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Abstract

Mean-shift tracking is a data-driven technique for track-
ing objects through a video sequence. We propose an inno-
vation to mean-shift tracking that combines the background
exclusion constraint with multi-part appearance models.
The former constraint prevents the tracker from moving to
regions where no foreground objects are present, while the
multi-part nature of the models enforces a spatial structure
on the tracked object. We also use a simple formula to de-
termine the scale of the object in each video frame, and note
the importance of setting an appropriate convergence con-
dition. An evaluation of our proposed tracker and several
existing trackers is performed using a ground truth dataset.
We demonstrate that our innovation yields more accurate
tracking than existing mean-shift techniques.

1. Introduction

Since its introduction in 2000 mean-shift tracking has
attracted much attention in the computer vision community
[2, 4, 5]. As a bottom-up, or data-driven, technique it per-
mits regions of an image to be tracked over time without the
need to specify complex motion or appearance models. A
simple colour histogram is used to encode the appearance
of the object to be tracked, while a spatial kernel enforces a
degree of structure on the histogram.

Although mean-shift tracking is popular due to its rela-
tive simplicity and computational efficiency, it suffers from
a number of weaknesses: it is prone to distraction by other
objects similar to the one being tracked; it does not cope
well with changes in the scale of the object; and it lacks
a mechanism for encoding the spatial layout of the colours
the object. To date various researchers have attempted to ad-
dress these problems. Zhao ef al. [12] have used the back-
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ground exclusion constraint to make the tracker favour re-
gions that are dissimilar to the background. Collins [1] has
developed a method for selecting the appropriate scale for
the tracker in each frame when the object’s size is changing.
In order to enforce a particular spatial structure on the object
various multi-part models have been proposed [6, 8, 11].

We have developed a mean-shift-based tracker that
utilises both the background exclusion constraint and multi-
part appearance models. We have also performed an evalua-
tion of various trackers against a ground truth dataset, which
demonstrates that our proposed innovation yields more ac-
curate tracking of its target object. In order to deal with the
changing size of the objects as they move through the scene
we use a simple formula that relates an object’s size to its
position in the image. We also note that one of the parame-
ters used in mean-shift tracking — the convergence condition
— critically affects a tracker’s performance.

The remainder of this paper is organised as follows: sec-
tion 2 describes previous research into mean-shift tracking,
including multi-part models and background exclusion. In
section 3 we present our method of combining these two
elements in a single tracker, while section 4 details the for-
mula used to select the object’s scale at each frame. Section
5 describes the various trackers whose performance we as-
sess and the metrics used in the evaluation. Finally, section
6 presents the results and draws conclusions about the track-
ers.

2. Related research
2.1. Basic mean-shift tracking

Mean-shift, or kernel-based, tracking tries to find the
area of a video frame that is both (a) most similar to a pre-
viously initialised model and (b) close to the tracker’s lo-
cation in the previous frame. By applying the technique to
each video frame in sequence a region can be tracked over
time. The method was first presented by Comaniciu in 2000
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[2, 3]. The tracking begins with an object model being cre-
ated from the region in the first frame. The probability den-
sity function (pdf) of the region to be tracked (the model)
is represented by a histogram q = {qy }u=1..., Where, for
each histogram bin w,

o= Cik (Il?) s Ge) —ul )

In this equation k is a kernel function that gives more weight
to pixels at the centre of the model, and C is a normal-
ising constant that ensures that all of the elements of the
histogram sum to 1 (there are n pixels in the model). The
function ¢ is the Kronecker delta and b is a histogram bin-
ning function for each pixel location x;. Similarly, the pdf
of the candidate region p(y) = {pu(¥) }u=1...m at location

y is given by
Yy — X
h

where h is the kernel bandwidth, which determines the size
of the candidate region. It is useful to think of w as a
colour, but the histograms could actually represent any fea-
ture space, e.g edge magnitudes or oriented gradients. The
index ¢ ranges over each pixel in the tracked region.

Central to the operation of mean-shift is the weighting
w; for each pixel:
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which is derived from the Bhattacharyya similarity mea-
sure. (yo is the location of the candidate region in the previ-
ous frame.) As in [3] we use an Epanechnikov kernel for k,
so that the new location y; for the candidate region is found

simply as
nh
yi = 21‘21 XiW;
=&l
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Mean-shift is an iterative procedure, so the above formula
must be applied until convergence. The tracker is consid-
ered to have converged if the (x,y) locations returned by two

successive iterations are separated by less than a particular
threshold.
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2.2. Multi-part models

Both Maggio et al. [6] and Dong et al. [11] have devel-
oped multi-part models that retain much of the structure of
the basic histogram (equation 2). Dong divides the region
to be tracked into concentric ellipses (figure 1) and adds
an extra dimension to the histogram to encode this spatial
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structure:
Pu,w (Y) =

Np Y—x;
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where u = 1...m are the colours (as before) and v = 1...n
are the ellipses. This results in a modification of equation 3
for calculating the weights:

,:m - [ Quv <) — u <) — v
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(6)
while the optimisation formula (equation 4) remains un-
changed.

