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A model is given where the complex permittivity of an electrolyte solution is calculated as a superposition of
the contributions due to the translation of ions and the reorientation of water molecules, which occur in
intermolecular potential wells during the lifetime of local order in liquids. Simple analytical expressions are
found for the contributions of cations and anions to the linear-response spectral function. The one-dimensional
rectangular potential well with perfectly elastic walls is considered. The contribution of water molecules to the
orientational relaxation was calculated in terms of a hybrid model using the approach given recently in a book
by Gaiduk (Dielectric Relaxation and Dynamics of Polar Molecules, World ScientiÐc, Singapore, 1999). A
modiÐcation of this model is also suggested in which the walls of the potential well undergo rather slow
vibration. If the angular frequency u is much less than the plasma frequency of an ion, then the theoryup
yields a nearly constant real part p@ of the complex ionic conductivity p(u), while its imaginary part pA is very
small. Large variations with u of both parts of p are predicted to occur at millimetre/submillimetre
wavelengths, when u approaches Wideband (up to 1000 cm~1) theoretical spectra of the complexup .
permittivity and absorption coefficient are calculated for NaClÈwater and KClÈwater solutions. The theory
predicts that an additional loss/absorption could arise in the far-infrared (FIR) spectral range, if the mean ionic
lifetime is much longer than the lifetime q of the bulk water molecules.qion

1. Introduction

This paper is concerned with the modelling of the ionic con-
ductivity and the dielectric dispersion of aqueous electrolyte
solutions and employs a semi-phenomenological approach to
this problem. Using analytical formulae, we describe the wide-
band (up to 1000 cm~1) dielectric response due to the trans-
lation of ions and the reorientation of polar molecules.H2OThe fundamental problem of the dielectric response of water is
important in physical chemistry and biology. During the last
three decades several works have appeared1h6 in the literature
about the microwave and far-infrared (FIR) spectra of pure
water, and the low-frequency Raman spectrum of water has
also been considered.2,5,6 A few works have appeared on the
wideband spectra of electrolyte solutions.7h11 Theoretical
developments usually have explained the low-frequency
response, but so far there has been no uniÐed theory, except
possibly ref. 12, that explains the wideband dielectric/FIR
spectra, in particular those of aqueous electrolyte solutions.

In this paper, we present such a uniÐed theory applied to
the wideband (from dc to a wavenumber l range of 1000
cm~1) spectra of electrolytes at rather low salt concentrations,
calculated with account taken of the dispersion p(l) of the
complex ionic conductivity, l\ u/c, c being the velocity of
light in vacuum (l is later termed “ frequencyÏ). We start from a
version12h14 of a linear-response analytical theory, based on a
classical theory applicable to Ñuids. Then we generalise the
theory in order to apply it to the calculation of the ionic dis-
persion p(l). A preliminary consideration was given in ref. 15,
where more complex analytical expressions were used.

It is suggested that dipoles reorient in a rectangular poten-
tial box, where molecules, termed “ librators Ï, move freely, but
exert regularly instantaneous reÑections from the rectangular

walls of the well. The well presents a rough model of neigh-
bouring molecules, as a one-particle approximation is
employed in our theory. The librators contribute mostly to
the librational absorption band situated at around l\ 700
cm~1. A small percentage (about 10% or less) of dipoles,
termed “rotators Ï, perform a complete rotation. In aqueous
media these rotators determine the translational absorption
band around the frequency l\ 200 cm~1. Both molecular
groups contribute to the complex dielectric permittivity in the
Debye relaxation region, observed at microwave frequencies.

In order to apply the dynamic method12,13 for ions we con-
sider the dielectric response in the same manner as was pre-
viously assumed for dipoles. The main cause of the ionic
response comes from the oscillations of ions inside the poten-
tial box during some lifetime This box again is chosen toqion .
be rectangular, similar to that for polar Ñuids. For simplicity,
we use the one-dimensional approximation and in accordance
with the estimations made in ref. 15 we set the well to be
inÐnitely deep. In Sections 2 and 3 (see also Appendix A) we
derive a general expression (27) for the complex conductivity
p(u) suitable for further calculations. The dynamic method is
reformulated so that it becomes applicable for an ensemble of
ions. Here we arrive at a particular form of the Kubo linear-
response theory, in which p(u) is determined by the auto
correlation function (ACF) spectrum of the translational
motion performed by charges. A rough model of the ionic
conductivity p(u) is presented in Sections 3 and 4, where we
also examine the dependences of the static conductivity andpsthe dispersion p(u) on the parameters of the ionic model. In
Section 5 the model is applied to the important aqueous solu-
tions of NaCl and KCl, which in particular determine bio-
logical functions in living organisms at the basic level of cells.
The contributions of cations (Na` or K`) and of the anions
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(Cl~) to p are added up, while the resulting complex permit-
tivity e(u) is found by summing up the contributions of ions
and dipoles :

e(u)\ edip(u)] *eion ; *eion\ sion(u), (1)

where s is the complex susceptibility due to ions.
Note : Relative permittivity e is a dimensionless parameter ; it
is the same in the MKS system of units used here and in the
CGS one, which was used in previous works.12h15,24

To Ðnd we employ the hybrid model (ref. 12, ch. 9),edip(u)
according to which dipoles librate/rotate during some lifetime
q in a rectangular potential, having Ðnite well depth TheU0 .
parameters of the ionic and dipolar models are Ðtted by pro-
ceeding from the assumption that the calculated steady-state
parameters and Debye/FIR spectra agree with the main fea-
tures of the observed spectra in aqueous 1È1 electrolyte solu-
tions.

2. Transformation of the non-homogeneous wave
equation
We consider the Maxwell equations for a non-magnetic iso-
tropic medium with current sources, comprising moving
charges (ions) and polar molecules (dipoles) in a vacuum. We
write down the wave equation for the electric component E(t)
of the electromagnetic Ðeld (ref. 13, sec. II) :

$($ Æ E)[ ($ Æ $)E \ [
1

c2
d

dt
AdE

dt
]

J
e0

B
. (2)

Here SI units are used, in which is the dielectric constant ofe0vacuum:

e0 \ [36p ] 109]~1 F m~1.

Assuming that a homogeneous plane wave propagates in
the medium, we express Ðeld E and current density J, which
arise from both the ions and the dipoles, in terms of complex
amplitudes propagation constant k \ k@[ ikA andEŒ , JŒ ,
“ initial Ï phase c :

E \ ReMEŒ exp[i(ut [ k Æ r ] c)]N ;

J \ ReMJŒ exp[i(ut [ k Æ r ] c)]N ; (3)

J \ Jion] Jdip . (4)

We introduce the complex susceptibility s* \ s@] isA as
related to the scalar quantity k*2

k*2\ (u2/c2)(s* ] n=2 ). (5)

Here the asterisk means the complex conjugate, so that
s* \ s@] isA [we remark that for the exp(iut) dependence in
eqn. (3) the susceptibility s should be s@[ isA] ; and is then=2permittivity in the IR range (in the low/FIR frequency ranges,
to which our study is applied, we may regard to be inde-n=2pendent of frequency u). On dividing s* in accordance with
eqn. (4) and transforming eqn. (2) in the same manner as was
given in ref. 13, sec. II, we have :

s* \ sion* ] sdip* , (6)

sion* \
i

e0 pEŒ *
P
Nion

dN
P
0

tv
ev

E
(t)exp(iut ] ic) dt, (7)

sdip* \
i

e0 pEŒ *
P
Ndip

dN
P
0

tv dk
E
(t)

dt
exp(iut ] ic) dt. (8)

Here in the exponents we have omitted the k É r product,
since we neglect the spatial dispersion (it can be shown that
the correction, related to it, is negligible) ; e is the charge of an
ion (which is the same as that of an electron) ; and arev

E
k
Ethe projections of the ionÏs velocity and of the dipole moment,

respectively, in the direction of the HF E Ðeld. The inner inte-

gration is carried out over time t in the interval [0, wheretv],is the lifetime of a molecule between strong consecutive col-tvlisions. The external integration is carried out over all par-
ticles contained in a unit volume of the medium and over
phases c, varying in the interval [0, 2p], corresponding to the
Ðeld period 2p/u. Finally, and are the number den-Nion Ndipsities of charges and dipoles, respectively. We suppose that the
distribution functions of the ions and the dipoles are indepen-
dent of each other, just as are the translations and reorien-
tations of molecular motions.

