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Magnetic Resonance (MR) imaging-based motion and deformation tracking techniques combined with finite element (FE)
analysis are a powerful method for soft tissue constitutive model parameter identification. However, deriving deformation data
from MR images is complex and generally requires validation. In this paper a validation method is presented based on a silicone gel
phantom containing contrasting spherical markers. Tracking of these markers provides a direct measure of deformation. Validation
of in vivo medical imaging techniques is often challenging due to the lack of appropriate reference data and the validation method
may lack an appropriate reference. This paper evaluates a validation method using simulated MR image data. This provided an
appropriate reference and allowed different error sources to be studied independently and allowed evaluation of the method for
various signal-to-noise ratios (SNRs). The geometric bias error was between 0-5.560 x 10~ voxels while the noisy magnitude MR

image simulations demonstrated errors under 0.1161 voxels (SNR: 5-35).

1. Introduction

The body responds to mechanical loading on several
timescales (e.g., [1, 2]), but in vivo measurement of critical
parameters such as muscle load, joint reaction force, and
tissue stress/strain is usually not possible [3, 4]. In contrast,
suitably validated computational models can predict all of
these parameters, and they are therefore a powerful tool
for understanding the musculoskeletal system [4, 5] and are
in use in diverse applications from impact biomechanics
[6, 7] to rehabilitation engineering [8, 9], surgical simulation
[10, 11], and soft tissue drug transport [12].

Skeletal muscle tissue in compression is nonlinear elastic,
anisotropic, and viscoelastic, and a constitutive model with
very good predictive capabilities for in vitro porcine muscle
has been proposed [13, 14]. However, validating this model
for living human tissue presents significant difficulties. Some
authors have used indentation tests on skeletal muscle [15,
16], but the tissue was then assumed to be isotropic and

linear in elastic and viscoelastic properties. In contrast, non-
invasive imaging methods that allow detailed measurement
of human soft tissue motion and deformation (due to known
loading conditions) combined with inverse finite element
(FE) analysis allow for the evaluation of more complex
constitutive models.

The work presented here is part of a study aiming to
use indentation tests on the human arm, tagged Magnetic
Resonance (MR) imaging and inverse FE analysis to deter-
mine the mechanical properties of passive living human
skeletal muscle tissue using the constitutive model described
in [13, 14].

Recently the potential of using surface deformation
measurements from 3D digital image correlation to assess
mechanical states throughout the bulk of a tissue has been
shown [17]. However MR imaging combined with deforma-
tion tracking techniques can provide 3D deformation data
throughout the tissue volume and is ideal for the evaluation
of constitutive models such as [13, 14]. MR imaging has



been used to study skin [18], heart [19], and recently also
rat skeletal muscle [20] (though a simplified Neo-Hookean
model was applied).

The techniques for tracking tissue deformation from
(e.g., tagged) MR imaging are complex and require val-
idation using an independent measure of deformation.
Since physically implanting markers is not feasible and
anatomic landmarks are either absent or difficult to track,
alternative methods have been employed. Young et al. [21]
recorded angular displacement of a silicone gel phantom
using tagged MR images and evaluated the results using
FE modelling and 2D surface deformation derived from
optical tracking of lines painted on the phantom surface.
Similarly, Moore et al. [22] used optical tracking of surface
lines on a silicone rubber phantom to validate MR-based
deformation measures. However simple tensile stretch was
applied and only a 2D measure of surface deformation
was used. There were also temporal synchronisation issues
between the optical and MR image data. In both of the
optical validations studies above the error related to the
optical tracking method was not quantified. Other authors
have used implantable markers. For instance Yeon et al. [23]
used implanted crystals and sonomicrometric measurements
for validation of tagged MR imaging of the canine heart.
However the locations of the crystals were verified manually
by mapping with respect to surface cardiac landmarks in
the excised heart and matching problems between MR and
sonomicrometric measurements occurred. Neu et al. [24, 25]
evaluated a tagged MR imaging-based deformation tracking
technique for cartilage using spherical marker tracking in
a silicone soft tissue phantom. However the marker centres
were determined by manually fitting a circle to each marker
in two orthogonal directions and imaging was performed
on excised tissue samples at high resolution (over 32 voxels
across marker diameter) using a nonclinical 7.05T scanner.

