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Abstract 

This paper describes a method for incorporating the 
chrominance information when estimating motion in 
a colour image sequence. It is based on a Maximum 
Likelihood formulation of the motion estimation prob- 
lem which assumes homogeneous additive Gaussian 
noise in  each colour component, with known inter- 
f i e l d  correlation statistics. The formulation is ap- 
plied t o  the complex-wavelet-domain matching algo- 
rithm of Magarey and Kingsbury [l]. We also de- 
fine a noise-decorredating colour space transform which 
provides a simple implementation of the M L  formula- 
tion in  the wavelet domain. Results for  noisy synthe- 
sised colour sequences with known motion and noise 
statistics demonstrate the superiority of the ezact M L  
formulation over straightforward, unweighted three- 
component estimation, most noticeably in  high noise 
conditions. 

1 Introduction 
Motion estimation (ME) for image sequence manipulation 
has been crucial to the development and successful de- 
ployment of many video processing tasks, e.g. video cod- 
ing, video restoration, and computer vision. Traditionally, 
extraction of the motion information has been limited to 
the use of the luminance or intensity information in the 
scene. The exclusion of chrominance information has been 
forced by the need to limit the complexity of the algo- 
rithms and the observation that many of the visual cues 
for motion estimation can indeed be found in the lumi- 

improvement gained with the use of colour, they assume 
that each colour component contributes equally to the final 
solution. This is based in turn on the implicit assumption 
that the model noise is uncorrelated and equivariant be- 
tween the three colour components or fields which make 
up each frame. 

However, this is often far from being the case. For ex- 
ample, if the component noise is uncorrelated in RGB- 
space it is correlated in YUV-space. This paper addresses 
the need for a careful analysis of the optimal incorporation 
of colour information in motion estimation. We follow the 
approach of Konrad and Dnbois [3] in extending the ML 
motion estimator to deal with vector inputs. In previous 
work [ 5 ] ,  we applied the generalised ML formulation to 
two standard ME algorithms which operate in the original 
pixel domain: region-based matching and gradient-based. 
In Section 2 we apply it to the complex-wavelet-domain 
monochrome ME algorithm of Magarey and Kingsbury 
[l, 61. It is shown that a noise-decorrelating colour-space 
transform, when applied to the original components, re- 
duces the problem to the simple case of independent and 
equal contributions from each component, significantly re- 
ducing the amount of computation required. Performance 
comparisons are based on the deviation of the estimated 
motion fields from the known motion fields in synthesised 
sequences. The results in Section 3 show that the true 
vector ML formulation outperforms straightforward un- 
weighted RGB-space estimation in terms of robustness to 
correlated additive noise. Our results also suggest that the 
most efficient strategy would be adaptive, based primarily 
on luminance and only incorporating chrominance appro- 
priately where required. This is confirmed by some results 
obtained from a real image sequence. 

nance information. However, it is readily acknowledged 2 Wavelet domain MLME 
that chrominance information must improve the perfor- 
mance of motion estimation algorithms if only through the 
ability to take advantage of the entire data set available. 

2.1 sequence modelling 
- 

Work on the use of colour for motion estimation [2, 3 ,  41 
has extended the monochrome maximum likelihood (ML) 
formulation of motion estimation to deal with vector Val- 
ued (colour) frames. Although these works identify the 

Let us consider the ML formulation of the multicomponent 
ME problem. To this end, we begin with the common 
assumption of intensity conservation, which requires that 
intensity in each component is constant along the motion 
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trajectory defined by the displacement d(x) at pixel x. 
This model is corrupted by a 3-component vector e,(x): 

gn (x) = gn-l (x + h(x)) + en(x) (1) 

The quantity e,(x), which is primarily due to observation 
noise, is modelled as zero-mean Gaussian, with (3-by-3) 
covariance matrix Rg(x). Its probability density function 
(pdf) is therefore 

1 
p(en(x)) exp (-,e~(x)R~ix,-l.nc.,) ( 2 )  

The direct ML formulation estimates the translation model 
parameter d as the maximising argument of the pdf of 
gn(x) given g,-l(x) and ( 2 ) ,  with its parameter R,. 

In a previous paper [5]* we showed how to obtain 
a robust ML estimate of d over a region 0 of pixels 
{XI,. . . , XN} centred on x (this is the common assumption 
of constant local f low for regularising ME algorithms). The 
other assumptions were that model deviations are homoge- 
neous over the image (allowing us to drop the x argument 
from R,), and the absence of noise correlation between dif- 
ferent pixels in the region. The result is the region-based 
ML matching algorithm for vector images. A Taylor ex- 
pansion of each component, involving intensity gradients, 
may be used to find a closed-form approximate solution by 
linear least-squares. This is the gradient-based vector ML 
algorithm [5]. 

