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Previous neuroimaging studies have shown that neural activity changes
with task practice. The types of changes reported have been
inconsistent, however, and the neural mechanisms involved remain
unclear. In this study, we investigated the in�uence of practice on
di�erent component processes of working memory (WM) using a face
WM task. Event-related functional magnetic resonance imaging
(fMRI) methodology allowed us to examine signal changes from early
to late in the scanning session within di�erent task stages (i.e.,
encoding, delay, retrieval), as well as to determine the in�uence of
di�erent levels of WM load on neural activity. We found practice-
related decreases in fMRI signal and e�ects of memory load occurring
primarily during encoding. This suggests that practice improves
encoding e�ciency, especially at higher memory loads. The decreases
in fMRI signal we observed were not accompanied by improved
behavioral performance; in fact, error rate increased for high WM
load trials, indicating that practice-related changes in activation may
occur during a scanning session without behavioral evidence of
learning. Our results suggest that practice in�uences particular
component processes of WM di�erently, and that the e�ciency of
these processes may not be captured by performance measures alone.
D 2004 Elsevier Inc. All rights reserved.
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Introduction

The in�uence of practice on the e�cient performance of a ta
is a fundamental aspect of human behavior. However, the cognit
and neural mechanisms mediating learning and practice are
well understood. Behavioral research suggests that performance
a novel task may initially require a great deal of executive contr
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(Anderson, 1982; Shi�rin and Schneider, 1984). With practice,
however, better learning strategies may be implemented, and
processing required for successful task performance may beco
more e�cient and automatic or proceduralized. In a variety
cognitive and motor tasks, this transition often results in improv
task performance, which may be re�ected by decreased react
time and increased accuracy(Poldrack, 2000).

Research on the neural mechanisms underlying this shift fro
inexperienced to skilled task performance has produced incons
tent results. Some of the inconsistency may result from the varie
of tasks studied. Research on the neural e�ects of practice h
included tasks ranging from motor learning(Karni et al., 1995;
Petersen et al., 1998; Tracy et al., 2001) and passive visual
perception(Gauthier et al., 1999; Rainer and Miller, 2000; van
Turennout et al., 2000)to higher level ones like categorical an
probabilistic learning(Poldrack et al., 1999; Seger et al., 2000),
mirror reading (Kassubek et al., 2001; Poldrack et al., 1998),
arti�cial grammar learning(Fletcher et al., 1999), and verb
generation(Petersen et al., 1998; Raichle et al., 1994). Inconsis
tency in the data may also be due to di�erences in the time cou
of practice related changes investigated (i.e., short term with
session learning vs. long term task learning).

Re�ecting these inconsistencies, wide variability has bee
reported both in the brain regions exhibiting practice rela
activation changes and in the patterns of activation in th
regions. This variability can be characterized in two ways. Firs
the brain regions engaged by a task remain constant but
magnitude of the activation within these regions either increa
(Gauthier et al., 1999; Iacoboni et al., 1996; Karni et al., 1995)or
decreases with practice of the task(Garavan et al., 2000; Jansma et
al., 2001). This type of dynamic change in task related brai
activity may re�ect greater neural e�ciency, more precise fun
tional circuitry (Garavan et al., 2000), or an expanded cortica
representation of the task relevant information(Karni et al., 1995).
Because both increases and decreases in activation with t
development of task expertise have been reported, it is uncl
how to interpret these changes with respect to neural e�cienc

Some researchers suggest that information processing e�cie
cy is associated with brain activation decreases. For examp
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Jansma et al. (2001) conducted an fMRI study of practice on a
verbal delayed recognition task, in which participants were given
set o� etters to remember throughout a delay, and were asked
respond to a probe item based on whether or not it was in the in
set. They found that practice on this task resulted in activati
decreases in working memory (WM) related areas (e.g., bilatera
dorsal prefrontal cortex (PFC), precuneus, and right frontopol
area), presumably due to more e�cient WM processing as ta
performance became automated. Similarly,Milham et al. (2003)
found decreases in anterior cingulate and dorsolateral PFC w
practice on a variant of the Stroop task. Finally, decreases in neur
activity with learning have been reported in primate electroph
iology experiments as well, supporting the hypothesis that neuro
become increasingly e�cient with stimulus familiarity and tas
exposure(Asaad et al., 1998).