This paper shows that validation of in vivo medical
imaging techniques and image processing algorithms is chal-
lenging partially due to the lack of appropriate reference data.
Although experimental validation methods using soft tissue
MR imaging phantoms can be developed, the data derived
from these often suffers uncertainties similar to those present
in the target soft tissue. Therefore the validation method
itself often lacks an appropriate reference. In this paper a
novel technique for the validation of a 3D MR imaging-based
motion and deformation tracking technique, applicable to
3D deformation, is presented. The validation method, based
on marker tracking, was evaluated (and validated) using
simulated magnitude MR image data because this allows
full control and knowledge of marker locations and thus
provides the final real “gold standard.” It addition this allows
for the independent analysis of geometric bias and of method
performance across a wide range of realistic noise conditions.

2. Methods

2.1. The Tissue Phantom. The proposed validation con-
figuration is an MR compatible indentor used to apply
deformation to a phantom and provides an independent
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measure of deformation allowing validation of MR imaging-
based motion and deformation tracking. A silicone gel soft
tissue phantom was developed to represent deformation
modes expected in the human upper arm due to external
compression (see Figure 1), as such the phantom resembles a
cylindrical soft tissue region containing a stiff bonelike core.
The gel (SYLGARD 527 A&B Dow Corning, MI, USA) has
similar MR [26] and mechanical [17] properties to human
soft tissue and has been used in numerous MR imaging-
based studies on soft tissue biomechanics [21, 24, 27-34].
Embedded in the gel are contrasting spherical polyoxymethy-
lene balls of 3 = 0.05 mm diameter (The Precision Plastic Ball
Co Ltd, Addingham, UK). The lack of signal in the markers
in comparison to the high gel signal allows tracking.

2.2. MR Imaging. The type of image data used in the current
study is T2 magnitude MR images. Deformation can be
measured using marker tracking methods applied to full
volume scans taken at each deformation step. A full volume
scan was performed on the tissue phantom using a 3T
scanner (Philips Achieva 3T, Best, The Netherlands). Cubic
0.5 mm voxels were used and the data was stored using the
Digital Imaging and Communication in Medicine (DICOM)
format. Figures 1(a) and 1(b) show an example of an MR
image and tagged MR image of a region of the phantom. The
voxel intensities of the images are 9 bit unsigned integers with
values ranging from 0 to 511. The data was imported into
Matlab 7.4 R2007a (The Mathworks Inc., USA) for image
processing. The image data was normalised producing an
average gel intensity of 0.39, while the marker intensity was
Zero.

2.3. Marker Tracking Method. To track the movement of
markers from the 3D MR data an image processing algorithm
was developed in Matlab (The Mathworks Inc., USA). The
centre point of each marker at each time step can be found
using 3 main steps: (1) masking, (2) adjacency grouping, and
(3) centre point calculation.

(1) Masking. Masking was performed to identify the central
voxels for each marker. To reduce computational time the
mask was only applied to voxels that qualify (based on
intensity threshold) as potentially belonging to a marker.
In addition a sparse cross-shaped mask was designed
(Figure 2(a)) with just 12 voxels (significantly less than
nonsparse cubic or spherical masks which would be around
729 and 250 voxels, resp.). When the mask operates on a
voxel v with image coordinates (i, j, k), the image coordinates
of the 12 (surrounding) mask voxels (i, jm,kn) can be
defined as

im i+(1,-1,0,0,0,0,4,-4,0,0,0,0)
jm | =1j+(0,0,1,-1,0,0,0,0,4,-4,0,0) [. (1)
km k+(0,0,0,0,1,-1,0,0,0,0,4, —4)

Image processing masks are generally used as a spatial filter;
however in this case the mask was used as a logic operator
to find voxels matching the following criterion. A voxel v at
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(a) (b)

FIGURE 1: (a) An MR image of a gel region with markers, (b) a tagged MR image region, and (c) the silicone gel soft tissue phantom
containing the spherical markers (white balls).

(b)

FIGURE 2: (a) The cross-shaped mask, (b) the adjacency-based grouping process, (c) a 3 mm diameter sphere placed at the calculated marker
centre.