2.2 The CDWT decomposition 
The vector ML formulation may be applied to the com- 
plex wavelet domain matching algorithm of Magarey and 
Kingsbury [l]. This algorithm is based on a linear trans- 
form, dubbed the Complex Discrete Wavelet Transform 
(CDWT), which is implemented by repeatedly applying 
a separable filter-downsample building block comprising a 
Gabor-like basis pair of 4-tap, rational-valued complex fil- 
ters. The result is an efficient structure which decomposes 
each component gk into a multiresolution pyramid of ori- 
ented complex subimages {gp'"), m = 1,. . . , mmas, n = 
1, ..., 6} ( m  indexes scale, while each n corresponds to 
a specific orientation). Each subimage may be regarded 
as the output of a 2-d (separable) Gabor (Gaussian win- 
dowed bandpass) filter, downsampled by 2" in each di- 
rection. The vector subimages of frame 1 are g!"'"' = 

(%") (%") (n?) T b1,1 g1,Z g1,3 1 ' 

2.3 CDWT domain matching 
The CDWT algorithm performs efficient matching between 
corresponding subpixels in the complex subimages. Start- 
ing at  the level of coarsest resplution ( m  = mmaz), we pos- 
tulate a uniform translation d(x) over all the pixels in the 
support region of each subpixel x (i.e. the implicit regions 
of constant local flow are defined by the corresponding Ga- 
bor filter). Because the CDWT uses linear filtering, we can 

rewrite (1) for subpixel x of subimage (n ,  m)  of frame 2 as 

grn'")(x + f(x)) - ginlm'(x) = (XI (3) 

where P f ( x )  = d(x) and is the model error in 
subband (n ,  m),  which by the assumption of homogeneity 
is independent of x. The joint pdf of e(nim) is 

where RF'") is simply a scaled version of the component 
noise covariance matrix R, of ( 2 ) :  

Rr,") ~ R,p(",") (5) 

The scaling factor P(n,m) is determined by the Gabor filter 
corresponding, to subband (n ,  m )  [6]. 

Using (4), an expression may be written for the ML esti- 
mate of f(x) in each subband ( n ,  m)  in terms of the vector 
displaced subband difference analogous to the vector DFD 
of Konrad and Dubois [3]. However, instead of incorpo- 
rating neighbouring subpixels to obtain a robust estimate, 
as in pixel-domain ME, we form a single estimate over the 
six orientational subbands at x, giving 

fi"'(x) = arg min {SD(")(x,f)} (6) 

n=l 

.DSD("~") (x, f )  (7) 

and DSD("lm)(x, f )  = g$"'")(x + f )  - gp'") (XI (8) 

is the vector displaced subband difference. This formula 
relies on the fact that the 6 corresponding Gabor filters 
have insignificant overlap in the frequency domain, so noise 
in each subband is approximately uncorrelated [6].  The 
6 orientations hence contribute independently to the ML 
estimate. 

The CDWT algorithm forms a quadratic approximation 
to the matching surface SD(") by relying on the pro erties 
of the underlying Gabor filter to interpolate g!yimf(x) in 
between the known integer grid values. The result is 

(9) SD(")(x, f )  s (f - fo)TIC(f - fo) + 6 
where K is the curvature matrix of the surface whose pa- 
rameters may be computed from the subimage coefficients 
in each colour component. 

If R, is diagonal, with entries {a:, a;, ai}, (6) becomes 

is the subband squared difference for subband (n ,m)  of 
colour component k. In this case each of the three colour 
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components contributes independently to  the ML esti- 
mate, inversely weighted by the noise variance in that com- 
ponent. Clearly this is a much simpler case, and the pa- 
rameters fo ,K,  and 6 of SD(”) may be estimated with 
much less computation than in the general case. 

The algorithm proceeds to refine the field of motion 
estimates (given by 2mmaz f o )  by passing down the surface 
parameters from coarse to fine (with decreasing m )  and 
incorporating them as prior information to the level below 
by simple addition of quadratic surfaces. The algorithm 
halts at  level mmrn, at which the estimate field consists of 
one estimate per 2”,** by .Lrnrntn block of pixels. 

2.4 A Decorrelating Transform 
In the vector ML formulation of ME, the covariance matrix 
R, of the inter-component noise controls the weighting to 
be assigned to the contributions of the various colour com- 
ponents. If each input 3-component frame is transformed 
by 

where A is an 12-by-3 matrix, then the noise covariance 
matrix in the new colour space (“A-space”) becomes 

g’(4 = (11) 

R,, = A R , A ~  

Given some estimate of R,, the singular value decomposi- 
tion (SVD) of the symmetric, non-negative definite matrix 
R, yields orthogonal V and diagonal D such that 

VTR,V = D 

Note that the singular values are non-negative; however, 
one or more may be zero. (This case occurs when at least 
one component is a linear combination of the others, and it 
prevents the use of (7) to find the ML estimate, because R, 
is non-invertible.) Suppose there are 12 non-zero singular 
values (i.e. R, has rank n). If we extract the invertible 
n-by-n submatrix D’ from D and the corresponding rows 
V’ from VI  it can easily be shown that 

A = ( f i ) - l ( V ’ ) T  

is a decorrelating transform for colour space g ,  i.e. R,I = 
I , .  The SVD-based transformation thus identifies the case 
where there are redundant components and projects to 
a colour space of appropriately reduced dimensionality. 
Equation 10 may now be invoked, with n: = 1 for all 
IC = 1,. . . , n. Each transformed component contributes 
equally and independently to the ML estimate. 

