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An Output Sensitive Algorithm for Computing a Maximum Independent

Set of a Circle Graph

Nicholas Nash∗ David Gregg†

Abstract

We present an output sensitive algorithm for computing a maximum independent set of an unweighted

circle graph. Our algorithm requires O(n min{d, α}) time at worst, for an n vertex circle graph where α

is the independence number of the circle graph and d is its density. Previous algorithms for this problem

required Θ(nd) time at worst.

1 Introduction

The intersection graph of a finite family of sets X1, . . . , Xn, is an undirected graph of n vertices v1, . . . , vn

with an edge connecting vi and vj if and only if Xi ∩ Xj �= φ. A circle graph is an undirected graph

isomorphic to the intersection graph of a finite set of chords in a circle.

Finding a maximum independent set of a circle graph can be solved in time polynomial in the number

of vertices of the graph, Gavril [4] presented a Θ(n3) algorithm while others developed Θ(n2) algorithms

[3, 5, 9].

Apostolico et al [1, 2] solve the problem in Θ(nd) time and space, where d is a parameter known as

the density of the circle graph. Valiente [11] solved the problem in Θ(nd) time and only Θ(n) space. Nash

et al [8] experimentally studied the relative performance of optimized implementations of both of the

preceding algorithms, showing that when suitably implemented, Valiente’s algorithm performs better. As

we note in Section 6 a variation of the algorithm described in this paper has been experimentally observed

to significantly out-perform the best performing previous algorithm.

Other problems that are NP -complete for general graphs can also be solved in polynomial time for

circle graphs, for example Tiskin [10] has shown an O(n log2 d) time algorithm for the maximum clique

problem. There are also problems that are NP -complete for both circle graphs and general graphs, such

as minimum dominating set [7].
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The contribution of this paper is an algorithm for computing a maximum independent set of an

unweighted circle graph in O(n min{d, α}) time, where α is the independence number of the circle graph.

2 Background

A circle graph can be represented either by chords in a circle or intervals on the real line, and the

two representations may easily be obtained from one another [4]. Figure 1 shows an example of these

representations together with the circle graph they give rise to. We can assume without loss of generality

that no two chords (or intervals) share an end-point, since if two chords share an end-point we can slightly

move the end-point of one of the chords without changing the circle graph [4].

An interval representation of an n vertex circle graph can be encoded as a permutation σ of {1, ..., 2n}
where the end-points of the intervals are formed by pairs (σ2k−1, σ2k), for 1 ≤ k ≤ n. We refer to this as

a σ-representation of the circle graph. Note that this makes use of the assumption that no intervals share

an end-point. An arbitrary set of intervals can be transformed into this form in O(n log n) time.

In this paper we make use solely of this interval representation. The density of an interval repre-

sentation is the maximum number of intervals crossing any point on the real line. Two intervals are

said to overlap if neither contains the other and they are not disjoint. If two intervals overlap then

their corresponding chords in the circle intersect. A maximum independent set is then a set of mutually

non-overlapping intervals with cardinality at least as large as any other mutually non-overlapping set of

intervals. Further background on circle graphs and related graph families is provided by Golumbic [6].

3 A Naive Algorithm

In this section we informally describe a naive algorithm for computing a maximum independent set of a

circle graph, as well as introducing some preliminary notation and definitions. This naive algorithm forms

the base for the output sensitive algorithm we introduce in Section 4.

We shall find it convenient to use the standard notation [a, b] = {x ∈ R | a ≤ x ≤ b} (for a < b) below

and to speak of one interval containing another when this is true set-wise in R. Given a set of intervals I

we define Iq,m to be the subset of those intervals which are contained in [q, m]. Throughout this paper,

this set I should be regarded as having the form
⋃n

k=1{[σ2k−1, σ2k]} for some given σ-representation of

an n vertex circle graph. We denote the set of maximum independent sets of Iq,m by MISq,m, and we

denote their cardinality by MIS[q, m]. Finally, for an interval i = [a, b] we define CMISi = MISa+1,b−1

and CMIS[i] = MIS[a + 1, b − 1]. Although MIS and CMIS depend on the choice of a set of intervals

I, we choose to suppress this dependence in the notation because it shall never lead to ambiguity. We

now note some simple properties of MIS[q, m].
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Property 3.1 If q is the right end-point of an interval, then MIS[q, m] = MIS[q + 1, m].

