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Spin-size effects in stochastic resonance in uniaxial superparamagnets
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The relaxation dynamics of a uniaxial paramagnet of arbitrary spin value S, interacting with a thermal bath,
are treated using the spin-boson model for a particular spin Hamiltonian consisting of the simplest uniaxial
potential in the high temperature, Ohmic damping, and weak spin-bath coupling limits. The signal-to-noise
ratio of the magnetic moment fluctuations in the stochastic resonance of such a paramagnet displays a pro-
nounced dependence on S for values of §<<20. The dependence arises from the quantum spin dynamics which
differs markedly from the magnetization dynamics of classical superparamagnets with S~ 10°—10°,
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A particularly interesting aspect of the motion of Brown-
ian particles in a multiwell potential is the phenomenon of
stochastic resonance (SR), whereby a weak periodic forcing
synchronized with the thermally activated hopping between
the potential wells greatly enhances the rate of switching
between them. The archetypal theoretical model of SR
(Ref. 1) is a Brownian particle in a bistable potential sub-
jected to noise arising from the thermal bath. The particle is
excited by a weak ac driving force of frequency () close to
the rate of transitions (escape rates) between the wells. How-
ever, the amplitude of the force is in itself insufficient to
induce the transitions. Consequently, switching may occur
only by the combined effect of the deterministic ac force and
the noise. The resulting signal-to-noise ratio (SNR) as a
function of the noise intensity has a bell-like shape, i.e., it
passes through a maximum thus exhibiting stochastic reso-
nance due to the ability of noise to enhance the intensity of
the interwell hoppings in the system. Stochastic resonance is
now well known but still remarkable effect allowing one to
control the behavior of periodic signals passing through
noisy systems and is a universal manifestation of the inter-
play between stochastic and regular motions. Comprehensive
reviews of diverse aspects of SR are available in Refs. 1-3.

The behavior of magnetic nanosystems (such as super-
paramagnetic particles, nanoclusters, and molecular mag-
nets) forced by a weak ac magnetic field is yet another im-
portant manifestation of SR. Here the magnetic anisotropy
provides the multistable states for the magnetization while
the thermal fluctuations due to the bath are the source of the
noise. These conditions give rise to magnetic stochastic reso-
nance which may be defined as the enhancement of the SNR
of the magnetic moment fluctuations due to noise.* The SNR
of the magnetic moment fluctuations is of interest because
nanoparticle magnetism is a rapidly expanding area of re-
search with many applications. These arise both in the (ap-
plied) area of information storage and in other (fundamental)
aspects such as the crossover between classical and quantum
behavior of the magnetization since single-domain particles
exhibit essentially classical behavior while smaller entities
such as nanoclusters made of many atoms and molecular
magnets exhibit pronounced quantum behavior.

The main features of the magnetic SR are clearly mani-
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fested by wuniaxial single-domain particles’!> and may be

completely understood in terms of the classical (macrospin)
model of the coherent rotation of the magnetization.'* Here
each particle behaves like a huge paramagnetic atom having
a magnetic moment ~10*~10° Bohr magnetons, i.e.,
S~10*-10°. Moreover, the magnetic free energy density V
is given by the symmetric bistable potential

V(9) =—kTv™ "o cos® 9, (1)

where ¥ is the polar angle, c=vK/(kT) is the dimensionless
barrier height parameter, v is the volume of the particle, k is
Boltzmann’s constant, T is the absolute temperature, and K is
the anisotropy constant. In the absence of external magnetic
fields, the magnetization of the uniaxial particle has two
equivalent stable orientations at 9=0 and ¥= so that it is
an ideal example of a bistable system subjected to noise.
Here the reversal of the classical spin is due to thermal acti-
vation. The rate of transitions between the potential wells is
controlled by the parameter o so that one may regard o' as
the dimensionless temperature, i.e., the noise intensity.