3 Results and discussion 
Synthesised test sequences were obtained by applying mo- 
tion fields of three distinct kinds-uniform translation, ro- 
tation, and divergence-to the 128-by-128 pixel central 
portions of frame 1 of the “carphone”, “foreman”, and 
“suzie” colour sequences respectively. White Gaussian 

noise of known correlation statistics was added to each 
frame of the synthetic sequence. The noise covariance ma- 
trix in RGB-space, as in [ 5 ] ,  was 

1.7393 0.1871 -0.1886 
R r g b  = a2 [ 0.1871 0.1318 -0.0742 ] (15) 

-0.1886 -0.0742 0.3654 

The test algorithm was the simplest version of the 
CDWT algorithm, with mmns = 5 and mmrn = 2, with no 
confidence thresholding. A full-density field was obtained 
by bilinear interpolation from the final motion field. For 
each of the three test sequences, three sets of results were 
obtained: those using unweighted RGB-space ME; those 
from luminance-only estimation; and those from vector ML 
estimation, obtained by first transforming from RGB to 
the optimal colour space as described in Section 2.4, using 
the known Ergb. 

Global estimation error was quantified by averaging the 
angular deviation of the estimated motion fields from the 
known “true” motion fields in the synthesised sequences, 
excluding a strip of width 16 pixels around the boundary 
of the frame. Figure 1 shows the mean error angle of the 
estimated fields on each test sequence as a function of the 
noise standard deviation. The results demonstrate that 
the optimal strategy is the most noise-robust, followed by 
luminance-only, with the straightforward unweighted com- 
bination of RGB fields, ignoring the noise statistics, giving 
the worst results. Figure 2 shows the lower right quar- 
ter of the estimated motion fields for the divergence se- 
quence with n = 18, superimposed on images of error angle 
(darker means greater error.) This figure demonstrates the 
much improved motion field smoothness gained by using 
colour optimally. However, the gains are only markedly 
evident at  high noise levels. These results echo those ob- 
tained with a pixel-domain gradient-based strategy on the 
same test sequences [5 ] .  

Luminance-only ME requires only slightly more than a 
third of the amount of computation required for full-colour 
ME [6]. Our results suggest that this strategy provides 
near-optimal performance except where noise overwhelms 
luminance contrast. In such cases, chrominance informa- 
tion may be incorporated (according to the ML formula- 
tion) to increase the robustness of the estimates. An adap- 
tive strategy, in which luminance is the primary quantity 
for estimation, with some criterion to indicate where the 
chrominance information should be incorporated, would 
provide the best tradeoff between accuracy and efficiency. 
Our on-going work is aimed at  finding a reliable criterion 
for incorporation of chrominance information. 

Tests on a real colour sequence (“Claire”, available in 
YUV space) were also carried out. An estimate of RYUV 
was generated from observations of frame differences in sta- 
tionary areas of the image. Because RYUV is near-diagonal, 
there was hardly any difference between straightforward 
unweighted YUV-space ME, and ME based on the opti- 
mal use of colour as described in this paper. Furthermore, 
because the SNR in the y (luminance) component is much 
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Figure 1: Mean motion field error vs for RGB, 
luminance-only, and optimal colour estimation. (a) 
Translation sequence. (b) Divergence sequence. 
(c) Rotation sequence. 

Figure 2: Lower right quarter of motion fields for 
divergence sequence with CT = 18, superimposed on 
error images (darker means greater error). (a) RGB- 
estimated field (one estimate per 4 by 4 pixels). (b) 
Optimally-estimated field (same resolution). 

greater than that of the U and (chrominance) compo- 
nents, luminance-only estimation gave very similar perfor- 
mance to optimal full-colour estimation. These results, 
which may be found at our web site’, further reinforce the 
arguments for an adaptive scheme. 

4 Conclusion 
In this paper we have shown how to formulate the ML mo- 
tion estimator for colour image sequences in the presence 
of correlated, homogeneous Gaussian noise in the three 
component fields. The vector ML formulation was applied 
to the complex-wavelet-domain matching algorithm, with 
the the inter-component noise covariance matrix playing 
a pivotal role. We have shown how to use this matrix to 
derive a transformation into an “optimal” colour space, 
in which the colour components may be treated as equal 
and independent contributors to  the ML estimate. The 
effectiveness of the optimal colour space transformation in 
the wavelet-domain matching algorithm was demonstrated 
on three synthesised test sequences cont,aining additive 
noise with deliberately induced covariance. Our tests also 
showed that luminance-only estimation performs reason- 
ably well by comparison with the more expensive full- 
colour approach, particularly a t  low noise levels. This sug- 
gests that the best strategy for a general colour sequence 
would be adaptive. 
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