In other studies, however, practice has produced increas
activity with both short and long term training. For examp
Karni et al. (1995) found an expanded area of primary motor cort
active after several weeks of practice on a motor task.Olesen et al.
(2004) found increased prefrontal and parietal activity after
weeks of training on a visuospatial working memory task. Sim
larly, Iacoboni et al. (1996) reported increased activity in supple
mentary motor area and PFC with short term practice on a mo
association task. Increases in prefrontal, premotor, and bas
ganglia regions have also been associated with motor seque
learning (Grafton et al., 1995), apparently re�ecting plasticity
within existing connections as the sequence becomes well learn
These studies suggest that improved neural e�ciency and ta
performance may produce activationincreases. Taken together
with studies reporting activation decreases with learning, it is cle
that there is no simple relationship between practice and neu
physiological processes. Both increases and decreases in activi
have been reported with task learning, suggesting that neu
e�ciency cannot be de�ned in terms of a monotonic change.

Other factors such as the time course o� earning and behavio
changes in performance following practice further complicate t
interpretation of how brain activation patterns re�ect increases
neural e�ciency. For example, in motor sequence learning,Karni
et al. (1995) found short term decreases in activation in prima
motor cortex followed by a long term increase in the extent
activation in the same region after 4 weeks of practice.Hund
Georgiadis and von Cramon (1999)found that experienced pianist
showed increases in primary motor cortex activation with practi
while non pianists showed decreases(Hund Georgiadis and von
Cramon, 1999). Because both groups got faster with practice, it
unlikely that these e�ects are due to simple performance di�
ences. A number of studies have addressed questions about
time course o� earning by examining early and late phases
learning (e.g., Tracy et al., 2001). These studies suggest that th
time course o� earning may be an important methodologi
consideration for examining neural activation associated with
task. Adding additional complexity to the issue, faster performan
with practice may be confounded with neural e�ciency becau
changes in neural activity may be due to changes in time spent
task rather than to more e�cient processing(Poldrack, 2000).

A second source of variability in the e�ect of practice on bra
activation may arise from a functional reorganization of tas
related brain regions. In contrast to the studies discussed abo
several studies have found evidence for functional reorganizati
of brain activity with increased practice on a task(Petersen et al.,
1998, 1999; Poldrack et al., 1998; Raichle et al., 1994; Sakai et al.,
1998; Shadmehr and Holcomb, 1997; Staines et al., 2002). These
studies suggest that a shift in the location of active brain regio
re�ects a shift in the underlying processes required as ta
performance becomes skilled. A functional reorganization
activity with task practice may also re�ect learning related chang
in connectivity between regions over time(Buchel et al., 1999;
Fletcher et al., 1999). Or, comparable to the short and long ter
e�ects mentioned above, some studies have suggested that r
ganization results from a transition from short term item speci
learning to long term task learning(Fletcher et al., 1999; Poldrack
and Gabrieli, 2001; Poldrack et al., 1998).

While learning is typically re�ected in behavioral performanc
by greater accuracy or decreased reaction time with practice, so
evidence exists showing discordance between behavioral a
neural activation data. For example, on motor learning task
changes in activation have been observed even when reaction t
does not decrease(Shadmehr and Holcomb, 1997; Staines et al.
2002), and on a working memory task, activation increased eve
when accuracy was at chance(Jaeggi et al., 2003). These �ndings
call into question the assumption that behavioral data are coup
inseparably with neural activity when identifying learning relat
changes. Instead, the wide variability in practice related behavio
changes and activation patterns suggests that there is a comp
relationship between the neural e�ects of practice and the cogni
processes engaged by a particular task.

To investigate the di�erential e�ect of practice on compone
WM processes, the current experiment examined how encodin
maintenance, and retrieval processes changed with practice o
visual WM task. We examined previously published data from a
event related face WM task with varying levels of memory loa
(Druzgal and D’Esposito, 2003). In that experiment, Druzgal and
D’Esposito compared the in�uence of working memory load o
activity on the temporal pattern and magnitude of activity in
fusiform face area (FFA) and prefrontal cortex (PFC). During
encoding and delay periods, activation increased parametrica
with memory load in both of these regions, but not in t
fusiform object area (FOA). These �ndings suggest that bot
regions are sensitive to increasing demand for working memo
processes.

Here, we investigate whether practice in�uences workin
memory processes di�erentially during repetitive performance
this face recognition task. The use of an event related fMRI desig
facilitates the ability to isolate brain activation during separa
cognitive processes(Postle et al., 2000; Zarahn et al., 1997a). It
also allows us to investigate di�erent types of neural changes w
practice (increases, decreases, or functional reorganization
activity) corresponding to these di�erent processes.