This property follows since, if q is the right end-point of an interval, then Iq,m = Iq+1,m.

Property 3.2 If q is the left end-point of an interval i = [q, r] then

MIS[q,m] =

⎧⎨
⎩

MIS[q + 1, m] if r > m

max {MIS[q + 1, m], 1 + CMIS[i] + MIS[r + 1, m]} otherwise

Proof If r > m then Iq,m = Iq+1,m and so MIS[q, m] = MIS[q+1, m]. Assume r ≤ m. Since Iq,m\{i} =

Iq+1,m it follows that the cardinality of a maximum independent set of Iq,m \ {i} is MIS[q + 1, m]. Let

V be a maximum cardinality independent set of Iq,m that includes i. Clearly for any other interval

j ∈ Iq,m that does not overlap with i then either j ∈ Iq+1,r−1 or j ∈ Ir+1,m. Thus |V | = 1 + CMIS[i] +

MIS[r + 1, m]. Since when r ≤ m any x ∈ MISq,m can either include or exclude i, it follows that

MIS[q, m] = max{MIS[q + 1, m], 1 + CMIS[i] + MIS[r + 1, m]} in this case.

Property 3.1 and 3.2 can be used to construct a simple dynamic programming algorithm for computing

a maximum independent set of a circle graph. Figure 2 shows pseudo-code for this algorithm, which

operates in Θ(n2) time while using Θ(n) space. This algorithm evaluates MIS[q, m] in an array M [1 . . . 2n]

by increasing m from 1 to 2n, and then evaluating the entries of the recurrence for this value of m by

decreasing q from m− 1 down to 1. When the algorithm terminates, M [1] = MIS[1, 2n]. We note that a

maximum independent set itself, and not just its weight, can easily be maintained while evaluating this

recurrence.

The algorithm of Figure 2 is less efficient than Valiente’s [11] Θ(nd) time algorithm, however, we

include it because it motivates the output sensitive algorithm we introduce in the next section. The basic

observation motivating the output sensitive algorithm is that, each time m is incremented in the naive

algorithm, the number of cells in the array M [1 . . . 2n] whose value changes (in fact, increases) may be

substantially smaller than the number of cells examined in the right-to-left scan of q from m− 1 down to

1. Thus, if the set of cells that change can be determined efficiently, the resulting algorithm may be more

efficient too. We formalize this intuition in the remainder of this paper.

4 An Output Sensitive Algorithm

Definition 4.1 Given the σ-representation of an n vertex circle graph, the update set at m, 1 ≤ m ≤ 2n,

is

Sm = {q | MIS[q, m] > MIS[q, m − 1] for 1 ≤ q ≤ m}

3
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Proposition 4.2 If q ∈ Sm then MIS[q, m] = 1 + MIS[q, m − 1].

Proof By assumption MIS[q, m] = k + MIS[q, m − 1], k ≥ 1, and thus there must be an interval

i = [l,m] included in all x ∈ MISq,m but not in any y ∈ MISq,m−1. For all x ∈ MISq,m clearly x \ {i}
is an independent set of of Iq,m−1 and if k > 1 then its cardinality would exceed MIS[q, m − 1], which is

a contradiction and thus k = 1.