3. Transformation of integrals for the
orientational and ionic susceptibilities
According to the linear-response approach, issdip*
expressed12h14 through the spectral function (SF) L (z) charac-
terising the dielectric response of dipoles, librating/rotating
without friction under the e†ect of a speciÐc intermolecular
potential well ; the expression for L (z) will be given in Section
5. We apply the isothermal collision model, and then in
accord with ref. 12, p. 195 or ref. 13, p. 191 we shall have

sdip* (x) \
gGzL (z)

gx ] iy(1 ] gxz)L (z)
, (9)

where

z\ x ] iy, x \ gu, y \ g/q,

g 4
S I

2kBT
, k \ k0 kk

An=2 ] 2

3

B
, (10)

i.e. z is the normalised complex frequency ; g is the Kirkwood
correlation factor ; is the normalisedG\ k2Ndip/(3e0kBT )
density of dipoles ; is the Boltzmann constant ; T is tem-kBperature ; I is the moment of inertia of a molecule ; k and k0are the dipole moment of a molecule in a liquid and that of an
isolated molecule ; is the correction factor for k is aboutkk (kk1) ; and q is a mean over ensemble value of lifetime furthertv ,
termed simply “ lifetimeÏ.

In view of ref. 13, eqn. (4.34), the Ðrst term of eqn. (1)edip(u)
is related to in eqn. (9) as the root of the quadratic equa-sdip*tion

[edip* (u) [ n=2 ][2edip* (u) ] n=2 ]

3edip* (u)
\ sdip* (u). (11)

For u] 0, e*(u) tends to the static value It follows fromes .eqns. (1) and (11) that the Kirkwood correlation factor g is
related to the static permittivity and to the static ionic sus-esceptibility sion(0) :

g \
[es [ sion(0)[ n=2 ][2es[ 2sion(0)] n=2 ]

3G[es [ sion(0)]
. (12)

Therefore the static parameters of the dipolar and ionic sub-
ensembles are interrelated. However, if the condition

sion(0)@ es (12a)

holds, then eqn. (12) yields the usual formula for g :

g B
(es[ n=2 )(2es] n=2 )

3Ges
. (13)

We replace dN in eqn. (7) by the expression (2.13) in ref. 13 :

dN \
Nion
uqion

W (C) dCF(c) dc exp
A
[

tv
qion

B dtv
qion

. (14)

Here C denotes phase variables, W (C) and F(C) are the nor-
malised Boltzmann and induced distribution functions, such
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that

P
C

W (C) dC\ 1, S f (C)T 4
P

C

f (C)W (C) dC,

W \ C exp
A
[

H(C)

kBT
B

4 C exp([h), (15)

and means the average over the ensemble of particles, HSKT
is the energy of a particle. It follows from eqns. (7) and (15)
after integration by parts over t that

sion* (u)\
2iNion e
e0EŒ *uq

]
TP

0

2p
F(c) exp(ic)

dc
2p

P
0

=
v
E
(t) exp(iuü t) dt

U
, (16)

uü \ u] i/q. (17)

In eqn. (16) the law of motion corresponds to the tra-v
E
(t)

jectory of an ion, perturbed by the propagating wave. We set
F(c)4 1. Thus for the induced distribution function isuD 0
taken to be the same (Boltzmann) as for the steady state. As
shown in Appendix A for eqn. (16) can bek o EŒ o@ kBT ,
reduced to

[iurD2 sion* (u)\
T

v
E
(0)
P
0

=
v
E
(t) exp(iuü t) dt

U

4
P

C

W v
E
(0) dC

P
0

=
v
E
(t) exp(iuü t) dt

4 C
P

C

exp([h)v
E
(0) dC

P
0

=
v
E
(t) exp(iuü t) dt,

rD \
Se0 kBT

e2Nion
; C~1\

P
C

exp([h) dC ; (18)

and is the Debye radius for charges in vacuum. The ionicrDconductivity p*(u) is proportional to s*(u) ; omitting the
asterisk (viz. we denote hereafter p 4 p@] ipA), we have (see
Appendix A) :

p(u)\ [ ie0 us*(u), (19)

p(u)\
Ce0
rD2
P

C

exp([h)v
E
(0) dC

P
0

=
v
E
(t)

] exp(iuü t) dt. (20)

Now the ionic susceptibility/conductivity is a function of
the trajectories of the charges at equilibrium, viz. is pro-sion* (u)
portional to the ac Ðeld spectrum of the E projection of the
steady-state velocity¤. One may regard eqn. (20) as a conve-
nient (for numerical calculations) form of the Kubo formula16
for the diagonal component of the conductivity tensor

p
xx

(u)\ (kBT N)~1 Re
P
0

=SJ
x
(t)J

x
(0)Texp([iut) dt. (21)

In Appendix B we prove that found from eqns. (19) andsion* ,
(20), satisÐes the sum rule for the integrated absorption. An
estimation given in Appendix C shows that a pair of electro-
static interactions between ions can approximately be
neglected.

4. Formula for the complex conductivity
We may substantiate the necessity of using a potential barrier
for ions starting from the rareÐed plasma theory, in which the
intermolecular potential can be taken as zero. Then,Uplasma

¤ Analogously, the orientational susceptibility is proportional (ref.sdip*
13, p. 150) to the spectrum of the normalised projection ofq \k

E
/k

the dipole moment ; in an isotropic medium the SF L (z) is given by

L (z)\ iz
T

q0
P
0

=
[q(t/g)[ q(0)]exp(izt/g) dt

U
.

neglecting spatial dispersion in accordance with ref. 17, p. 52,
we have :

s(u) \ [
up2
uü u

; p(u) \ i
e0up2

uü
, (22)

where the complex frequency is deÐned by eqn. (17), theuü
plasma frequency is the massup \ Je2N/(me0), m\ mH Mionof an ion, and is the mass of a proton. Eqns. (22) alsomHfollow from eqn. (6.24) in ref. 18, if one neglects the spatial
dispersion but generalises the theory for a Ðnite lifetime Ifqion .
u] 0, the second of eqns. (22) yields

ps \ e0 up2 qion . (23)

Summing the contributions due to cations (Na`) and
anions (Cl~) we can make an estimate of the static conductivi-
ty of NaClÈwater solution. Since whereN \ 1000NA CM , NAis the Avogadro number and (mol l~1) is molar concentra-CMtion, eqn. (23) yields :

ps \
1000e2NA CM qion

mH

A 1

M`
]

1

M~
B

;

M`\ MNa B 23, M~\ MClB 35.5.