We examined changes in activation from early to late in th
scanning session in regions engaged by the task to determine
extent to which task related regions were in�uenced by pract
and by memory load. We also examined mapwise activatio
changes to determine whether any regions (i.e., not necessar
task speci�c regions) could be identi�ed based on a contrast
activity early versus late in the session and whether these regio
were also in�uenced by memory load.

In agreement with motor learning studies, we hypothesized t
practice related changes would re�ect more e�cient processi
and plasticity in regions already specialized for task performanc
We hypothesized that regions identi�ed in this manner would
important for early stage or late stage task performance, or th
may be involved in more general learning mechanisms.
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The day before scanning, participants were familiarized wi
the behavioral task. The initial learning period of a new task m
engage psychological processes in addition to those speci�c to
task’s performance as participants may have to establish ne
performance strategies, consolidate the new task’s rules, a
familiarize themselves with the task’s procedures. Initial learnin
periods may also contain a disproportionate number of errors
activation speci�c to error related processes could therefore co
found a contrast between practiced and unpracticed activa
patterns. Consequently, while these early learning processes
o� nterest, they are not the focus of the present study, wh
instead focused on the e�ects of practice once a degree of stab
on task performance had already been established.
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Materials and methods

Participants

Ten right handed participants (age range 22 27) were recrui
from the University of Pennsylvania Medical Center. All partic
ipants gave written informed consent before participation in
study. Participants were screened against medical, neurological, a
psychiatric illnesses, and also for use of prescription medication

Behavioral task

Each trial was composed of (1) a 4 s encoding period, (2) an 8
delay period, (3) a 2 s retrieval period, and (4) a 16 s inter tria
interval. At encoding, each participant saw four serially present
images that were a mixture of gray scale faces and gray sca
scrambled faces. Each image was on screen for 1 s and participan
had to remember all of the intact faces. Sets of encoding stim
contained between one and four faces. The order o� ace a
scrambled face stimulus presentation was randomized so t
participants did not know how many faces they would have
remember until the end of the encoding period. Faces were crop
to an ovoid shape so that peripheral face features (such as hair, e
and neck) were not visible. During the delay period, participan
were instructed to �xate on a crosshair at the center of the screen
retrieval, a single gray scale face appeared and participants w
Fig. 1. This diagram shows the structure of the behavioral task. A set o� our
contained one, two, three, or four intact faces, with the remainder of the imag
intact faces in the stimulus set across an 8-s delay period. At the end of the del
whether the probe face matched a face from the stimulus set. Following the m
inter-trial interval (ITI).
required to give a motor response indicating whether that f
matched one of the faces presented at encoding. There were 12 t
per fMRI run, and 8 runs in the session per participant, for a total
96 trials per participant. Participants practiced the behavioral ta
for 30 min on the day before the scanning session. For data analy
purposes, the �rst three runs in the session (36 trials) were de�n
as Early and the last three runs (36 trials) were de�ned asLate.
Trials with one or two faces at encoding were de�ned asLow Load
trials, and trials with three or four faces at encoding were de�ned
High Load trials. Trials were balanced across early and late period
low and high load conditions, and the number of match/non ma
motor responses(Fig. 1) .

MRI technique

Imaging was carried out on a 1.5T SIGNA scanner (GE
Medical Systems) equipped with a prototype fast gradient syst
for echo planar imaging. A standard radiofrequency (RF) head co
was used with foam padding to restrict head motion comforta
High resolution sagittal and axial T1 weighted images we
obtained in every participant. A gradient echo, echoplanar
quence (TR 2000 ms, TE 50 ms) was used to acquire dat
sensitive to the blood oxygen level dependent (BOLD) signa
Resolution was 3.75 3.75 mm in plane, and 5 mm betwee
planes (21 axial slices were acquired). Twenty seconds of gradie
and RF pulses preceded data acquisition to allow steady st
tissue magnetization. Participants viewed a back lit projecti
screen from within the magnet bore through a mirror moun
on the head coil.