Definition 4.3 (update algorithm) Given the σ-representation of an n vertex circle graph, an integer

1 ≤ m ≤ 2n and an array M [1 . . . 2n] such that M [q] = MIS[q, m − 1] for 1 ≤ q ≤ m − 1, and M [q] = 0

otherwise, and an array C[1 . . . n] such that for each interval i = [l, r] with r ≤ m C[i] = CMIS[i] (here

C[i] should be regarded as being indexed by the rank of i in the σ-representation of the circle graph) then

we define the update algorithm as follows:

If m is the left end-point of an interval, the algorithm terminates. Otherwise, there is an interval

i = [l,m] and the algorithm performs the assignment M [l] ← 1 + C[i], and l is pushed onto a stack T .

The following procedure is then iterated until the stack T contains no entries. The top of the stack

is popped into x. If x > 1 and M [x] > M [x − 1] then the update M [x − 1] ← M [x] is performed (we

refer to this as a Type-1 update) and x − 1 is pushed onto T . If there is an interval j = [p, x − 1] and

1 + C[j] + M [x] > M [p] then the assignment M [p] ← 1 + C[j] + M [x] is performed (we refer to this as a

Type-2 update) and p is pushed onto T , and the process iterates.

Pseudo-code for this algorithm is provided in Figure 3.

Lemma 4.4 If any cell M [q], 1 ≤ q ≤ m is modified by the update algorithm, then M [q] = MIS[q, m]

when the algorithm terminates.

Proof Assume the algorithm iterates at least once until the stack T is empty, possibly modifying cells of

M . If, for all indices x on the stack T we have M [x] = MIS[x, m] we say T is valid. Assume that T is

valid at the beginning of each loop iteration where any cell of M is modified. Assume that value of M [p]

has been modified by the algorithm on some iteration.

If p is a right end-point, then it must have been modified by a Type-1 update via an assignment of

the form M [p] ← M [p + 1], where p + 1 was popped from T and since T is valid M [p] = MIS[p + 1, m].

Moreover, by Property 3.1 MIS[p, m] = MIS[p + 1, m], and thus M [p] = MIS[p, m], as required. The

algorithm then pushes p onto T , and so T is still valid after p is pushed onto it.

Otherwise, if M [p] was modified and p is a left end-point of an interval j = [p, x − 1], then M [p] may

have been modified by either a Type-1 or a Type-2 update (but not both, see Proposition 4.2). If M [p]

was modified only by a Type-1 update, then M [p] = M [p+1] and M [p+1] ≥ 1+C[j]+M [x]. If M [p] was

modified by a Type-2 update, then M [p] = 1 + C[j] + M [x] and 1 + C[j] + M [x] ≥ M [p + 1]. Thus, in the
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case of either update, M [p] = max{M [p+1], 1+C[j] +M [x]}. Since T is valid M [p+1] = MIS[p+1, m]

and M [x] = MIS[x, m]. Thus M [p] = max{MIS[p+1, m], 1+CMIS[j]+MIS[x, m]}, and so by Property

3.2 M [p] = MIS[p, m] as required. The algorithm then pushes p onto T , and so T is still valid after p is

pushed onto it.

It follows immediately from the above that if T is valid at the beginning of some iteration of the loop,

then T is valid at the beginning of the next iteration of the loop, and thus on every iteration of the loop.

To complete the proof, we show T is valid before the first iteration of the loop.

If m is the right end-point of an interval i = [l,m], then the first index pushed onto the stack is l.

Preceding this, the algorithm performs the assignment M [l] ← 1 + C[i]. Note that MIS[m + 1, m] = 0,

and that MIS[l+1, m] = MIS[l+1, m−1] = C[i], and thus by Property 3.2, M [l] = MIS[l,m] following

the assignment. As a result T is valid after l is pushed onto it.

Definition 4.5 If at some point during the execution of the update algorithm we have M [q] = MIS[q, m]

for all q ≥ p, we say that M is fully updated at p.

Property 4.6 If M [p] is not modified by the update algorithm and M is fully updated at p + 1 then

MIS[p, m] = MIS[p, m − 1].