For mol l~1 this relation gives the observed19 conduc-CMD 1
tivity ohm~1 m~1) for of about 0.01 ps. This life-(psD 10 qiontime seems to be unreasonably short, since the q-values typical
for water are (ref. 12, ch. 15) of the order of 0.5 ps. We can
substantially improve the situation, viz. to make about 0.5qionps or more, by introducing an intermolecular potential well.”

For simplicity we regard the one-dimensional ensemble
We assume that a charged particle oscillates during(v

E
] v).

the lifetime inside a rectangular inÐnitely deep potentialqionwell, having width (see Fig. 1), from the walls of which an2lcellion performs elastic reÑections. We consider the equations of
motion for a point particle (ion) having mass m and charge e.
Since, as we shall show, the width is only slightly greater2lcellthan the diameter of an ion, the centre O@ of mass of an2Rionion shifts only a little relative to the centre O of the cell. Let l
be the maximum distance OO@ between these two centres ;
then the maximal and minimal distances between the surface
of an ion and the wall of the well are 2l and 0, respectively (see
Fig. 1). Therefore, the centre of mass O oscillates inside a Ðcti-
tious slot having width 2l, such that During the life-l @ lcell .time the absolute value o v o of the ionÏs velocity isqionconstant :

o v o\ J2H/m\ vT J2h at o r oO l,

where r is the translational shift (we set r \ 0 in the middle of
the well) ; H is the energy of an ion ; the averaged velocity of

Fig. 1 The scheme of a hydration cell, having width The2Rion ] 2l.
centre O of an ion undergoes small oscillations inside a Ðctitious thin
layer, having width 2l ; O@ lies on the symmetry axis of this layer. In
the diagram the position of an ion is shown at the instant when the
ion exerts an elastic reÑection from the right wall of the potential well.
Dashed areas show the hydration sheath.

” The analogous situation was met previously (ref. 13, p. 357), when
the self-di†usion coefficient D(T ) of polar molecules was calculated for
liquids.
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an ion and is the dimensionlessvT \ J(kBT /m) ; h \ H/(kBT )
energy. The time dependence of the velocity of an oscillating
ion can be expressed as a series, containing only odd harmo-
nics, having the oscillation period H :

v(t)\ ;
n/1

=
v2n~1 cos

C2p

H
(2n [ 1)(t ] t0)

D
;

H(h)4
4l

vTJ2h
. (24)

The constant in eqn. (24) and the energy H of a particlet0are canonically conjugated constants, the phase-volume
element then being dC\ dH dh Integrationdt0 4 mvT2 dt0 .
over is carried out in the interval ½ [0, H(h)/4], corre-t0 t0sponding to the interval of distances r ½ [0, l]. Then the veloc-
ity autocorrelation function is given by

Sv(t)v(0)T 4 mvT2 C
P
0

=
exp([h) dh

P
0

H(h)
v(t)v(0) dt0

\ mvT2
C
8

P
0

=
;
n/1

=
v2n~12

] cos
C
2p(2n [ 1)

t
H(h)

D
H(h) exp([h) dh. (25)

According to eqn. (24)

v2n~1\
8

H
vT J2h

P
0

H@4
cos
C
2p(2n [ 1)

t
H(h)

D
dt

dt \
4([1)n`1
p(2n [ 1)

vTJ2h .

To calculate the normalisation constant C it is convenient
to take r and v as the phase variables :

dC\ m dr dv ;

C~1 \
P

C

exp([h) dC

\ m
P
0

l
dr
P
0

=
exp
A
[

v2
2vT2
B

dv

\
Sp

2
vT ml.

Now, using eqn. (20) we can calculate the normalised conduc-
tivity S as a function of two dimensionless parameters :
complex frequency Z and width d of the Ðctitious well. We get

S 4
p

4pe0up
; Z\ X ] iY \

uü
up

;

X 4
u
up

; Y 4 (up qion)~1, (26a)

d 4 l/(J2 rD) ; (26b)

S(Z)\
1

4prD vT

T
v(0)

P
0

=
v(t) exp(iup Zt) dt

U
(27)

\ [
8iZ

p3Jp

P

0

=
;
n/1

= 1

(2n [ 1)2

]
exp([m2)m2 dm

C p

2d
(2n [ 1)m

D2
[ Z2

(28a)

\
i

4pZ
C
1 [

4

JpZd

P

0

=
tan
AZd

m
B

] exp([m2)m3 dm
D

. (28b)

For rather rare ionic collisions we have the simple(Y @ 1)
formula :

S(Z, d) B [
iZd2
6p

for oZd2 o@ 1. (29a)

Representing tan( ) in eqn. (28b) as sin( )cos( )/[1 [ sin2( )] and
noting that the imaginary component of the denominator
reduces in the limit Y ] 0 to a d-function, we deduce from
eqn. (28b) :

lim
Y?0

ReMS(Z)N4 S@(X)

\
16X2d3
p5Jp

exp[[(2Xd/p)2]. (29b)

In view of eqn. (19) the ionic susceptibility s* and the con-
tribution of ions to the complex permittivity are given*eion*
by :

sion* \ ie0 p/u\ 4piS/X , (30)

*eion* \ sion* \ 4piS/X . (31)

The normalised static conductivity is given by :

SS(Y , d) \ S(iY , d)

\
8Y

p3Jp

P

0

=
;
n/1

= 1

(2n [ 1)2

]
exp([m2)m2 dm

C p

2d
(2n [ 1)m

D2
] Y 2

(32a)

\
1

4pY
C
1 [

4

JpY d

P

0

=
tanh

AY d
m
B

] exp([m2)m3 dm
D

; (32b)

Ss B Y d2/(6p) for Y d2@ 1. (32c)

In accordance with eqn. (24) the frequency X of ionic oscil-
lations is

X\
2p

H
\

pvT
l
Sh

2
.

The corresponding normalised quantity p, which is also the
resonance frequency of the Ðrst Lorentz-like denominator in
eqn. (28a), is given by :

p 4
X

up
\

pJh
2d

.

The mean oscillation frequency SpT is about the reverse value
of the d-parameter of the model :

SpT \
TX

up

U
\

C
up

mvT2
p

2

P
0

=
exp([h) dh \

Jp

2d
. (33)

We shall show below that this parameter d has the order of
magnitude 1. Therefore, the mean oscillation frequency in
electrolytes is about the plasma frequency. From Fig. 2(a) we
see that the static conductivity decreases with decreasingSswidth of the well d, since for smaller d the ion velocity changes
its direction more frequently. For d ] O we have just the case
of a rareÐed plasma. Indeed, as follows from eqn. (22) as well
as from eqns. (32a,b),

Ss, plasma\ (4pY )~1 ; (34a)
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Fig. 2 Normalised static conductivity vs. normalised half-width of a
Ðctitious slot (a) or collision frequency (b). (a) Y \ 0.001, 0.005 and
0.01 ; (b) d \ 0.5, 1 and 5 (from bottom to top).

Ss(Y , 0) \
8

p3Jp Y
;
n/1

= 1

(2n [ 1)2
P
0

=
m2 exp([m2) dm

\
8

p3Jp Y

p2
8

Jp

4
\

1

4pY
. (34b)

Consequently, for d ] O the static conductivity tends to inÐn-
ity, if Y ] 0. On the contrary, if the half-width d is Ðnite, then

for Y ] 0. This is the principal distinction of our modelSs ] 0
from that corresponding to a rareÐed plasma.

