
0×

100×

200×

300×

400×

500×

600×

100
200

300
400

500
600

700
800

900
1000

2000
4000

8000
16 000

A
cc

el
er

at
io

n

Objects

No k-d tree
k-d tree with cell size 1024
k-d tree with cell size 2048
k-d tree with cell size 4096
k-d tree with cell size 8192

Physics SDK and for our microarchitecture, both including and excluding 
the k-d tree. For the k-d tree, a variety of cell sizes were used. These cell 
sizes specify the maximum quantity of objects that each leaf may contain.

The results demonstrate accelerations up to 552×. Moreover, the k-d 
tree is clearly beneficial for large quantities of objects as the acceleration 
of the 8000-object simulation increases from 24× to 311×. Therefore, it is 
evident that the collision detection microarchitecture provides substantial 
accelerations and that the k-d tree is an effective data structure for over-
coming the microarchitecture’s limitations in the context of a ray-tracer.

C
ollision detection is the process of determining whether ob-
jects in a computer-simulated environment are intersecting. 
It is vital for a range of diverse applications. However, despite 
numerous developments, it is often challenging to perform 
accurate collision detection at interactive rates. To overcome 

this challenge, we propose a radical departure from the state of the art: a 
custom broad phase collision detection microarchitecture combined with 
software to achieve execution speeds greater than those attainable using 
software alone. The integration of this microarchitecture into a ray-tracer 
is also investigated.

Microarchitecture
Since the primary means of gaining acceleration using a microarchitec-
ture is through the exploitation of parallelism, we selected the embarrass-
ingly parallel brute force all-pairs algorithm for our design. Axis-aligned 
bounding boxes (AABBs) were used as the bounding volumes.

The microarchitecture buffers the six data of each AABB using six 2m-
port memories, constructed from six m dual-port memories, each with 
address ports A and B. Afterwards, the AABBs are read from the buffer 
in a specific sequence. Originally, every A is set to 0, while the first B is 
set to 1 and the remaining Bs are set to 0. On the subsequent cycle, the 
second B is incremented to 1 and the remaining Bs retain their previous 
values. This pattern continues until the first B selects the address after the 
last AABB. At this stage, every A is set to 1, the first B is set to 2 and the 
remaining Bs are set to 1. This pattern continues until some A selects the 
second last AABB and the first B selects the address after the last AABB.

To perform the necessary comparisons, the data emitted from the buff-
er must first be reordered using multiplexers. To do this, multiplexer 0’s 
selector is initialised to 1, multiplexer 1’s is initialised to 2, multiplexer 
m − 2’s is initialised to m − 1 and multiplexer m – 1’s is initialised to 0. On 
each cycle, each selector is incremented by 1 mod m − 1. The sequence 
restarts each time the buffer’s A inputs are modified.

Finally, the AABB collision test is performed using 3m greater-than-
or-equal-to comparators and 3m less-than-or-equal-to comparators. The 
results from these comparators go to m logical AND gates. Each gate has 
six inputs corresponding to the six comparator results forming a single 
AABB pair.

Ray-Tracing
The outlined microarchitecture suffers from two potential disadvantages. 
Firstly, the number of objects supported may be significantly constrained 
by memory size. Secondly, the O(n2) complexity of the all-pairs algorithm 
may become significant with large quantities of objects, despite the effec-
tive exploitation of parallelism.

We deduced that spatial partitioning algorithms are an appropriate 
means of overcoming these disadvantages. These algorithms divide the 
environment into discrete cells, which can be individually processed by 
the microarchitecture. Additionally, we deduced that ray-tracing is liable 
to surpass rasterisation for the display of 3D images. Therefore, we decid-
ed to use the k-d tree, which is the standard ray-tracing spatial partition-
ing algorithm, to facilitate data reuse.

Results
We prototyped the microarchitecture using a DRC Accelium AC2030 
module hosting a Xilinx Virtex-5 XC5VLX330-2 field-programmable gate 
array (FPGA). The associated software executed on a 2 GHz Quad-Core 
AMD Opteron 2350 computer with 8 GB RAM. This software simulated 
an enclosed cube with a variable quantity of objects, of different sizes and 
types, bouncing off each other and the walls of the cube.

The execution times were measured for the broad phase of the Bullet 

Collision Detection 
Hardware 
Optimised for 
Ray-Tracers
Muiris Woulfe 
Michael Doyle 
Michael Manzke

Graphics, Vision and Visualisation Group (GV2) 
Trinity College Dublin 
Ireland

http://www.scss.tcd.ie/~woulfem/

DRC Accelium AC2030 module hosting a Xilinx Virtex-5 XC5VLX330-2 FPGA, used to prototype the microarchitecture

Bu
�
er

Re
or
de

r
Co

m
pa

re

Axis

Minimum i Maximum i
A BA B

≥ ≤

Minimum 0 Minimum 1 Minimum m − 1 Maximum 0 Maximum 1 Maximum m − 1
A B A B A B A B A B A B

≥ ≥≥≥ ≤≤≤≥

Bu
�
er

Re
or
de

r
Co

m
pa

re

Axis

Minimum i Maximum i
A BA B

≥ ≤

Minimum 0 Minimum 1 Minimum m − 1 Maximum 0 Maximum 1 Maximum m − 1
A B A B A B A B A B A B

≥ ≥≥≥ ≤≤≤≥

Bu
ff

er
Re

or
de

r
C

om
pa

re

Axis

· · · · · ·
A BA B

≥ ≤

Minimum 0 Minimum 1 Minimum m − 1 Maximum 0 Maximum 1 Maximum m − 1
A B A B A B A B A B A B

≥ ≥≥≥ ≤≤≤≥

C
om

pa
re

Microarchitecture for broad phase collision detection, where m denotes the parallelism

100-object simulation used to exercise the collision detection system Accelerations, using a variety of k-d tree cell sizes