Data preparation

O�ine data processing was performed using the VoxBo
analysis package (http://www.voxbo.org). Initial data preparation
proceeded in the following steps: image reconstruction; si
interpolation in time (to correct for the fMRI slice acquisitio
sequence); motion correction (six parameter, rigid body, lea
squares alignment); slice wise motion compensation (to remo
spatially coherent signal changes via the application of a part
correlation method to each slice in time(Aguirre et al., 1998a;
Zarahn et al., 1997b).
stimuli was serially presented during a 4-s encoding period. The stimulus set
es composed of scrambled faces. Participants were asked to remember all of the
ay period, a probe face prompted participants to give a motor response indicating
otor response, participants were instructed to �xate on a crosshair during a 16-s
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Derivation of the empirical hemodynamic response function (HRF

The rationale for empirically deriving a HRF is described
elsewhere (Aguirre et al., 1998b). An HRF was derived from
primary sensorimotor cortex in each participant in the followi
manner. Before performing the WM task described above, eac
participant performed a task in which a central white �xation cro
changed brie�y (130 ms) to a �ickering checkerboard every 20
cueing the participant to make a bilateral button press. Twenty su
events occurred during the 400 s scan.

Statistical analysis

Since fMRI data are temporally auto correlated under the nu
hypothesis (Zarahn et al., 1997b), statistical analyses were con
ducted within the framework of the modi�ed general linear mo
(GLM) for serially correlated error terms (Worsley and Friston,
1995). A time domain representation of the expected 1/f power
structure (Zarahn et al., 1997b) and a notch �lter that remove
frequencies above the Nyquist frequency and below 0.02 Hz (i.e
the portions of highest power in the noise spectrum) were placed
the convolution matrix(Worsley and Friston, 1995). Due to the
event related nature of the behavioral paradigm, the data were
smoothed temporally. The data obtained from the HRF task we
modeled by using a Fourier basis set o� our sines and four cosine
A partial F test was used to evaluate the signi�cance of activity
sensorimotor cortical voxels, and an HRF estimate was extracte
from the suprathreshold voxels by averaging their time series. Th
empirical estimate of the HRF was used in subsequent analyses f
each participant.

The general linear model (GLM) describes fMRI signal change
as a series of amplitude scaled and time shifted covariates
regressors. Each covariate modeled a series of a brief neural even
convolved by the participant’s empirical HRF. Covariates were
Fig. 2. Shown are mean reaction time and error rate with standard errors for th
load (high and low).
used to model encoding, delay, and retrieval periods for both h
and low levels of memory load (low: 1 or 2 faces, high: 3 or 4
faces) and for both early and late phases of practice in the scann
session (early: runs 1 3, late: runs 6 8). Thus, three trial period
with two load levels for each period and with two phases within t
scanning session gave a total of 12 covariates o� nterest. For ea
load and phase of the session, encoding modeledt 0 4 s of a
trial; delay t 8 12 s; and retrieval t 12 16 s. Additional
nuisance covariates were included to model an intercept, tr
speci�c e�ects, and late encoding/early delay att 4 8 s (Fig. 1) .

The nuisance late encoding/early delay covariate was includ
to avoid contamination of delay related activation by variance t
was not captured by the encoding covariate(Zarahn et al., 1997a).
Therefore, all delay related activity reported in this analysis arise
from the delay covariate and not the nuisance late encoding/e
delay covariate.

Our inferential statistics were derived with a multiple regressio
where the data for each participant were modeled by lin
combinations of the covariates o� nterest. For each participa
parameter estimates were obtained corresponding to the inde
dent variable that modeled each task period for a particu
contrast. Speci�cally, we examined main e�ects of task an
practice for each participant within each trial period. Mapwi
and functional region o� nterest analyses were conducted based
these contrasts (see below).

Mapwise group analyses
To perform mapwise group analyses, a whole brain map oft

values associated with a contrast o� nterest (see below) w
generated in each participant’s native anatomical space. Thet
map for each participant was normalized to the Montreal Neu
logical Institute (MNI) reference brain template using algorithm
from SPM96b (http://www.�l.ion.ucl.ac.uk/spm/distrib96.html) by
applying a 12 parameter a�ne transformation with non line
e face recognition task, separated by time of session (early and late) and memory
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deformations routine. Normalizedtmaps were then smoothed usin
a Gaussian smoothing kernel (7.5 mm full width at half maximum
For each voxel, the group oft values (one derived from each of th
participants) was tested for a signi�cant di�erence from zero. T
upper threshold (corrected) for signi�cance [t(9) > 6.43] was
adjusted for multiple comparisons given the smoothness of
map to correct to a mapwiseP < 0.05, two tailed. The lower
threshold (uncorrected) for signi�cance [t(9) > 4.30] was set to
give a voxelwiseP < 0.0005, two tailed. A minimum cluster size o
�ve contiguous voxels was used. The result was a whole brain m
of voxels that showed the contrasts o� nterest across participan

T tests were run on the random e�ectstmaps rather than on th
parameter estimate maps becausetmaps are scaled by the noise fo
each voxel, while parameter estimates are not. Scaling by t
individual noise within each voxel can increases the power of t
random e�ects analysis(Postle et al., 2000).