Now let Y be Ðnite. If Y \ 0.005 and d \ 1, then we Ðnd:
and d)B 2.64] 10~4. For the same YSs, plasmaB 15.9 Ss(Y ,

and d \ 0.5, d)B 6.6] 10~5. Consequently, for a deepSs(Y ,
potential well the static conductivity decreases by several
orders of magnitude, when the pure translations in a rareÐed
plasma are replaced by small-amplitude oscillations inside a
local potential well introduced for the liquid state.

Fig. 2(a) illustrates how increases with d for three di†er-Ssent values of the normalised collision frequency Y . The
increase of Y results in the increase of the static conductivity,
if Y is small [Fig. 2(b)] ; for larger Y , the function goesSs(Y )
through a maximum. We remark that in polar Ñuids the static
permittivity decreases with the rise of the normalised colli-es

Fig. 3 Real (a,c) and imaginary (b,d) parts of the normalised complex
susceptibility S vs. the normalised frequency X ; curves 1Èfor d \ 1 ;
curves 2Èfor d \ 0.5. (a,b) Normalised collision frequency Y \ 0.05
(solid lines) and 0.1 (dashed lines) ; (c,d) long lifetime limit (Y ] 0).

sion frequency y \ g/q for all y-values [see eqn. (10), where y
is introduced].

Figs. 3(a) and (b) demonstrate the frequency dependences of
the real and imaginary parts of the normalised conductivity
(28). For the chosen set of parameters (Y \ 0.05 and 0.1 ;
d \ 0.5 and 1), which are more or less typical for electrolytes
under consideration :
(a) in the low-frequency region the real part S@ is almost inde-
pendent of frequency X, while the imaginary part SA decreases
from zero with increase of X, so that it is negative ; a notice-
able change of S@ with X occurs for X B 0.1, viz. when u
approaches one-tenth of the plasma frequency up ;
(b) in the high-frequency region S@ goes through a maximum,
while the imaginary part SA goes through a minimum and
then a maximum;
(c) these quasi-resonance curves shift to higher frequencies, if
the width of the well decreases ;
(d) the increase of the collision frequency Y results in the
change of only the low-frequency part of these X-dependences.

For the zero-Y case, use of eqn. (29) yields narrower quasi-
resonance S@(X) and SA(X) curves, their dependence on the
parameter d being qualitatively the same, as was described for
Y [ 0 [cf. Figs. 3(c) and (d) with Figs. 3(a) and (b),
respectively].

5. Dielectric permittivity/absorption spectra of
NaCl and KCl aqueous solutions
The plateau-like region of S@(X) seen in Fig. 3(a) at small X
implies the idea that for moderate X-values the formula

e*(l) \ edip* (l) ]
ips

2pe0 cl
(35)

can be a rather good approximation to the exact formula e*(l)
given by eqns. (1), (19), (26) and (27). The corresponding ionic
contribution to the total loss is

*eionA (v) \
ps

2pe0 cl
. (36)

Further calculations will be performed in two stages : (1) ionic
loss will be found for a constant conductivity, viz. for p, equal
to the experimentally measured static value while the ionicps ,contribution to the real part of the permittivity will be*eion@ (l)
neglected ; the parameters of the dipolar reorientation will be
determined for the hybrid model at this stage ; (2) then the
rigorous formula (28) for the ionic frequency-dependent con-
ductivity will be applied and after that the complex dielectric
permittivity of the solutions under consideration will be calcu-
lated from eqn. (1).

The Ðrst stage

The response of water (i.e. of the dipolar component of the
solution) is calculated using the hybrid model, just as was
done in refs. 12 and 15. The complex permittivity edip* (l)\

of the water component is related, in view ofedip@ (l)] iedipA (l)
eqn. (11), to the orientational susceptibility assdip* (l)

edip(l) \ 14Mn=2 ] 3sdip* ] [(n=2 ] 3sdip* )2 ] 8n=4 ]1@2N1@2 ; (37)

is determined by eqn. (9). The spectral function L (z) of thesdip*
hybrid model is (ref. 12, sec. 9.2)

L (z) \ L‹
A
(z) ] L‹

M
(z) ] L� (z) ; (38)

L‹
A

\ C
A

P
0

u h exp([h) dh
h [ (bz/p)2

,

L‹
M

\ C
M

P
0

u h exp([h) dh
h [ (2bz/p)2

,

L� \ C0 exp([u)
P
0

= h exp([h) dh
h [ z2

;

Phys. Chem. Chem. Phys., 2001, 3, 523È534 527



C
A

\
C0
p5

(2b2 sin b)2 ; C
M

\
C0
p5

(8b2 cos b)2 ;

C0 \
1

1 [ exp([u) cos b
.

Subscripts p and o refer to the symmetry axes of the potential
wells, directed along and perpendicular to the radiation Ðeld,
respectively ; the last term in eqns. (38) is due to the dipoles
performing complete rotation ; b is the amplitude of libration,
measured in angular units ; the normalised well depth u \

the complex frequency z is determined by eqn. (10).U0/(kBT ) ;
Setting x \ 0 in eqns. (9) and (38), one can estimate the Debye
relaxation time as

qDestB gg[1 [ y2L (iy)]/[yL (iy)]. (39)

Experimental19,20 values and the Ðttedes , ps , qD , e= , oeffparameters of the hybrid model are presented in Table 1 for
two concentrations (mol l~1). For liquid water, viz. atCMwe used experimental data given in refs. 12 and 21.CM \ 0,
The number density of water molecules is found from theNdipformula

Ndip\
NA oeff
Mion

; oeff \ o [ 1000CM Mion ,

where is the molecular mass of an ion or inMion (MNaCl MKClour case) ; (g cm~3) is the e†ective density of water in theoeffelectrolyte solution ; and o is the density of the solution.
When the electrolyte concentration is changed, theCMwideband spectra are controlled only by one parameter (q) of

the hybrid model. Other parameters of this modelÈthe nor-
malised well depth u, libration amplitude b and k-correcting
coefficient in eqn. (10)Èmay be set independent of andkk CMtherefore may be Ðtted when the spectra, calculated for water,
are compared with the recorded21,25 ones (see Table 1).

The second stage

A more rigorous theory will now be applied, for which inpseqn. (35) is replaced by p(l) :

e*(l)\ edip* (l)] ip(l)/(2pe0 cl) ; (40)

*eionA (v)\ p/(2pe0 cl). (41)

Let the values corresponding to the cations (viz. Na`, K`)
and to the anions (viz. Cl~) be marked respectively by signs ]
and [. In our case of 1È1 electrolytes we have N`\ N~\

We write the expressions for the ionic complexNion .
conductivity/susceptibility as the superposition of the corre-

sponding contributions of the cations and anions :

sion* (u) \ 4pi
AS`

X`
]

S~
X~
B

;

p(u) \ 4pe0(S`up`] S~up~), (42a)

SB4 S(XB) ; XB4 u/upB, (42b)

*eion* (u) \ sion* (u) \ 4pi(S`/X`] S~/X~). (43)

Then the resulting permittivity e* and the absorption coeffi-
cient a can be found as

e* \ edip* (l) ] *eion* (l)

\ edip(v) ] 4pi(S`/X`] S~/X~), (44)

a(l) \ 4pl Im Je*(l), (45)

where and S are given by eqns. (37) and (28), respec-edip* (l)
tively.