Although Maggio does not derive the equations explic-
itly, his approach is very similar to Dong’s. However, Mag-
gio’s tracker can be used to create models with regions that
overlap.

Parameswaran’s multi-part model [8] has a different for-
mulation to the others: a separate kernel is associated with
each region of the model. For comparison we have included
this tracker in our evaluation (section 5).

a b [¢ d

Figure 1. Spatial division of models for each
tracker: (a) basic tracker (b) Parameswaran’s
(c) Dong’s (d) our implementation of Maggio’s
tracker

2.3. Background exclusion

Various authors have attempted to exploit background
models of the scene to improve the performance of mean-
shift tracking. Zhao et al. [12] and Porikli et al. [10] have
both modified the pixel weights (equation 3) to take account
of the appearance of the background:

)

w; = )\fwzf — )\bwf

where the first term represents “object attraction” and the
second represents “background exclusion”. The idea is that
a pixel to be tracked should be similar to the corresponding
pixel in the object model but dissimilar to the corresponding
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pixel in the background model. The foreground weight wlf
is calculated as in equation 3, but the background weight w?
takes on a more complex form:

"L( dul¥ol 5[ (x;) — u]

Pu(yo)

+w$ggﬂm@o—m>

where d(y) = {du(¥)}u=1...m is the colour histogram of
the corresponding region in the background model.

The incorporation of the background exclusion term
makes the tracking appreciably more robust and improves
its localisation (its positioning on an object).

®)

3. Combining background exclusion with
multi-part models

We propose an enhancement of the basic mean-shift
tracker that is analogous to the work of Pérez et al. in the
area of particle filters [9]. The goal is to create a mean-shift
tracker the has both of the following properties:

e multi-part appearance model: the model to be tracked
should be represented by a number of histograms, so
that some element of the spatial layout of the object to
be tracked is recorded

e background exclusion:. the tracked region should look
similar to the model but different to the corresponding
region in the empty background scene

We achieve the above aims by combining the background
exclusion tracker of Zhao with the multi-part models of
Maggio and Dong.

In Pérez’s work the likelihood of a candidate region p(y)
at location y given the model q is found using the expres-
sion

exp —AD?[q, p(y))] )

where D is the Bhattacharyya distance. For a multi-part
model with J regions the expression becomes

J
exp—A Y D?[q;,p;(y)] (10)

j=1
and when a background model d(y) is available Pérez uses

exp—A (D?[q, p(y)] — D*[d(y),p(y)])  (11)

Expression 11 has a very similar form to that used by Zhao
et al. [12] to exploit “background exclusion” in mean-shift
tracking (section 2.3):

L(y) = A¢D(q,p(y)) — MD(d(y), P(¥)) (12)
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We modify Zhao’s formula to allow the object, candidate
and background models to have J regions:

J

J
Ar Y D(a;,pi(y) = M Z D(d;(y),p;(y))

=1

L(y) =

13)
The weight w; for the entire expression on the right-hand
side is still given by equation 7. However, wlf is now calcu-
lated as the sum over J regions:

J

wl =3 Ciwl 1t (xi) = j] (14)
j=1
where C}; is a normalising constant and wlf, ; is found ac-

cording to equation 6. Note that equation 14 accommodates
overlapping regions in the multi-part model. The new ex-
pression for w? with multi-part models can be derived in a
similar manner.

4. Scale adaptation for tracked objects

There is currently no known application-independent
way to adapt the scale of the trackers to accommodate
changes in the size of the object being tracked [1]. For this
reason we have decided to exploit the application-specific
constraints available to us in order to provide an explicit
scale for the trackers at every frame. Because the videos
we process are recorded by a camera located some distance
above the ground, every object’s apparent height is a linear
function of its lowest image row (see figure 2). For an ob-
ject whose initial image row is y; and whose initial size is
assumed to be 1, its size s at image row y is found simply
according to

. (y — y1) * scale_adaption_factor

=1
s image_height

as)
where scale_adaption_factor < 1 is the factor by which the
object shrinks as it moves away from the camera (from the
bottom of the image to the top). This factor is a constant
across all objects for a given camera setup. By adapting the
scale in this deterministic manner we can avoid the prob-
lems that other techniques introduce.