(a) (b)

FIGUre 3: (a) A high resolution (uniform 0.02 mm voxels) binary mid-slice image of marker, (b) corresponding mid-slice at the MR
acquisition resolution (uniform 0.5 mm voxels).



location (i, j, k) is classified as a central marker voxel when all
the central cross-mask voxels (see cross-shape in Figure 2(a))
have intensities smaller than the intensity threshold T and
all of the outer voxels (see outer voxels in Figure 2(a)) have
intensities higher than or equal to the intensity threshold T.
In other words the following pseudoequation needs to be
true:

im(1:6) im(7:12)
jm(1:6) | <T A | jm(7:12) [ >=T. (2)
km(1:6) k(7 :12)

Here all of the first six mask voxels (indicated with 1 : 6),
of the mask coordinate collection (ip, jm, km), represent the
central cross-elements and the last six (indicated with 7 : 8)
represent the outer elements (see Figure 2(a)). Depending on
the marker appearance in the image (see next section) up to
8 central marker voxels match this criterion and were found
per marker.

(2) Adjacency Grouping. Calculating the marker centre point
using only the central marker voxels identified using masking
does not provide an accurate centre point determination
(accurate to within a voxel at best) and is sensitive to marker
appearance. The more voxels that are included (e.g., all)
the better. To find and group voxels deemed to belong
to the same marker a grouping algorithm was used. The
central marker voxels found using masking were used as
starting points to group objects using adjacency analysis.
The adjacency grouping is a stepwise process. Adjacency
coordinate groups (ACGs) are created for all the voxels
found using masking. The process starts with one of the
voxels found using masking v" and is assigned to be part of
marker group M. The ACG for this voxel v" with coordinates
(7', j', k") is defined as

lf i,+(l)_1)0)0)010)
_]f = j/+(0,0,1)_1;0)0) . (3)
k) \K +(0,0,0,0,1,-1)

The ACG contains all the directly adjacent voxels of the
voxel v" (its direct upper, lower, front, back, left, and right
neighbours). Any voxel v with coordinates (i, j, k) is added
to the marker group M when its intensity is lower than T
and its coordinates are found within one of the ACGs of the
marker M. When a voxel is added to the marker group M its
ACG is added to the set of ACGs belonging to M and this
process is repeated. Voxels are added to a marker group until
the group is no longer growing.

Figure 2(b) shows how, starting with one central voxel,
the surrounding low intensity voxels within the coordinate
group (if, js,ky) are added and when this is repeated all
voxels representing the marker are grouped. After grouping,
the dimensions and number of voxels of the object were
compared to what is expected for normal markers (e.g., a
diameter of under 6 voxels and consisting of under 250
voxels) to filter out possible objects other than markers.

EURASIP Journal on Advances in Signal Processing

(3) Centre Point Calculation. The centre point for each
marker group was determined using weighted averaging. The
centre coordinates (Ipr, Ja, Ky) of a marker M composed of
N voxels is defined as

N . N .
Zazl Walg 2(1:1 Wala

N N
Zazl Wa Za:l Wa

ZaN:l Wwaka )
25:1 Wq .
(4)

Here average i, j, and k represent the coordinates of each
of the voxels in the marker group. Since those voxels with
intensities close to zero are more likely to belong to a marker
than voxels with intensities close to the gel intensity, the
weight w, for a voxel with intensity z, was defined as:

(Im I KM):<

W, = (1—2—7‘1), with w, = 0ifz, > T, 5)

Here T represents a threshold which for a noiseless image
could be set equal to the gel intensity (the weight w, then
represents the volume fraction of marker material present in
the voxel). The condition is added that when z, is larger than
T the weight w, = 0.

2.4. Evaluation of Marker Tracking Method Using Simulated
Magnitude MR Image Data. The marker tracking method
was evaluated using simulated magnitude MR image data
because this allows full control and knowledge of marker
locations and thus provides the final real “gold standard.”
The simulated data also allow one to isolate and study
errors from different sources. The marker tracking method
was evaluated using algorithms developed in Matlab (The
Mathworks Inc., USA) and involves the following steps:
(1) simulation of a noiseless image and analysis of geometric
bias, and (2) simulation of noisy magnitude MR data and
analysis of the noise effects. The final noisy image data
allows one to evaluate the performance of the method under
varying noise conditions while the noiseless image allows for
evaluation of the geometric bias implicit in the method.