In contrast, we have little knowledge about magnetic SR
in superparamagnets with smaller spin values S~ 10-100
(such as molecular magnets and nanoclusters), where the
spin reversal is either due to thermal activation or tunneling
or a combination of both and quantum effects appear. These
quantum effects differ from those in the SR for translational
Brownian motion (see, e.g., Refs. 15 and 16 and references
cited therein) because in spite of some analogies the quantum
spin dynamics differ from those of Brownian particles. Here
we shall treat quantum effects in the magnetic SR taking as
an example a uniaxial paramagnet of arbitrary spin S driven
by a weak external probing ac field H(z)=H cos ) applied
along the Z axis, i.e., the axis of symmetry Thus the Hamil-

tonian H has the form
H=- KS‘ZS% — yhH cos(Qt)S, + Hgy + H,

where ~§z is the Z component of the spin operator S, # is
Planck’s constant, and 7 is the gyromagnetic ratio. The term

H < describes interaction of the spin with the thermostat, and
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H  characterizes the thermostat. This Hamiltonian includes a
uniaxial anisotropy term H S=—KS‘23‘% exhibiting an energy
spectrum g, with a double-well structure and two minima at
m= %S and comprises a generic model for quantum relax-
ation phenomena in uniaxial spin systems such as molecular
magnets, nanoclusters, etc. (see, e.g., Refs. 17 and 18). Now
Garanin!” and also Garcia-Palacios and Zueco'® using the
spin density matrix in the second order of perturbation theory
in the spin bath coupling have recently considered the longi-
tudinal relaxation of quantum paramagnets for arbitrary S.
They treated the quantum spin dynamics using the Hubbard
operator representation of the evolution equation for the den-
sity matrix. The nonlinear relaxation of uniaxial spin systems
has also been treated by Kalmykov et al.'® via the respective
evolution equations for the reduced density matrix and cor-
responding phase-space quasiprobability distribution func-
tion using the methods already available for classical spins.'3
For linear response, the quantum solutions!® agree with those
given in Refs. 17 and 18 while in the large spin limit, their
results reduce to those for classical uniaxial
superparamagnets.!3-20-22

Here we shall treat the spin size effects in the magnetic
SR for wuniaxial quantum paramagnets via Kubo’s
linear-response theory.”> According to linear-response
theory, the normalized longitudinal dynamic susceptibility
x(@)=x"(w)—ix"(w) of a quantum spin system is defined
2523

©

x(w)/xo=1- in C(e ™dt, (2)
0

where

B
J S,(- M)ﬁz(t)dx>

0

C(t)= 3
< f S,(- ixﬁ)ﬁz(O)dx>
0

is the equilibrium correlation function, the brackets ( ), de-
note the equilibrium statistical average, B=(kT)”', and
XO:(yﬁ)z(fggz(O)SZ(i)\ﬁ)d)\)o is the static susceptibility.
Furthermore, magnetic SR may be generally described using
linear response theory as follows. A typical Fourier compo-
nent M, of the longitudinal components of the magnetization
of a spin system is related to the corresponding Fourier com-
ponent of a weak applied ac field H, through x(w), viz.,
M ,=x(w)H,. The spectral density Q)ﬁj)(ﬂ) of the forced
magnetic oscillations in a field H(z)=H cos({)¢) at the exci-
tation frequency () is CI)ﬁfI)(Q) =[H|x(Q)|]>/2 while the noise-
induced part @%(Q): X' (Q)/(7BQ) is obtained using the
fluctuation-dissipation theorem.'> Thus on combining the
above equations, one obtains the SNR=®{)/®\") of the mag-
netic moment fluctuations as SNR=[m(8vyhH)*/ (27yo)Rq,
where the dimensionless SNR factor R, is given by

Ro = anyQx( Q)P B (vh)*X'(Q)] 3)

o=pK and 7y is a characteristic free diffusion time.'® The
SNR factor R(, besides the obvious dependence on the noise

0

0
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intensity (temperature) and the frequency of the exciting
field (), as in the classical case, also depends on the spin
value S. Equation (3) shows that the SNR is determined by
the dynamic susceptibility, which is a fundamental dynami-
cal characteristic of any relaxing system.

According to Eq. (2), the behavior of y(w) in the fre-
quency domain is completely determined by the time behav-
ior of C(#). For a uniaxial superparamagnet modeled by the

Hamiltonian H given above, C(¢) may be written as the finite
discrete set of relaxation modes'®!?

