in:
MobiCom ’00: Proceedings of the 6th annual international conference on
Mobile computing and networking, ACM Press, New York, NY, USA,
2000.

[21] C. A. da Costa, A. C. Yamin, C. F. R. Geyer, Toward a general software
infrastructure for ubiquitous computing, IEEE Pervasive Computing 7 (1)
(2008) 64-73.

[22] J. S. Davis, D. M. Sow, M. Blount, M. R. Ebling, Context tailor: Towards
a programming model for context-aware computing, 1st International

25

ACM Workshop on Middleware for Pervasive and Ad-Hoc Computing,
2003.

[23] R. de Freitas Bulcao Neto, M. da Graca Campos Pimentel, Toward a
domain-independent semantic model for context-aware computing, in:
LA-WEB ’05: Proceedings of the Third Latin American Web Congress,
IEEE Computer Society, Washington, DC, USA, 2005.

[24] D. L. de Ipia, An eca rule-matching service for simpler development of
reactive applications, Middleware 2001 vol. 2 no. 7.

[25] A. K. Dey, D. Salber, G. D. Abowd, A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applica-
tions, Human-Computer Interaction (HCI) Journal 16 (2-4) (2001) 97-16.

[26] B. Dragovic, Casper: Containment-aware security for pervasive comput-
ing environments, Doctor of philosophy, St John’s College, University of
Cambridge (March 2006).

[27] C. Driver, E. Linehan, S. Clarke, A framework for mobile, context-aware
trails-based applications: Experiences with an application-led approach,
in: Workshop 1 ("What Makes for Good Application-led Research in
Ubiquitous Computing?"), Pervasive 05, 2005.

[28] C. Efstratiou, K. Cheverst, N. Davies, A. Friday, An architecture for
the effective support of adaptive context-aware applications, in: MDM
'01: Proceedings of the Second International Conference on Mobile Data
Management, Springer-Verlag, London, UK, 2001.

[29] P. Fahy, S. Clarke, Cass: Middleware for mobile, context-aware applica-
tions, in: Workshop on Context Awareness at MobiSys, 2004.

[30] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste, Project aura: To-
ward distraction-free pervasive computing, IEEE Pervasive Computing
1 (2) (2002) 22-31.

[31] P. D. Gray, D. Salber, Modelling and using sensed context information
in the design of interactive applications, in: EHCI ’01: Proceedings of the
8th IFIP International Conference on Engineering for Human-Computer
Interaction, Springer-Verlag, London, UK, 2001.

[32] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, T. A.
Steven Gribble, B. Bershad, G. Borriello, D. Wetherall, Programming for
pervasive computing environments, Tech. Rep. UW-CSE-01-06-01, Uni-
versity of Washington Department of Computer Science and Engineering,
Seattle, Washington, USA (2001).

[33] W. G. Griswold, R. Boyer, S. W. Brown, T. M. Truong, A component
architecture for an extensible, highly integrated context-aware computing
infrastructure, in: ICSE '03: Proceedings of the 25th International Con-
ference on Software Engineering, IEEE Computer Society, Washington,
DC, USA, 2003.

[34] T. Gu, H. Pung, D. Zhang, A middleware for building context-aware
mobile services, in: IEEE Vehicular Technology Conference, Milan, Italy,
2004.

[35] K. Henricksen, J. Indulska, A software engineering framework for context-

26

[36]

37]

38]

[39]

140]

[41]

42]

[43]

[44]

[45]

|46]

147]

aware pervasive computing, in: PERCOM ’04: Proceedings of the Second
IEEE International Conference on Pervasive Computing and Communi-
cations (PerCom’04), IEEE Computer Society, Washington, DC, USA,
2004.

K. Henricksen, J. Indulska, A. Rakotonirainy, Modeling context informa-
tion in pervasive computing systems, in: Pervasive '02: Proceedings of the
First International Conference on Pervasive Computing, Springer-Verlag,
London, UK, 2002.

J. Hightower, B. Brumitt, G. Borriello, The location stack: A layered
model for location in ubiquitous computing, in: WMCSA ’02: Proceed-
ings of the Fourth IEEE Workshop on Mobile Computing Systems and
Applications, IEEE Computer Society, Washington, DC, USA, 2002.