5. Evaluation
5.1. Trackers

In total we have implemented seven different mean-shift
trackers whose performance we will assess. The details of
each tracker are as follows (see also figure 1):
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Figure 2. Scale of an object can be deter-
mined as a linear function of its lowest image
row

e Basic tracker: Comaniciu’s original mean-shift tracker
(section 2.1) [3]

e BG exclusion: Zhao’s background exclusion tracker
(section 2.3) [12]

e Parameswaran multi-part [8]
e Dong 3-circle multi-part (section 2.2) [11]
e Maggio 4-quadrant multi-part

e Combined 3-circle: our proposed innovation — com-
bining background exclusion with Dong’s multi-part
model (section 3)

e Combined 4-quadrant: another version of our pro-
posed innovation — combining background exclusion
with Maggio’s multi-part model

5.2. Convergence condition

We have discovered that the value of the threshold used
in the convergence condition of the mean-shift tracker can
have a critical effect on its performance. To date, this has
not been discussed in the literature. We have found that the
default value of 1 pixel (as recommended by Comaniciu in
[3]) is suitable for the basic tracker, but causes the multi-
part models to perform very poorly. It appears that the steps
taken by these trackers at each iteration are smaller than
this value, and so a 1-pixel threshold causes the tracker to
cease “hill-climbing” prematurely. A value of 0.25 pixels
improves the performance significantly.

5.3. Metrics for single runs

We have evaluated each tracker’s performance with re-
spect to the ground truth bounding boxes of the CAVIAR
dataset'. Sample frames from the videos with ground truth

IThe datasets come from the EC Funded CAVIAR project/IST
2001 37540, found at http://homepages.inf.ed.ac.uk/rbf/
CAVIAR/
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Figure 3. Frames of various trackers in oper-
ation. The red rectangle shows the ground
truth bounding box and the ellipses denote
the positions of the trackers (red: basic;
green: BG exclusion; blue: Parameswaran).

data and the trackers’ positions overlaid are shown in fig-
ure 3. We have used a metric from the Video Perfor-
mance Evaluation Resource (VIPER) system [7] called the
“dice coefficient” to evaluate the frame-by-frame degree of
overlap between the ground truth bounding box and each
tracker’s bounding box (figure 4). The dice coefficient
(2 * shared_area/area_sum) is a symmetric measure and so
is less skewed by excessively large tracker bounding boxes
than simple overlap measures.

A second metric that we have used measures each
tracker’s positional accuracy on a frame-by-frame basis
(figure 5). It is simply the distance of the tracker centroid
from the ground truth centroid. The values of these metrics
can be plotted for each frame in a single run of the tracker.

5.4. Aggregate metrics over multiple runs

In order to more thoroughly explore the performance of
the trackers we have aggregated the above frame-by-frame
metrics into two single numbers for each run of the tracker.
This allows us to evaluate each tracker’s performance over
multiple runs, where each run is initialised with a different
model.

We display metrics of this kind as box plots, e.g., figure
6, with each column representing a different tracker. The
“boxes and whiskers” show the distribution of the data over
multiple runs. The top and bottom of the blue box mark the
upper and lower quartiles, respectively, while the whiskers
extend for 1.5 quartiles in each direction. The median of
the data is marked by a red line, and outliers are shown as
red crosses. The “notch” in each blue box delimits the 95%
confidence interval. If the notches for two trackers do not
overlap we can assert that there is a statistically significant
performance difference between them.

6. Results and conclusions

Figures 4 and 5 show the performance of each tracker
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Figure 4. Dice coefficient for a single run of
all seven trackers

over a single run where the woman being tracked is never
occluded. Qualitatively, the performance of the the basic,
background exclusion and Parameswaran trackers is below
that of the others.

We have run the trackers multiple times with different
models to track. (In each run the same object is being
tracked; we have simply used different frames to initialise
the model.) The multiple runs allow us to extract aggre-
gate statistics, which are shown in figure 6. We can see
that the two trackers that implement our proposed innova-
tion (“combined 3-circle” and “combined 4-quadrant”) dis-
play a small but statistically significant improvement over
all other trackers.

Table 1 presents the lost-track performance of the
trackers for a variety of scenarios: “unoccluded”; “quarter-
off target” and “half-off target”, where we deliberately
initialise the tracker inaccurately (not centred on the
person); and three scenarios featuring occlusion (see
figure 7). Looking at the first three rows of the table
it is clear that only those trackers that use background
exclusion can reliably cope with poor initialisation. In
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Figure 5. Centroid distance for a single run of
all seven trackers

the presence of occlusions (last three rows) the results
are inconsistent: the BG exclusion and combined 3-circle
trackers appear to have comparable lost-track performance,
as do Parameswaran and combined 4-quadrant. However,
even in those scenarios where Parameswaran’s lost track
percentage is much lower than for other trackers, its
centroid distance and dice coefficient metrics are much
worse than the “good” trackers (those based on background
exclusion). We will investigate this paradoxical situation in
our future work.
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