28
C(1)= 2 cre™, (4)
k=1

where \; are the eigenvalues of the (finite) system matrix
and Eiflckzl. Equations (2) and (4) allow us to formally
write x({)) as the finite sum of Lorentzians

28
Ck
O0) = —_— 5
x(Q) XOE o (5)

Consequently, the asymptotic behavior of x({}) in the ex-
tremes of very low and very high frequencies is given by

() {1-i9760,+ 0o,

6
Xo _i(QTEf)_1+ T, Q*)OO ( )

where

PA) 28 -1
Teor= E ck)\;1 and Tef = <2 ck)\k> . (7)
k=1 k=1

Hence in the adiabatic ({2—0) and very high-frequency
(Q)— ) limits, Eq. (3) can be simplified yielding
Ro=0XsTn/Teor and  Rg_..o = OXsT/ T,y (8)

Here the relaxation times 7., and 7,; from Eq. (7) can be
given by the analytic formulas'®

2
S 28 XsTv ’ ©)
> [S(S+1) —k(k=1)]pg
k=1-S
S 2
2782 > (mE:kmpm)
T (10)

T Xs s [S(S+1) —k(k=1)]p’

where xs=33_ m’p,, pn=e™'5|Z¢ are the matrix ele-
ments of the equilibrium density matrix, and ZS=E,§1=_Spm is
the partition function.

In the low-frequency region (2/\;=1), the evaluation of
the SNR can be further simplified noting that two distinct
bands appear in the spectrum of the imaginary part
xX'(Q).'81% The low-frequency band is due to the slowest
(“interwell”) relaxation mode. The characteristic frequency
and the half-width of this band are determined by \.'%!° The
high-frequency band in x”’()) is due to the individual near
degenerate high-frequency modes corresponding to the ei-
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FIG. 1. (Color online) SNR of a uniaxial paramagnet in the
adiabatic limit Q=0 as a function of dimensionless temperature ¢!
for various S. Solid lines: the quantum Eq. (8). Filled circles: clas-
sical limit, S— [Eq. (12)].

genvalues \; >\, (k=2). Thus, if one is interested solely in
the low-frequency region, where their effect may be ignored,
the dynamic susceptibility may be approximated as the
single Lorentzian

X 07,

T (11)
Xo 1+ZQ/)\1

The smallest eigenvalue A may be associated with the long
time behavior of C(f) ~ ™7, t> 7, which is dominated by the
longest relaxation (or the reversal) time of the magnetization
T= )\Il .

In the classical limit, S— o0, the SNR factor R, is also
given by Eq. (3).!3 Thus the classical analogs of Eq. (8) are

Ry = 0y, (cos” 89, R = UTNT;;<COS2 Nos
(12)

where 7, and 7,; can now be expressed in closed integral
form as!3%

2
27y f : f AR 2o
Teor= T —— ze%“ dz dx,
Z{cos® ®oJ 1\ 1 -x?

Top= 27{cos® (1 —(cos? F)) ",

2 [ N - . ..
z=/! €7 dx=Nm/ o erf i(\o) is the classical partition func-
. . 2 . L
tion, erf i(x)=27'"2[}e" dt is the error function of imaginary

argument, and
1
(cos® Oy = Z‘IJ X2 dx = e’ (a2 = 207N
-1

The SNR in the adiabatic limit =0, Rg_,, vs the dimen-
sionless temperature parameter o~! is shown in Fig. 1 for
various values of S. The SNR curve R, has a bell-like shape
thus exhibiting stochastic resonance, arising from the inher-
ent ability of noise to enhance the intensity of the interwell
hoppings of the magnetic moment. The maximum in R is
attained at (r;lax~0.4/ 0.6 and it shifts to low temperatures
with increasing S (for the molecular magnet Mn,, acetate
with §=10, U;Lx~0.45 corresponds to 7~30 K). In the
limit 07! —0, Ry—0. In general, we see that the quantum
effects lead to both amplification and attenuation of the SNR
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FIG. 2. (Color online) SNR as a function of ¢! for various
values of S and Q7y=1. Solid lines: the quantum Egs. (3) and (5).
Filled circles: classical limit, S — oo.