T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J. Altmann,
W. Retschitzegger, Context-awareness on mobile devices - the hydrogen
approach, in: HICSS ’03: Proceedings of the 36th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS'03) - Track 9, IEEE Com-
puter Society, Washington, DC, USA, 2003.

M. Hoffmann, User-centric identity management in open mobile environ-
ments, in: Workshop on Security and Privacy in Pervasive Computing,
Second International Conference on Pervasive Computing (Pervasive 04),
Vienna, Austria, 2004.

J. I. Hong, J. A. Landay, An infrastructure approach to context-aware
computing, in: In Human-Computer Interaction, vol. 16, 2001.

J. I. Hong, J. A. Landay, An architecture for privacy-sensitive ubiquitous
computing, in: MobiSys '04: Proceedings of the 2nd international con-
ference on Mobile systems, applications, and services, ACM Press, New
York, NY, USA, 2004.

M. Jonsson, P. Werle, C. G. Jansson, Context shadow: An infrastructure
for context aware computing, in: Proceedings of Artificial Intelligence in
Mobile System, 2003.

G. Judd, P. Steenkiste, Providing contextual information to pervasive
computing applications, in: PERCOM ’03: Proceedings of the First IEEE
International Conference on Pervasive Computing and Communications,
IEEE Computer Society, Washington, DC, USA, 2003.

S. Khungar, J. Riekki, A context based storage system for mobile com-
puting applications, SIGMOBILE Mob. Comput. Commun. Rev. 9 (1)
(2005) 64—68.

T. Kindberg, J. Barton, A web-based nomadic computing system, Com-
put. Networks 35 (4) (2001) 443-456.

T. Kindberg, K. Zhang, Information Security, vol. 2851/2003 of Lecture
Notes in Computer Science, chap. Validating and Securing Spontaneous
Associations between Wireless Devices, Springer Berlin / Heidelberg,
2003, pp. 44-53.

A. Kofod-Petersen, M. Mikalsen, Context: Representation and Reasoning
— Representing and Reasoning about Context in a Mobile Environment,

27

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Revue d’Intelligence Artificielle 19 (3) (2005) 479-498.

P. Korpipdd, E.-J. Malm, I. Salminen, T. Rantakokko, V. Kyllénen,
I. Kénsild, Context management for end user development of context-
aware applications, in: MDM ’05: Proceedings of the 6th international
conference on Mobile data management, ACM Press, New York, NY,
USA, 2005.

B. Kummerfeld, A. Quigley, C. Johnson, R. Hexel, Merino: Towards an
intelligent environment architecture for multi-granularity context descrip-
tion, Workshop on User Modeling for Ubiquitous Computing, Pittsburgh,
USA, 2003.

M. Langheinrich, Personal privacy in ubiquitous computing — tools and
system support, Ph.D. thesis, ETH Zurich, Zurich, Switzerland (May
2005).

H. Lei, D. M. Sow, I. John S. Davis, G. Banavar, M. R. Ebling, The
design and applications of a context service, ACM SIGMOBILE Mobile
Computing and Communications Review 6 (4) (2002) 45-55.

R. Meier, V. Cahill, Exploiting proximity in event-based middleware for
collaborative mobile applications., in: DAIS, 2003.

F. Meneses, Context management for heterogeneous administrative do-
mains, in: PERVASIVE, Second International Conference on Pervasive
Computing, Linz / Vienna, Austria, 2004.

M. Mikalsen, J. Floch, N. Paspallis, G. A. Papadopoulos, P. A. Ruiz,
Putting context in context: The role and design of context management
in a mobility and adaptation enabling middleware, 7th International Con-
ference on Mobile Data Management (MDM’06) 0 (2006) 76.

M. Modahl, B. Agarwalla, S. Saponas, G. Abowd, U. Ramachandran,
Ubigstack: A taxonomy for a ubiquitous computing software stack,
vol. 10, Springer-Verlag, London, UK, 2005.

S. Nath, Y. Ke, P. B. Gibbons, B. Karp, S. Seshan, Irisnet: An architec-
ture for enabling sensor-enriched internet service, Tech. Rep. IRP-TR-03-
04, Intel Research Pittsburgh (June 2003).

D. Nicklas, M. Bernhard, On building location-aware applications using
an open platform based on the nexus augmented world model, Software
and Systems Modeling 3 (4).