Proof If p is a right end-point and M [p + 1] was not modified by the algorithm then, since M is fully

updated, MIS[p + 1, m − 1] = MIS[p + 1, m] but by Property 3.1 MIS[p, m − 1] = MIS[p + 1, m − 1]

and MIS[p, m] = MIS[p + 1, m] and hence MIS[p, m] = MIS[p, m − 1], as required. If p is a right

end-point and M [p + 1] was modified by the algorithm, then since no Type-1 update of M [p] occured,

we have M [p] ≥ M [p + 1], implying MIS[p, m − 1] ≥ MIS[p + 1, m], but by Property 3.1 MIS[p, m] =

MIS[p + 1, m], and hence MIS[p, m − 1] ≥ MIS[p, m] but clearly MIS[p, m − 1] ≤ MIS[p, m] since

Ip,m−1 ⊆ Ip,m, and hence MIS[p, m] = MIS[p, m − 1], as required.

Otherwise, if p is a left end-point of an interval j = [p, x − 1] and neither M [p + 1] nor M [x] has

been updated then MIS[p + 1, m] = MIS[p + 1, m − 1] and M [x] = MIS[x, m − 1], thus, by Property

3.2 MIS[p, m] = max{MIS[p + 1, m − 1], 1 + CMIS[j] + MIS[x, m − 1]} showing that at MIS[p, m] =

MIS[p, m − 1] as required. Otherwise, if both of M [p + 1] and M [x] have been updated then we have

M [p] ≥ max{MIS[p + 1, m], 1 + CMIS[j] + MIS[x, m]}, since M is fully updated and neither a Type-1

or a Type-2 update occured. That is, MIS[p, m − 1] ≥ MIS[p, m], implying as above that MIS[p, m] =

MIS[p, m − 1], as is required. Lastly, we consider the cases where exactly one of M [p + 1] and M [x] has

been updated. By Property 3.2 MIS[p, m−1] = max{MIS[p+1, m−1], 1+CMIS[j]+MIS[x, m−1]}.
Assume that only M [p + 1] was updated, and since M is fully updated at p + 1, MIS[p + 1, m] >

MIS[p + 1, m − 1]. But since M [p] was not updated, and in particular there was no Type-1 update,
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we have MIS[p, m − 1] ≥ MIS[p + 1, m], implying that MIS[p, m − 1] > MIS[p + 1, m − 1] and in

turn that MIS[p, m − 1] = 1 + CMIS[j] + MIS[x, m − 1], and once more since M [p] was not updated

1 + CMIS[j] + MIS[x, m− 1] ≥ MIS[p + 1, m], and hence MIS[p, m] = 1 + CMIS[j] + MIS[x, m− 1],

and MIS[p, m] = MIS[p, m − 1], as required. The other case, where only M [x] is updated is analogous.

Lemma 4.7 When the update algorithm terminates M [q] = MIS[q, m] for 1 ≤ q ≤ m.

Proof If m is the left end-point of some interval then the algorithm can terminate without modifying

M because Iq,m = Iq,m−1 for 1 ≤ q ≤ m. Assume the algorithm iterates z ≥ 1 times. On the kth

iteration of the algorithm, we denote the contents of the stack T at the beginning of that iteration as Tk.

Moreover we denote the largest index on some Tk as F (Tk). Note that the algorithm modifies only the

cells M [F (T1)], . . . , M [F (Tz)]. Note also that for each 1 ≤ k < z the algorithm modifies none of the cells

M [F (Tk+1) + 1], . . . , M [F (Tk) − 1].

Consider any iteration, 1 ≤ k < z, and assume M is fully updated at F (Tk). It follows by F (Tk) −
F (Tk+1) − 1 applications of Property 4.6 that M is fully updated at F (Tk+1) + 1. Moreover, when the

algorithm modifies M [F (Tk+1)], by Lemma 4.4, M will be fully updated at F (Tk+1). Thus if M is fully

updated at F (Tk) at the beginning of kth iteration of the algorithm, it is fully updated at F (Tk+1) on the

(k + 1)th iteration. Note that at the beginning of the first iteration of the algorithm, M is fully updated

at F (T1) = l noting that Ir,m = Ir,m−1 for l < r ≤ m and that M [l] = MIS[l,m] by the same argument

given at the end of in Lemma 4.4.