In further estimations we neglect the distinction between
hydrated and bulk water ; and we take the lifetimes to beqionequal for anions and cations, viz. for Cl~ and Na` or Cl~ and
K`. Consequently, the normalised collision frequency Y is
related to as The ionicqion Y `\ (up`qion)~1 ; Y ~\ (up~qion)~1.
lifetime will be set equal to or much longer than that (q), Ðtted
above for water molecules : (a) and (b) Inqion4 q, qion4 10q.
order to Ðt the half-width l of the Ðctitious slot, in which an
ionÏs centre of mass moves, we consider l to be proportional to
the sum of the radii of an ion and of the water molecule :

lB\ (RB] Rw)t,

so that

dB\ (RB] Rw)t/(J2 rD). (46)

The coefficient t can be determined from the condition that
the static conductivity of the solution should be equal to the
experimental value This condition yields the equation forps .t after we put u\ 0 in eqn. (42) :

ps \ 4pe0[Ss`(Y `, d`)up`] Ss~(Y ~, d~)up~] ; (47)

d) is determined by eqn. (32).Ss(Y ,
In Tables 2È4 we present the Ðtted/calculated parameters of

our model for ions : the plasma frequency the static ionicupB ;
conductivity the mean distance between ions, estimatedpsB ;
using the formula

*Rion\ (2 ] 1000NA CM)~1@3, (47a)

where the multiplier 2 accounts for the doubling of the con-
centration of ions in the solution ; the Ðtted parameters dB ;
and the corresponding mean distances lB between the walls
and the surface of an ion. We see that lB has the order of a
part of an angstrom; this result looks reasonable. We remark
that the mean distance between water molecules weakly*Rwdepends on viz.CM ,

Table 1 Experimental and Ðtted parameters for NaClÈwater and KClÈwater solutions ; T \ 20 ¡C. Concentration in mol l~1 ; density ofCM oeffwater in the solution in g cm~3 ; static conductivity in (ohm m)~1 ; relaxation time and mean lifetime q in psaps qD
NaClÈwater KClÈwater

CM oeff ps es qD q mdip oeff ps es qD q mdip
0.0 0.998 0 80 9.8 0.42 7.6 0.998 0 80 9.8 0.42 7.6
0.5 0.988 3.89 71 9.2 0.44 8.0 0.984 5.11 74 9.0 0.41 7.4
1 0.980 7.22 63 8.8 0.47 8.5 0.969 9.78 69 8.3 0.40 7.2

a Notes : I\ 1.483] 10~47 kg m2, u \ 5.575, D, b \ 19.4¡, Notekk\ 1.12, n=2 \ 1.7, e= B 5, k0\ 1.48 MNaCl\ 58.44, MKCl \ 74.55, Mw \ 18.
that 1 D \ 3.333] 10~30 C m; in CGS system of units

[p]\ s~1 and p*SI+ \
1

9 ] 109
p \ [CGS].
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Table 2 Experimental and Ðtted parameters for the molecular model of the static conductivity T \20 ¡C. Plasma frequency in 10~12 radps ; upBs~1, in () m)~1, inps *Rion A� a

NaClÈwater KClÈwater
CM/
mol l~1 up~ up` ps~ ps` *Rion up~ up` ps~ ps` *Rion
0.5 3.84 4.77 9.0 3.0 11.8 3.65 4.77 1.6 3.0 11.8
1 5.43 6.74 17 5.6 9.4 5.17 6.74 3.3 5.8 9.4

a Notes : R`\ 1.8 For NaClÈwater : R~\ 0.95 For KClÈwater : R~\ 1.33A� , Rw \ 1.5 A� , *Rw B 3.13 A� . A� . A� .

*Rw \ (NA oeff/Mw)~1@3 B 3.13 A� .

In Figs. 4 and 5 we illustrate the e†ect of the p dispersion in
terms of the ionic contribution to the e*(l) spectrum, calcu-

Fig. 4 Calculated contributions of the ionic permittivity for the ima-
ginary (a,c) and real (b,d) parts of the total complex permittivity (solid
lines) ; dashed lines refer to the calculation, neglecting the ionic disper-
sion. (a,b) For NaClÈwater solution ; (c,d) for KClÈwater solution.

mol l~1,CM\ 0.5 qion/q\ 10.

lated for the lowest concentration 0.5 mol l~1. From Figs.
4(a), (c) and 5(a), (c) we see that an additional loss *eionA (l)
arises due to this dispersion : the e†ect is larger (especially for
NaCl) for longer ionic lifetime for which it appears atqion ,
millimetre waves, while for it is at submillimetreqion\ q
waves. The ionic zero-frequency contribution *eion@ (0)\ sion@ (0)
to the static permittivity of the total permittivity is small ates[see Figs. 5(b) and (d)], so that we may indeed neglectqion\ q
the ionic term in eqn. (12) in comparison with the staticsion(0)

Fig. 5 The same as in Fig. 4 but for qion/q\ 1.

Table 3 The Ðtted parameters of the model ; lifetimes are given in ps

NaClÈwater KClÈwater

qion \ 10q qion \ q qion \ 10q qion \ q
CM/
mol l~1 d` d~ d` d~ d` d~ d` d~

0.5 1.51 0.82 0.48 0.26 1.47 1.10 0.47 0.35
1 2.13 1.16 0.69 0.37 2.01 1.50 0.65 0.49

Y ` Y ~ Y ` Y ~ Y ` Y ~ Y ` Y ~

0.5 0.0102 0.0082 0.102 0.082 0.0123 0.0130 0.123 0.130
1 0.0096 0.0077 0.096 0.077 0.0129 0.0136 0.129 0.136

Table 4 The mean distance l (in between the surface of an ion and the hydrated layerA� )

NaClÈwater KClÈwater

qion \ 10q qion \ q qion \ 10q qion \ q
CM/
mol l~1 l` l~ l` l~ l` l~ l` l~

0.5 0.25 0.14 0.080 0.043 0.275 0.205 0.088 0.066
1 0.35 0.19 0.11 0.062 0.379 0.283 0.123 0.092
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permittivity For the value is rather largees . qion\ 10q, *eion@ (0)
for NaCl [Fig 4(b)] and noticeable for [Fig. 4(d)].

The calculated loss eA(l) and absorption a(l) spectra are pic-
tured for NaClÈwater solution in Figs. 6 and 7. Again we take

mol l~1. At microwave frequencies the eA(l) curveCM \ 0.5
[see Figs. 6(a) and 7(a)] comprises a shoulder, while in the
submillimetre range it shows two maxima. They correspond
to the translational (near 200 cm~1) and librational (near 700
cm~1) peaks of the absorption frequency dependence a(l),
shown° in Figs. 6(b) and 7(b). At low frequencies (up to lB 10
cm~1 for or up to lB 2 cm~1 for theqion/q\ 1 qion/q\ 10)

Fig. 6 Frequency dependences of dielectric loss (a,c) and of absorp-
tion coefficient (b,d) calculated for NaClÈwater solution at CM \ 0.5
mol l~1, T \ 20 ¡C, Solid and dashed lines refer, respec-qion/q\ 10.
tively, to account for and to neglect of ionic dispersion p(l) ; dotted
line is the calculation from eqn. (48). For l\ 1 cm~1 all three curves
(solid, dashed and dotted) coincide.

Fig. 7 The same as in Fig. 6 but for qion \ q.