D. Nicklas, M. Grofmann, T. Schwarz, S. Volz, B. Mitschang, A model-
based, open architecture for mobile, spatially aware applications, in:
SSTD ’01: Proceedings of the 7th International Symposium on Advances
in Spatial and Temporal Databases, Springer-Verlag, London, UK, 2001.
P. Nixon, F. Wang, S. Terzis, Programming structures for adaptive am-
bient systems, in: ISICT ’03: Proceedings of the 1st international sym-
posium on Information and communication technologies, Trinity College
Dublin, 2003.

P. Osbakk, N. Ryan, A Privacy Enhancing Infrastructure for Context-
Awareness, UK-UbiNet webpage, position Paper for the 1st UK-UbiNet
Workshop, Imperial College, London, UK. (September 2003).

28

[61] J. Pascoe, Adding generic contextual capabilities to wearable computers,
in: ISWC ’98: Proceedings of the 2nd IEEE International Symposium on
Wearable Computers, IEEE Computer Society, Washington, DC, USA,
1998.

[62] J. Pascoe, N. Ryan, D. Morse, Issues in developing context-aware com-
puting, in: HUC ’99: Proceedings of the 1st international symposium
on Handheld and Ubiquitous Computing, Springer-Verlag, London, UK,
1999.

[63] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell, M. D. Mick-
unas, Middlewhere: A middleware for location awareness in ubiqui-
tous computing applications, in: Middleware '04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, Springer-
Verlag New York, Inc., New York, NY, USA, 2004.

[64] A.Ranganathan, R. H. Campbell, A middleware for context-aware agents
in ubiquitous computing environments, in: ACM /IFTP /USENIX Interna-
tional Middleware Conference, Rio de Janeiro, Brazil, 2003.

[65] O. Riva, Contory: A middleware for the provisioning of context informa-
tion on smart phones, Middleware 2006 (2006) 219-239.

[66] R. Robinson, K. Henricksen, J. Indulska, Xcml: A runtime representation
for the context modelling language, in: PERCOMW ’07: Proceedings of
the Fifth IEEE International Conference on Pervasive Computing and
Communications Workshops, IEEE Computer Society, Washington, DC,
USA, 2007.

[67] M. Romén, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
K. Nahrstedt, A middleware infrastructure for active spaces, vol. 1, IEEE
Educational Activities Department, Piscataway, NJ, USA, 2002.

[68] B. N. Schilit, A context-aware system architecture for mobile distributed
computing, Ph.D. thesis, Columbia University (May 1995).

[69] A. Senart, R. Cunningham, M. Bouroche, N. O’Connor, V. Reynolds,
V. Cahill, Mocoa: Customisable middleware for context-aware mobile ap-
plications, in: Distributed Object Applications 2006, 2006.

[70] F. Stajano, R. J. Anderson, The resurrecting duckling: Security issues
for ad-hoc wireless networks, in: Proceedings of the 7th International
Workshop on Security Protocols, Springer-Verlag, London, UK, 2000.

[71] G. Stevenson, P. Nixon, R. I. Ferguson, A general purpose programming
framework for ubiquitous computing environments, Ubisys: System Sup-
port for Ubiquitous Computing Workshop, UbiComp, Seattle, Washing-
ton., 2003.

[72] T. Strang, C. Linnhoff-Popien, A context modeling survey, in: Workshop
on Advanced Context Modelling, Reasoning and Management as part
of UbiComp 2004 - The Sixth International Conference on Ubiquitous
Computing, Nottingham /England, 2004.

[73] R. Suomela, E. Rasanen, A. Koivisto, Mupe context programming man-
aual, Online (September 2006).

[74] R. Want, A. Hopper, V. Falcao, J. Gibbons, The active badge location

29

[75]
[76]

7]

system, ACM Trans. Inf. Syst. 10 (1) (1992) 91-102.

M. Weiser, Ubiquitous computing, Computer 26 (10) (1993) 71-72.

T. Yamabe, A. Takagi, T. Nakajima, Citron: A context information acqui-
sition framework for personal devices, in: RTCSA ’05: Proceedings of the
11th IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA’05), IEEE Computer Society,
Washington, DC, USA, 2005.

A. Zugenmaier, A. Hohl, Anonymity for users of ubiquitous computing,
in: 2nd Workshop on Security in Ubiquitous Computing, Ubicomp 03,
Seattle, Washington, USA, 2003.

30