Finally, after the final, zth iteration, a further F (Tz) − 1 applications of Property 4.6 show that M is

fully updated at 1 when the algorithm terminates.

Lemma 4.8 The update algorithm terminates in O(1+|Sm|) time and uses O(1+|Sm|) space in addition

to the space used by its input.

Proof The algorithm only pushes an index q onto the stack T if q ∈ Sm. Moreover, by Proposition 4.2

such an index q can be pushed onto T at most once by the algorithm. Thus T can contain at most |Sm|
indices and since the algorithm uses at most constant space in addition to T the total space is O(1+ |Sm|)
space (allowing for Sm = φ).

Since the main loop of the algorithm iterates until T contains no entries, this loop can iterate at most

|Sm| times, with each iteration incurring constant time. Thus, the total time is O(1 + |Sm|).

Lemma 4.9 Given an n vertex circle graph with independence number α then
∑2n

q=1 |Sq| ≤ 2nα.
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Proof Let f(q) be the number of the update sets {S1, . . . , S2n} that q is an element of. Clearly
∑2n

q=1 f(q) =
∑2n

q=1 |Sq|. Also note that f(1) ≥ f(2) ≥ · · · ≥ f(2n), and in particular that α = f(1). It

follows that
∑2n

q=1 f(q) ≤ 2nα and thus that
∑2n

q=1 |Sq| ≤ 2nα.

Lemma 4.10 Given the σ-representation of a circle graph, the cardinality of its maximum independent

sets can be computed in O(nα) time and O(n) space

Proof We refer to the algorithm in Figure 4, here, update(M, C, m) denotes an invocation of the update

algorithm of Definition 4.3, Figure 3 and Lemma 4.7.

On the mth iteration of the loop, given M [q] = MIS[q, m − 1] for 1 ≤ q < m and C[i] = CMIS[i] for

all interval i ∈ Iq,m−1 with r < m, by Lemma 4.7, update will modify M such that M [q] = MIS[q, m]

for 1 ≤ q ≤ m. Examining Figure 3, C will be modified giving C[i] = CMIS[i] for all i ∈ I1,m.

Thus, after the mth iteration of the loop, the inputs C and M required by update in the next iteration

are available. Since on the first iteration the inputs required by update are trivially available, it follows

that when the for loop terminates M [1] holds the cardinality of the maximum independent sets of the

circle graph.

For the time complexity, note that there are 2n calls to the update algorithm, requiring by Lemma

4.8, in total time
∑2n

m=1 O(1 + |Sm|) which is O(nα) by Lemma 4.9.

For the space complexity, note that in addition to the O(n) space required by the input, the only space

used O(n) for the array C and, by Lemma 4.8, at most O(n) for the stack T .

5 A Combined Algorithm

Having established the O(nα) time and O(n) space algorithm of Lemma 4.10, we can combine it with

Valiente’s [11] O(nd) time and O(n) space algorithm giving a O(n min{d, α}) time algorithm. The following

is the main result of this paper.

Theorem 5.1 Given the σ-representation of a circle graph, the cardinality of its maximum independent

sets can be computed in O(n min{d, α}) time and O(n) space.

Proof In O(n) time and O(1) space the parameter d can be computed by a simple iteration over the

σ-representation. Now, the update algorithm of Figure 3 is modified such that if an update to a cell M [q]

gives M [q] > d, then the update algorithm simply sets a flag F and terminates.

To compute the cardinality of the maximum independent sets, the algorithm of Figure 4 is used with

this modified update algorithm. When the algorithm terminates, if the flag F is not set, then it must be

the case that α < d and hence the cardinality of the maximum independent sets has been determined in

O(nα) time using at most O(n) space, by Lemma 4.10.
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On the other hand, if the flag F is set, it must be the case that d < α. In this case, at most O(nd) time

has been incurred using O(n) space. To complete the computation, Valiente’s algorithm [11] is invoked

on the σ-representation, requiring an additional O(nd) time and O(n) space.