° It can also be shown that if then the a(l) curve becomesCM] 0
rather close for low frequencies to that described in ref. 21 by an
empirical formula ; for the concentrated NaCl electrolyte the theoreti-
cal a(l) dependence is similar in the FIR region to the observed8
curve.

rigorous eA(l) solid curve is well approximated (cf. the dotted
curve) by the formula composed of the Debye term and the
ionic term for p 4 ps :

e*(l) \ e=]
es[ e=

1 [ 2piclqD
]

ips
2pe0 cl

. (48)

However, for l[ 10 cm~1, eqn. (48) does not hold.
It is also interesting to compare the exact e*(l) and a(l)

dependences (44) and (45) with those based on the formula
(35), in which the Ðrst dipolar term is rigorous but in the
second one the e†ect of ionic dispersion is neglected (cf.
dashed and solid curves in Figs. 6 and 7). It is seen in Figs.
6(a), (c) and (d) that a noticeable distinction between the
spectra calculated with or without the account of the p(l) dis-
persion may arise at millimetre/submillimetre wavelengths, if
the ratio is large (viz., 10 in Fig. 6). However, ifqion/q qionB q,
the e†ect of the p(l) dispersion on the e*(l) and a(l) depen-
dences disappears (see Fig. 7). In any case, the simpliÐed
formula (35) works well not only at low frequencies but also in
the FIR range, if l[ 70 cm~1.

6. Potential well with vibrating walls
We discuss the situation in which the width of the well
changes harmonically with time. This idea could be reason-
able, since all molecules of the medium are in motion. Using
the hybrid model, we shall apply the new consideration only
for liquid water. Thus we replace the constant half-width b of
the rectangular well by the following time-varying quantity :

b(U) \ b0 ] b1 sin U(t) ; U(t) 4 Xt ] U0 ; XT‹ @ 1, (49)

where is the mean reorientation period of dipoles. TheT‹
inequality in (49) means that the direction of a dipole moment
changes many times during the vibration period 2p/X this X
should not be confused with X from eqn. (33). We regard the
well to be “almost conservative Ï. Since the SF L depends on
b, in view of (49) it depends also on the phase U(t), thus L \
L Mz, b[U(t)]N. Consequently, for a slow time dependence
b[U(t)], the corrected orientational spectral function (SF) L (z)
is found as the average over U :

L (z) ] L1 , L1 4 SL Mz, bSU(t)]NT
U

, (50)

This average will be found in two ways, di†ering in the
value of First, we consider very low vibration frequency)qD .
X, such that i.e. and we haveX@ qD~1, XqD @ 1,

L1 \
1

2p

P
0

2p
L MZ, b0] b1 sin(U0)N dU0

so that

L1 \ L1 (x, y, b0 , b1). (51a)

Eqn. (51a) is actually the average over di†erent b-values dis-
tributed homogeneously. Second, we take a greater vibration
frequency, but still restricted by the inequality WeXT‹ @ 1.
consider that is the longest time pertinent to molecular pro-qDcesses in a polar liquid. We employ here the exponential dis-
tribution over lifetimes between “rare Ï collisions,tlongoccurring, on average, after the Debye time qD : StlongT \ qD .
During each time interval the b-value changes, in accordtlong ,with eqn. (49), harmonically in time t. Therefore, now XqD [ 1,
and we have

L1 \
P
0

=
L Mz, b0 ] b1 sin XtNexp([t/qD)

dt
qD

L1 \ L1 (x, y, b0 , b1, XtD). (51b)

Using the calculation Scheme (51b) we Ðrst Ðnd the average
over “short Ï time t with the mean lifetime value q (which is
much shorter than in order to get the SF L Mz, b[U(t)]N.qD)
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The second averaging yields eqn. (50), and is carried out forL1 ,
a “ longÏ time with the mean value Eventually, thetlong qD .
orientational susceptibility s*(x) is found from eqn. (9), where
we replace L by Further calculations are made in the “ÐrstL1 .
stage Ï manner, described in Section 3, eqns. (9)È(13) and in
Section 5, eqns. (37)È(39).

Both calculation schemes are applied for liquid water at
T \ 27 ¡C. We consider an example of a rather large libration
amplitude by setting We also set : (a) andb14 0.8b0 . Xq@ 1
(b) Xq\ p. It is seen from Table 5 that the Ðtted and ub0values are the same for both cases but the values of the life-
time q are di†erent. Therefore, for the vibrating well the mean
angle and lifetime q decrease and the well depth u increasesb0in comparison with the well at rest. Our modiÐed model yields
a better description of the FIR spectral region in the vicinity
of the translational peak cm~1), see Fig. 8. The com-(lT \ 200
parison of Fig. 8(a) with Fig. 8(b) leads to the conclusion that
the Scheme (51b) gives a better result than the Scheme (51a).

Table 5 Results from the various calculation schemes

Normalised
Libration well Lifetime,

Calculation scheme amplitude depth, u q/ps

For the hybrid model b \ 19.9¡ 5.1 0.475
(with the walls at rest)

For the average (51a), b0\ 12.9¡ 5.4 0.45
Xq@ 1

For the average (51b), b0\ 12.9¡ 5.4 0.39
Xq\ p

Fig. 8 Absorption coefficient of liquid water vs. frequency ;
T \ 27 ¡C. The hybrid model, calculation for the potential well at rest
(solid line) and for the well with vibrating walls (dotted line). (a) Inte-
gration over phases eqn. (51a) ; (b) integration over long timeU0 ,
between strong collisions, eqn. (51b). Dashed lines : experimental
data.25

We remark that if then the “ internal Ï lifetime qXqD [ 2p,
can be approximately set to a quarter of the vibration period
2p/X, since the conÐguration of the well remains approx-
imately unchanged during thus, q\ p/(2X).Tvibr/4 \ p/(2X) ;
Consequently, one can estimate the vibration frequency as

fvibrB X/(2p) \ 1/(4q). (52)

The “ lifetimeÏ may actually have an “oscillatory origin Ï. For
water at 20 ¡C, GHz; the relaxation time of thefvibr B 500 qvisvolume viscosity is approximately the same as the Ðtted q (ref.
14) (about 0.5 ps). It seems reasonable that the dynamic
behaviour of the suggested molecular system is closely related
to some frequency corresponding to a molecular process in a
liquid.

7. Discussion
It is useful to characterise (ref. 12, pp. 316, 540) the molecular
dynamics/structure of a solution by the mean number ofmdipreorientation cycles performed by a water molecule in the
solution during its mean lifetime q :

SpT \
sin b[12Jp erf Ju [ Ju exp([u)]] 12Jp exp([u)

1 [ [1[ exp([u)] cos b
,

(53)

where erf ( ) is the error function. From Table 6 we see that
is about 15. This means that the structure of each liquidmdipis rather rigid. For increases with concentra-NaClÈH2O, mdiption while for it decreases, in accordance withCM , KClÈH2Othe strengthening or, respectively, weakening of the water

structure. Using eqn. (24), we can calculate the mean number
mB of ionic translation cycles, occurring in the well during the
lifetime qion :

mBB
SXBT
qion

\
Jp

2d
upBqion \

Sp

2

vTB qion
lB

. (54)

This number mB depends on the ionic lifetime In view ofqion .
Table 6 for mB is much greater than but forqion\ 10q, mdip ,

it is commensurable withqion\ q mdip .
Recently the ionic dispersion p(l) has been discussed using a

linear-response theory in conjunction with a molecular
dynamics simulation.9,10 Thus, Wei and Patey concluded9 on
the basis of a mean-Ðeld approximation that the dispersion of
the ionic conductivity is negligible in electrolytes. However,
later10 such a dispersion was discovered. Yet the problem
remained unsolved, since the results of ref. 10 cannot take into
account the speciÐc properties of the solvent (water). Using
the formulae (27)È(29) we have shown that the dispersion p(l)
should appear when the normalised frequency X \ u/upexceeds approximately 0.1, see Fig. 3(a). In view of Figs. 4È6 if
the aqueous sheath around an ion lives much longer than a
local order cell in bulk water (viz. if then the disper-qionA s),
sion p(l) of the conductivity may cause an additional dielectric
loss/absorption in the ranges of millimetre and submillimetre
wavelengths. From Table 6 we see that in this case an ion
should perform at mol l~1 about 50 or more cyclesCM\ 0.5
of translational motion inside the sheath. The question is
whether such a situation is possible. On the other hand, as