(1) Simulation of a Noiseless Iimage and Analysis of Geometric
Bias. Since the marker image intensity values are zero, image
data were simulated by multiplying an image representing gel
volume fractions by the average normalised gel intensity. A
3D image space can be defined containing only markers and
gel and can be expressed as a continuous binary function
f(x,y,2), where f = 0 for all marker coordinates and
f = 1 for all gel coordinates. When this function is
represented across voxels intermediate intensities arise as
averaging occurs at each voxel where intensity is equivalent
to the gel volume fraction within the voxel. The continuous
binary function can however be approximated by a high-
resolution binary image. Simulation of a volume fraction
image at the desired (lower) resolution (cubic 0.5mm
voxels) then involves simple averaging of the high-resolution
representation. High-resolution binary images were created
at 25 times the acquisition resolution. A 2D mid-slice of
a high-resolution (cubic 0.02 mm voxels) binary image is
shown in Figure 3(a). At this resolution the marker sphere
is represented by over 1.7 million voxels and the volume is
represented with less than 0.07% error. Figure 3(b) shows
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FIGURE 4: (a) A marker sphere showing OCV. (b) An OCV showing the tetrahedron in which the appearance of markers varies uniquely. The
most symmetric appearances are 1 mid voxel, 2 mid face, 3 mid edge, and 4 voxel corner. Appearance 5 is in the middle of the tetrahedron

and shows the resulting asymmetric appearance.

the corresponding volume fraction image at the averaged
acquisition resolution (cubic 0.5 mm voxels). By multiplying
the obtained volume fraction image with the appropriate
gel intensity (average normalised intensity 0.39) a noiseless
simulated image is obtained.

The appearance in Figure 3(b) is symmetric because the
marker centre point coincides with a voxel corner. However
the appearance of objects in images varies depending on their
location due to averaging across the discrete elements, in
this case voxels, which leads to a geometric bias affecting
the marker tracking method. Figure 4(a) shows a marker

sphere and the voxel in which its centre point is found. This
voxel is named the Object Central Voxel (OCV) (see also
Figure 4(b)). When a marker centre point coincides with
the centre of its OCV appearance 1 is obtained. Similarly
2 up to 4 demonstrate the appearance of a marker when
its centre coincides with the middle of a voxel face, the
middle of a voxel edge and a voxel corner, respectively.
Obviously when a marker is moved exactly one voxel in a
certain orthogonal direction its appearance has not changed
but simply shifted. In fact each of these appearances is
either symmetric or equivalent to several other appearances
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0.35

FIGURE 5: (a) A 3D plot representing the full OCV showing the expected type of geometric bias pattern, and (b) a 2D equivalent.
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F1GURE 6: The Rician PDF at various A/g, ratios (0-6). When A/g, = 0 the Rician PDF reduces to the Rayleigh distribution (blue dots)
however as A/g, increases to over A/g > 2 the Rician PDF behaves approximately Gaussian (red dots at A/o = 6).

obtainable through varying location within the OCV (e.g.,
each voxel corner produces the same appearance while
mid-edge appearances can be obtained through rotation
and mirroring). Thus when the spherical markers (or any
other symmetric shape) are averaged across a cubic voxel
matrix the appearance varies uniquely within the blue
tetrahedron shown in Figure 4(b). All other appearances can
be obtained by rotation and mirroring of the appearances in
this tetrahedron. Appearances 1—4 are the most symmetric
appearances obtainable. Other appearances however can be
asymmetric such as case 5 which is obtained when the marker
centre coincides with the centre of the tetrahedron. Since
the centre point calculation in the marker tracking method
is based on an average of marker voxel coordinates, it is

sensitive to symmetry of the marker appearance and as such
the error is also related to asymmetry.

It was hypothesised that since OCV points 1—4 in Figure 4
produce symmetric appearances the error here is low and
that locations furthest away from these symmetries produce
the worst error. If this hypothesis is true the error would
follow a pattern similar to that shown in Figure 5 (a distance
plot from the grid defined by the corner, mid-edge, and
middle points) and assuming that each point has the same
symmetry “weight,” the worst error should occur in the
middle of the longest edge of the tetrahedron.