Thus, the modified algorithm requires O(n min{d, α}) time.

We note that a maximum independent set itself, and not just its cardinality, can easily be maintained

by this algorithm within the same time and space bounds. Referring to Figure 4, a cell C[i] of C[1 . . . 2n]

can be thought of as representing an element of CMISi rather than CMIS[i], and C[i] can then be

represented by a linked list of all the intervals directly contained in an element of CMISi (an interval j

is directly contained in x ∈ CMISi if j ∈ x and there is no k ∈ x such that j is contained in the element

of CMISk represented by C[k]). The same linked list representation can be used in place of M [1 . . . 2n].

This simple representation of a maximum independent set is illustrated by Valiente [11].

6 Conclusion

This paper has described a O(n min{d, α}) time and O(n) space algorithm for computing a maximum

independent set of an unweighted circle graph. Future work could attempt to extend coverage to weighted

circle graphs. In addition, we note that in experiments we have observed an algorithm based on the

output sensitive approach described in this paper to perform excellently in practice. In these experiments,

a variation of the algorithm described in this paper was used. This variation appears to have favourable

constant factors and operates in time O(n min{d, α log n}), it was compared to an optimized implementa-

tion of the previous best algorithm, whose experimental performance was documented in [8]. The output

sensitive algorithm was observed to offer much improved performance (by a factor of between 3 and 7).

Moreover, in these experiments we have observed a class of circle graphs with d = Θ(n) and α = Θ(
√

n).

We leave a full description of these experimental results to future work.
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Figure 1: The chords in the circle of (a) give rise to the circle graph in (c). The intervals in (b) also give
rise to the circle graph of (c). The interval representation in (b) has density 4.
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Input: A σ-representation of an n vertex unweighted circle graph.
Output: The cardinality of the circle graph’s maximum independent sets.
M [1 . . . 2n] ← 0
C[1 . . . n] ← 0
for m ← 1 to 2n do

if m is the right end-point of an interval i = [l,m] then
C[i] ← M [l + 1]

endif
for q ← m − 1 downto 1 do

M [q] ← M [q + 1]
if q is the left end-point of an interval j = [q, r] and r ≤ m then

M [q] ← max{M [q + 1], 1 + C[j] + M [r + 1]}
endif

endfor
endfor

Figure 2: Pseudo-code for a simple Θ(n2) time and Θ(n) space algorithm for computing the cardinality of
a circle graph’s maximum independent sets.

Input: The σ-representation of an n vertex circle graph together with
an integer m and the arrays M and C as defined in Definition 4.3.
Output: M such that M [q] = MIS[q, m] for 1 ≤ q ≤ m.
if m is the right end-point of an interval i = [l,m] then

M [l] ← 1 + C[i]
push(T, l)
while top(T ) �= nil

x ← pop(T )
if x > 1 and M [x] > M [x − 1] then

M [x − 1] ← M [x]
push(T, x − 1)

endif
if there is an interval j = [p, x − 1] and

1 + C[j] + M [x] > M [p] then
M [p] ← 1 + C[j] + M [x]
push(T, p)

endif
endwhile

endif

Figure 3: Pseudo-code for the update algorithm of Definition 4.3.
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Input: A σ-representation of an n vertex unweighted circle graph.
Output: The cardinality of the circle graph’s maximum independent sets.
M [1 . . . 2n] ← 0
C[1 . . . n] ← 0
for m ← 1 to 2n do

if m is the right end-point of an interval i = [l,m] then
C[i] ← M [l + 1]

endif
update(M, C, m)

endfor

Figure 4: Pseudo-code for a O(nα) time and O(n) space algorithm for computing the cardinality of a circle
graph’s maximum independent sets. update(M, C, m) denotes an invocation of the update algorithm of
Definition 4.3, Figure 3 and Lemma 4.7.
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