Table 6 The mean number of ion and dipole reÑections performed during their lifetimes in corresponding potential wells

NaClÈwater KClÈwater

qion \ 10q qion \ q qion \ 10q qion \ q
CM/
mol l~1 m` m~ m` m~ mdip m` m~ m` m~ mdip
0.5 58 132 18 41 16 49 62 19 19 15
1 44 99 13 31 17 34 44 13 13 14
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seen from Fig. 7, if then the phenomenon of ionicqionB q,
dispersion actually should not a†ect the calculated spectra. In
this case the simpliÐed equation (35) holds, where is set.p 4psIt would be interesting to Ðnd experimentally which of two
controversial inequalities or is more realistic.(qion> q qionB q)

In a recent article22 self-consistent expressions were derived
for the frequency-dependent electrolyte friction and the con-
ductivity. Unlike our approach, the e†ect of the surrounding
solvent (water) was described using the phenomenological
coefficients. However, no oscillatory component p@(u) or pA(u)
of the ionic motion was discovered in ref. 22, while our Figs.
3(a) and (b) show damped oscillations, typical for the resonance
phenomena occurring in a condensed state.

The intermolecular interactions are strong in the condensed
state. The key assumption, used as the basis of our models, is
that the motion of particles occurs in rather deep and narrow
potential wells. Comparing the parameters obtained for
NaClÈwater and KClÈwater solutions, we can distinguish the
solutions with positive (for NaCl) and negative (for KCl)
hydration, to which the strengthening or weakening of the
water structure correspond.23 These properties are inherently
conÐrmed in our calculations by the Ðtted dependences,q(CM)
which are increasing for NaCl and decreasing for KCl.

A recent study24 of translation of ions in space, made in
terms of the spherical hydration sheath, conÐrms qualitatively
the main results of this work. However, the theory given here
is much simpler than in ref. 24, where double integrals appear
for the complex conductivity instead of ordinary integrals in
eqns. (28).

The drawback of our dipolar model is that the librational
band, placed in the FIR range, is wider than the recorded one.
We intend to solve this problem in the near future.

In this article we have neglected (1) ionÈion interaction, (2)
the cross-correlation between the ionic and dipolar sub-
ensembles and (3) the Ðniteness of the potential well depth for
ions. The study26 of aqueous NaCl solutions, using a molecu-
lar dynamics simulation, and our estimations show that at low
salt concentration these assumptions cause only a smallCMe†ect on the calculated spectra.Ò It is important that the inter-
relation between the ionic and dipolar subensembles appears
in our theory already in the Ðrst approximation, if isqionrather long and/or is rather high, so that the zero-CMfrequency contribution is noticeable in comparison withsion(0)
the static permittivity of the solution. This interrelation canesbe accounted for within the framework of our calculation
scheme, if we employ eqn. (12) for the Kirkwood correlation
factor instead of eqn. (13) (the latter was used in this work).

One can get from the simulation results26 some additional
information about the residence times of bulk water molecules
and about those in the hydration sheaths arising around the
cations Na` and the anions Ca~. In ref. 26 the following
ratios were given in Table 7 :

q(H2OÈNa)

q(H2OÈH2O)
B

21 ps

4.4 ps
B 4.8 ;

q(H2OÈCl)

q(H2OÈH2O)
B

10.4 ps

4.7 ps
B 2.2.

(55)

These data show that the hydrated layer indeed lives longer
than the bulk water molecules. Let us identify the ratios (55)
with Then we conclude that the additional loss/qion/q.absorption, predicted in our work, due to movement of ions
inside the hydration sheath, should be less pronounced for
NaCl, than is shown in Fig. 6. One may also expect that for
KCl this e†ect should be negligible. The detailed information,

Ò We remark that our theory is not applicable to very low frequencies
when the e†ect of the ionic atmosphere may cause a very small
increase in the real part of p@.

given in ref. 26, can be used for a further elaboration of our
ionic model. Namely, in future it will be possible to account
for : (a) the formation of contact ion pairs, which is substantial
for concentrations greater than 1 mol~1 ; (b) the speciÐcCMvalues of the lifetimes [similar to those given by eqns. (55)] ; (c)
the distinction between the properties of bulk water and water
in the hydration sheaths ; (d) the distinction between the
properties of the cations and anions ; (e) the interrelation of
type (12), when the inequality (12a) does not hold ; and (f ) the
Ðniteness of the potential well depth for the ionic sub-
ensemble. But if the salt concentration is rather small (CM O 1
mol l~1), one may consider this work to give a qualitative
picture and the relevant time/space scales of the molecular
events.

In conclusion, we shall discuss some results of new experi-
ments.27h29 The interaction between ions in concentrated elec-
trolyte solutions and FIR (10È40 cm~1) was studied by Dodo
et al.27 It was shown there that the absorption coefficient for
high concentration (D13 mol l~1 is small because the conduc-
tivity of highly concentrated electrolyte solutions decreases in
spite of the increase of ion number. It would be interesting to
investigate such phenomena theoretically, since our calcu-
lation scheme is applicable only to low electrolyte concentra-
tion. We remark that, if we are to account for the
experimental error, then the measured absorption coefficient
for LiCl aqueous solution at the frequency 10 cm~1 slightly
exceeds that calculated for contributions of both the electrical
(static) conductivity and Debye relaxation. This fact may indi-
rectly conÐrm the result of our work that additional absorp-
tion due to p(l) frequency dependence indeed arises. However
for a deÐnite conclusion about this matter an additional more
precise experimental investigation would be very useful.
Recent experiments28 in the 5È100 cm~1 band, where the
absorption coefficient of liquid water was compared with that
of LiCl and NaCl aqueous solutions, show a number of inter-
esting phenomena. Their preliminary qualitative interpreta-
tion was given28 in terms of network breaking and restricted

molecule motion. The reverse of examined e†ects wasH2Ofound for HCl in water, where the water network structure is
enhanced, collective dynamics become more important and
there is a huge increase in proton polarisability, giving a large
Ñuctuating transition dipole and extreme broadening of the
whole FIR spectrum. In ref. 29 the phenomenon of “ ion
rattling Ï motions was supposed to inÑuence the recorded
absorption band at l[ 200 cm~1. It seems that without a
theory capable of describing the whole 0È1000 cm~1 band it is
hardly possible to assign the measured alteration of absorp-
tion due to a number of speciÐc physical factors. The model
presented above can be used as a basis for this purpose.
However, to achieve this aim a few important factors should
additionally be accounted for : (i) change of the dielectric
response of water molecules trapped inside the hydration
sheath and (ii) development of a model to describe the speciÐc
mechanism due to vibration of H-bonded molecules. Such
development of our theoretical approach is under way.
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Appendices

A. Derivation of the linear-response formula (27)

The integral in eqns. (19)È(21), containing the velocity projec-
tion does not vanish only due to the radiation-inducedv

E
(t),
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perturbation of the steady-state velocity to whichv
E

v
E
0(t), v

E
(t)

reduces for E(t)\ 0 : Sv
E
(t)Tc \ Sv

E
0(t)] dv

E
Tc \ Sdv

E
Tc ,

where S denotes integration over the initial phases c, theTcdisturbance being proportional to the radiation amplitudedv
EWe apply the average perturbation theorem (ref. 13, pp.oEŒ o.