The geometric bias was investigated by simulating mark-
ers with their centre points coinciding with various locations
within an OCV in the absence of noise. Due to the symmetry
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in the appearances as discussed above, simulations were
performed in 1 octant of the OCV only using a grid of points.
For visualisation purposes the results were then mirrored
to obtain bias measures across the full OCV (similar to
Figure 5(a)) producing a 19 x 19 x 19 grid. A finer grid
was then applied around the maximum bias to closely
approximate the location of the real maximum bias. This
process was repeated until the found maximum no longer
varied significantly.

(2) Simulation of Noisy Magnitude MR Data and Analysis
of the Noise Effects. Noise is present in all real MR images,
and the performance of the marker tracking method needs
to be evaluated in the presence of appropriate noise in the
simulated image. During MR imaging, signal is acquired in
the frequency domain using receiver coils. To move to the
image domain the signal can be sampled at discrete locations
and reconstructed using inverse Fourier Transforms. For
each reconstructed image voxel in Cartesian space the signal
can be expressed as a real signal A (represents the noiseless
simulated image) plus a real noise component ng and an
imaginary noise component n; [35]

with i = v—1. (6)

s=Ssp+sp=A+ng+ing,

These independent noise components are identically dis-
tributed (with zero mean) and their Probability Density
Function (PDF) is Gaussian [35-37]. The magnitude m of
a signal can be calculated using

m = (A + ng)* + nl. (7)

The image intensities in magnitude MR images in the
presence of noise follow a Rician distribution [35-38] with
a PDF [39, 40] given by

P, (m | A, O'g) = Zexp(w-f_mz)>lo<lirzn)H(M),
g

20g2 i
(8)

where o, represents the standard deviation of the Gaussian
noise, H represents the Heaviside step function (ensuring
P, = 0 for m = 0), and I is the 0 order modified
Bessel function of the first kind. Figure 6 shows a surface
plot of the Rician PDF for various A/o; (or SNR) ratios
(Figure 6 was created using g, = 1, the SNR is therefore
A/og = A). When the noise dominates and A/o, approaches
zero the Rician PDF reduces to the Rayleigh PDF [35,
36] (see blue dots in Figure 6). However, when the signal
dominates (A/o; > 2 [36]) the Rician distribution behaves
approximately Gaussian (red dots in Figure 6 are for a
Gaussian PDF at A/g, = 6) [35, 36]. With the knowledge that
when A = 0 the Rician PDF reduces to the Rayleigh PDE, o,

can be estimated by analysis of background noise using [38]

)

Using this equation, and analysis of the background of a
normalised T2 MR image of the silicone gel phantom, o,
was estimated to be 0.02. Based on the average normalised
gel intensity of 0.39 this corresponds to an SNR of 19.5.
However, to evaluate the performance of the marker tracking
method in the presence of noise, images were simulated at the
worst location found by the geometric bias at a SNR of 5 up
to 35. Simulations were performed 10 000 times to obtain an
estimate of the error distribution at the various SNR levels.

3. Results

The results are presented in two steps: (1) evaluation of
the geometric bias in the marker tracking method, and (2)
evaluation of the performance on the marker tracking method
in the presence of noise.

(1) Evaluation of the Geometric Bias in the Marker Tracking
Method. Figure 7(a) shows the geometric bias error in the
absence of noise in an Object Central Voxel (OCV). The
colour in each element is the error (in units of voxels)
of the marker tracking method for each point on the 3D
grid. Figure 7(b) shows 2D image slices through Figure 7(a)
showing the best (1,2) and worst locations (3). Analysis
demonstrated that overall the geometric bias of the marker
tracking method ranges from 0 to a maximum of 5.560x 10>
(with a mean of 3.149 x 10™° and a standard deviation
of 7.771 x 107*) voxels. The error is 0 for the symmetric
cases (1—4 in Figure 4) while the maximum error occurs
in locations where a marker centre point coincides with
1/1.368th or 1/4.329th of a voxel; see, for example, white
points in Figure 7(b) (e.g., at [i,j,k] = [0.731,0.731,
0.731]).