(at high and low temperatures, respectively). The SNR func-
tion Ry vs o™ ! at the finite frequency Q7y=1 is presented in
Fig. 2 also exemplifying the quantum effects and showing a
pronounced deviation of the quantum SNR curves from the
corresponding classical results (up to several orders of mag-
nitude at low temperatures). Meanwhile, we recall that in the
classical limit, S—, and for o>1, \;=~ 7,202~/ 7
(Ref. 14) is exponentially small in o and so decreases rapidly
as the system is cooled, while all other eigenvalues of the
system matrix \; have a nonexponential dependence on o.'3
Hence, at any finite frequency () (i.e., outside the adiabatic
limit), the ratio {2/, tends to infinity with decreasing tem-
perature, T— 0, even at very low frequencies since the inter-
well transition is almost “frozen out.” In spite of this, the
spin, although confined to a particular potential well, is not
vet completely immobilized and can still take part in intrawell
motion. Thus if ) #0, Rg— const as o> 1 (see Fig. 2). The
SNR function R vs the dimensionless frequency Q7y is
presented in Fig. 3 also illustrating the strong quantum ef-
fects for small §<<20. Here the SNR curves are monotoni-
cally increasing functions in 7y from the low-frequency
limit R, right through to its plateau value R(_,., given by
Egs. (8)-(10).

Here we have studied the magnetic SR of a uniaxial para-
magnet of arbitrary spin S for weak spin-bath coupling and
Ohmic damping. Thus the correlation time characterizing the
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FIG. 3. (Color online) SNR as a function of Q 7y for various S
and o=10. Solid lines: Egs. (3) and (5). Dashed lines: the low-
frequency Egs. (3) and (11). Dashed-dotted and dotted lines: the
adiabatic and high-frequency limits, respectively [Eq. (8)]. Filled
circles: classical limit, S— oo,
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thermal bath is short enough to allow one to approximate the
stochastic process originating in it by a Markov process.
These approximations may be used in the high-temperature
limit, B(e,,—¢&,+;)<<l, where g,,¢,~, are adjacent eigen-
values of the energy. The model based on the above approxi-
mations describes qualitatively the relaxation in spin systems
such as molecular magnets and nanoclusters.!”-'® Moreover,
the model can be regarded'®!? as the direct generalization of
the Brown theory of relaxation of classical superparamag-
netic particles.'* In the parameter range, where they fail (e.g.,
at very low temperatures), more general forms of the density
matrix equations must be used (e.g., those treated in Ref. 18).

To conclude, we have estimated the quantum effects in
the magnetic SR at the transition from that corresponding to
elementary spin relaxation to that pertaining to a giant spin.
This allows one to understand the evolution of the magnetic
SR from that of molecular magnets (S~ 10) to nanoclusters
(S~100), and to classical superparamagnetic particles
(S=1000) and to estimate accurately the value of S (typi-
cally in the range of 20-40) at which the crossover to clas-
sical superparamagnetic behavior takes place. Furthermore,
one may assign a range of validity as a function of the spin
size to the classical Brown theory of the magnetization re-
laxation in superparamagnetic particles with the simplest
uniaxial anisotropy.'* The relatively elementary calculation
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outlined above is of particular interest as a basis for future
understanding of the SR of spin systems characterized by
nonaxially symmetric Hamiltonians commonly used to de-
scribe the magnetic properties of molecular magnets and
nanoclusters. The SNR for classical superparamagnets hav-
ing nonaxially symmetric magnetocrystalline anisotropy ex-
hibits a strong intrinsic dependence on the decay rate of the
Larmor precession.'? This dependence (precession aided re-
laxation) is due to coupling between longitudinal relaxation
and transverse (precessional) modes arising from the lack of
axial symmetry. The extension to particular nonaxially sym-
metric spin systems such as biaxial, cubic, etc. would also
allow one to include spin size effects in important applica-
tions involving magnetic relaxation in nonaxially symmetric
systems, where tunneling in the presence of a transverse field
influences the behavior of the reversal time, the switching
and hysteresis curves, etc. We also remark that the spin size
effects in the nonlinear magnetic SR can be treated by gen-
eralizing to the quantum case the nonlinear response theory
for classical spins driven by a strong ac field.*
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