148, 374). Noting that and omitting thedW /dh \[W /(kBT ),
superscript 0, we rewrite eqns. (3.10c) and (3.10d) of ref. 13 in
terms of this paper :

Sdv
E
(t)T \ (kBT )~1Sv

E
0(t)h(t)T,

h(t)\ e
P
0

t
E(t@)v

E
(t@) dt@, (A1)

h(t) being the work done by the ac Ðeld in moving charge e
during time interval t ; now denotes the unperturbed veloc-v

E
(t)

ity projection. The time dependence E(t), eqn. (3), is represent-
ed as the sum of two complex-conjugate quantities. Neglecting
the spatial dispersion (k Æ r is omitted), we Ðnd that the term
proportional to exp[i(ut ] c)] vanishes after averaging over
c0 :

Sdv
E
T \

T eEŒ *
2kBT

P
0

t
vE exp([iut@[ ic) dt@

U
. (A2)

Substituting into eqn. (16), where we set F(c)4 1, and taking
account of eqn. (18) we derive

s* \
iSsT
rD2uq

;

s 4
P
0

=
v
E
(t)exp(iuü t) dt

P
0

t
v
E
(t@)exp([iut@) dt@. (A3)

This expression is applied to such a model potential, in which
velocity varies periodically ; let H(h) be the period of thisv

E
(t)

dependence. An ensemble averaging includes integration over
energyÈtime variables h, By analogy with eqn. (3.15) in ref.t0 .
13, we write :

Tdv
E
(t)

dt
v
E
(t@)] v

E
(t)

dv
E
(t@)

dt@
U

\ 0. (A4)

Indeed, here the integral over vanishes because of thist0periodicity, as it is equal to

P
0

H(h) d

dt0
v
E
(t@)v

E
(t) dt0 .

Using eqn. (A4), we may reduce the expression for s to an
ordinary integral. First, we take the integral over t@ and then
by parts over t from

[dv
E
(t)/dt]exp(iuü t)

P
0

t
v
E
(t@)exp([iut@) dt@

to obtain :

s \
i

u
P
0

=
v
E
(t)eiuv t

C
v
E
(t)e~iut[ v

E
(0)

[
P
0

t dv
E
(t@)

dt@
e~iut{ dt@

D
dt

\
i

u
G
vE(t)eiuv t[vE(t)e~iut[ v

E
(0)]

]
dv

E
(t)

dt
eiuv t
P
0

t
v
E
(t@)e~iut dt@

H

\
i

u
P
0

=
v
E
(t)eiuv t

C
v
E
(t)e~iut)[ v

E
(0)[ iuü

]
P
0

t
v
E
(t@)e~iut{ dt@[ v

E
(t)eiut

D
dt.

Second, comparing with the deÐnition of s in eqn. (A3), we
Ðnally derive :

A
1 [

uü
u
B
s \ [

is
uq

\ [
iv

E
(0)

u
P
0

=
v
E
exp(iuü t) dt ;

s \ qv
E
(0)
P
0

=
v
E
(t)exp(iuü t) dt.

Inserting this into s* in eqn. (A3), we get eqn. (27).

B. The integrated absorption P

In view of eqns. (19) and (20),

P \
P
~=

`=
usA(u) du

\
1

rD2
CP

~=

=
du v

E
(0)
P
0

=
v
E
(t)cos(ut)exp

A
[

t
q
B

dt
D
.

We change the order of integration and introduce the dimen-
sionless parameters andX \ u/up Y \ (upq)~1 :

rD2 P \ up
C
v
E
(0)
P
0

=
v
E
(t)

] exp([up Y t) dt
P
~=

=
cos(up Xt) dX

D

\ 2
T

v
E
(0)
P
0

=
v
E
(t)e~up Yt

] lim
X?=

Csin(upXt)
t

D
dt
U

\ 2p
T

v
E
(0)
P
0

=
v
E
(t)exp([upY t)d(t) dt

U
.

We employ a model potential such that is an evenSv
E
(0)v

E
(t)T

function of t. Then

rD2 P \ p
C
v
E
(0)
P
~=

=
v
E
(t)

] exp([up Y o t o)d(t) dt
D

\ pSv
E
2T. (B1)

For an ensemble of particles having one degree of freedom

Sv
E
2T \

P
0

=
exp
A
[

mv2
kBT
B
v2 dv

NP
0

=
exp
A
[

mv2
kBT
B

dv\ vT2 ;

vT4
SkBT

m
. (B2)

The same result is obtained also for a spatial ensemble of
charges since : (1) we may take as one of the phase vari-v

Eables ; and (2) other variables do not depend on the averaged
quantity (on Combining eqns. (B1) and (B2) with eqn. (18)v

E
2).

for we obtain the standard valueprD ,

P \
P
~=

= usA(u) du4
P
~=

= p@(u) du

\ pup2 \ pe2N/(me0). (B3)

C. Estimation of pair electrostatic interaction between ions

It follows from Table 2 that the criterion which*Rion[ *Rw ,
means that the solution is dilute, holds for all ranges of con-
centration in Let the mean energyps-values. UE \

p Note a misprint in eqn. (1.65) of ref. 17, where the multiplier 1/3
should be omitted.
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of the pair electrostatic ionic interaction bee2/(4pe0 es *Rion)small in comparison with the potential barrier We intro-Uion .
duce the parameter f of the electrostatic interaction, deÐned as
the ratio of these two energies. Taking into account eqn. (47a),
we have

f\
U

E
Uion

\
e2(2] 1000NA CM)1@3

4pe0 es kBT uion
,

where being the well depth of the well inu \ Uion/(kBT ), Uionwhich the ions move. Then

U
E
@ Uion , if f@ 1. (C1)

In this work we employ the approximation so thatuion] O,
this inequality holds ; it also holds for the estimation15 given
for UionB 10kBT .

D. Relation of ionic susceptibility to conductivity r(x)v
ion
*

We start from eqn. (2.4a) in ref. 13. For wave vector k perpen-
dicular to electric Ðeld E this equation is given by

k*2 [
u2
c2

\
u2
c2

(n*2[ 1)EŒ *\
iu

e0 c2
JŒ *, (D1)

where n* is the complex refractive index, n*2\ e*. Projecting
this equation onto the direction of the electric Ðeld and
averaging over the ensemble we have :

n*2 [ 1 \
i

ue0

SJŒ
E
*T

EŒ *
.

For an ensemble of ions in a vacuum we have in accordance
with the deÐnition : Thenn*2 \ *eion* \ 1 ] sion* .

sion* \
i

ue0

SJŒ
E
*T

EŒ *
. (D2)

If conductivity does not depend on frequency, then in accord
with OhmÏs law the mean current density is : Gen-SJ

E
T \pE.

eralisation for p \ p(u) yields : Therefore, itSJŒ
E
*T \ p(u)EŒ *.

follows from eqn. (D2) :

sion* \
ip(u)

e0 u
\

ip(l)
2pe0 cl

,

so that

*eionA \
p@(l)

2pe0 cl
. (D3)

Thus we have got relations (19), (30), (36), (40), (41) and (48),
and the second term of eqn. (35)
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