(2) Evaluation of the Performance on the Marker Tracking
Method in the Presence of Noise. The performance of the
marker tracking method for the noisy magnitude MR image
simulations obtained from the 10000 simulations at each
SNR of 5 up to 35 is presented next. As the SNR increases
from 5 to 35 the maximum, mean and minimum voxel errors
vary according to Figure 8(a). The standard deviation is
plotted in Figure 8(b). Although for T' = 0.26 the maximum
stays below 0.1127 in all cases, the method performs better
when T is chosen depending on SNR. To illustrate this
Figure 9 shows results for the SNR range 15-35 using
T = 0.32. Using a higher T means that the marker groups
are composed of more voxels and thus a more accurate centre
point can be calculated. The maximum voxel error for T =
0.26 at an SNR = 19.5 (estimated SNR level) is 4.254 x 10~°
voxels; however usinga T' = 0.32 in this case results in a more
threefold increase of the accuracy as the maximum error is
reduced to 1.1611 x 10~ voxels. The optimum T value for a
certain SNR can be determined using MR data simulations.
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FIGURE 7: (a) The OCV showing the error of the marker tracking method, each grid locations tested. (b) Three 2D image slices through the
OCYV for the best (Slice 1 and 2) and worst locations (Slice 3).

0.2 T 0.015 T
0.15 |
. 0.01
.8
- =
g %
3 oaf 3
z
- g
&
0.005
0.05 |
0 0
0 20 40 0 20 40
SNR SNR
—8— Max
—+— Mean
—%— Min

(a) (b)

FIGURE 8: Results for SNR 5 up to 35 using T = 0.26. (a) The maximum (red dotted line), the mean (blue crossed line), and the minimum
voxel error plotted against SNR, and (b) the standard deviation plotted against SNR.

Using simulations the error can be minimised for a given  imaging [41] and phase contrast MR imaging [42], but these
SNR by adjusting the T value. all rely upon validation of the algorithms proposed. A review
of the literature showed that the validation methods used
for existing techniques are frequently incomplete, and this
4. Discussion paper presents a novel validation method for MR imaging
based on motion tracking using a marker tracking algorithm
Several MR imaging-based motion tracking algorithms have ~ which itself is validated against simulated MR image data.
been proposed in the literature, for example, tagged MR Simulated data was generated for the noise-free case as well
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FIGURE 9: Results for SNR 15 up to 35 using T = 0.32. (a) The maximum (red dotted line), the mean (blue crossed line), and the minimum
voxel error plotted against SNR, and (b) the standard deviation plotted against SNR.

as for a variety of different Rician distributed noise levels.
The noise-free image data allowed analysis of the error
related to the geometric bias independently from other error
sources.

Therefore the method proved to be robust with geomet-
ric bias errors of between 0-5.560 x 10~ voxels and errors
due to noise remaining below 0.1127 voxels for all cases
simulated with signal-to-noise ratios from 5 to 35. These
results were achieved for a global threshold value T = 0.26.
However altering the threshold value based on the SNR may
result in a significant increase in accuracy. The optimum T
value for a certain SNR can be determined using MR data
simulations. Using simulations the error can be minimised
for a given SNR by adjusting the T value.

The method proposed in this paper has two main
advantages. The first is that the data used for validation is
simulated and therefore can be chosen to have desired levels
of noise. This permitted evaluation of the marker tracking
method for different levels of noise which has not been done
previously. Secondly, since this validation method is based on
MR imaging, the marker tracking experiment and the MR
imaging-based motion and deformation tracking can all be
performed at the same time within the MR scanner.

Although this method has been developed for application
to tagged MR imaging on the upper arm, the methods
presented here are not limited to this application and can be
applied to validate other types of MR imaging-based motion
and deformation tracking techniques. Furthermore, these
methods are independent of the chosen phantom shape.

5. Conclusion

A novel marker tracking method has been presented and
validated using simulated MR image data. The marker
tracking method is robust and the maximum geometric
bias was 5.560 x 107> voxels while the error due to noise
remains below 0.1127 voxels for Rician noise distributions
with signal-to-noise ratios from 5 up to 35. This appears to be
the only marker tracking algorithm suitable for the validation
of MR-based motion and deformation tracking of soft tissue
which has been validated against a “gold standard.”
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