Two contrasts for the mapwise group analyses were conduc
at the encoding, delay, and retrieval periods: (1) main e�ect of ta
and (2) main e�ect of practice. To approximately identify th
Brodmann’s areas (BA) identi�ed in these analyses, we converte
the MNI coordinates to Talairach coordinates. As noted recently b
Brett et al. (2002), the MNI reference brain is not exactly the sam
size or shape as the brain shown in theTalairach and Tournoux
(1988) atlas. Software for converting these coordinates to Talaira
coordinates is available online (http://www.mrc cbu.cam.ac.uk
Imaging/Common/mnispace.shtml). However, we should note tha
the algorithm provided does not always produce coordinates
correspond to those obtained via visual inspection using
Talairach and Tournoux atlas.
Fig. 3. Axial slices with group-averaged (N 10) activation for (A) regions show
late). Shown are local maxima that exceeded a threshold ofP < 0.05, corrected (sho
Functionally de�ned regions o� nterest (ROI) analyses
Functionally de�ned ROI analyses were conducted as follow

regions showing a main e�ect of task and of practice from t
mapwise analyses were separately further analyzed using a with
subjects repeated measures ANOVA, conducted ata 0.05, with
factors Practice (early, late) and Load (high, low). To carry out thi
analysis, local maxima within the regions showing a main e�ect
task at the corrected threshold were identi�ed. For each lo
maximum, voxels that were contiguous with the local maximu
and that also reached the uncorrected threshold for signi�ca
( P < 0.0005) were considered a functionally de�ned ROI. From
each functionally de�ned ROI and for each participant, w
examined practice and load e�ects by obtaining mean param
estimates of all voxels in the region. This yielded four mea
parameter estimate values for each participant in each ROI (lo
load early, low load late, high load early, high load late). We use
these parameter estimates in the corresponding ANOVA.
Results

Behavioral data

Fig. 2 plots the mean reaction times (RTs) and error rates for t
four conditions o� nterest (i.e., high and low memory load an
early and late in practice). The data for one participant were lo
due to technical di�culties. Memory load had a signi�cant e�e
on mean RTs, [F (1,8) 24.49, P < 0.01] and mean error rate
[ F (1,8) 46.39, P < 0.001]. Amount of practice had no signi�can
ing a main e�ect of task, and (B) regions showing a practice e�ect (early vs.
wn in yellow), and contiguous voxelsP < 0.001, uncorrected (shown in red).
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Table 1
Local maxima of the statistical parametric maps for the main e�ect of task
and e�ect of practice for all three task periods

Brain region x y z BA Size t Value
(voxels)

Main e�ect of task
Encoding: main e�ect only
L middle temporal gyrus 38 56 20 39 29 7.8
L postcentral gyrus 45 23 45 3 21 6.8

843alusniL 10 38 7.2
Encoding: main e�ect and practice e�ect
L fusiform gyrus 49 71 15 19 161 10.5
R precentral gyrus 38 4 35 6 40 9.4
R putamen 19 19 5 79 6.9

Encoding: practice by load interaction
R middle occipital gyrus 38 83 10 19 49 8.9
R fusiform gyrus 38 64 15 19 169 12.4
R inferior frontal gyrus 45 26 20 45 40 6.8
Delay: main e�ect only
L inferior frontal gyrus 45 24 5 47 13 5.4
R inferior frontal gyrus 30 24 1 47 6 5.7

Delay: practice by load interaction
L supplementary motor area 19 0 50 6 17 6.5

Retrieval: main e�ect only
L insula 53 15 5 93 12.4
L insula 49 11 5 71 9.2
R inferior frontal gyrus 45 26 20 45 60 13.3
R inferior/middle frontal gyrus 45 26 25 45/46 151 12.4
R fusiform gyrus 41 71 15 19 134 14.3
R precentral gyrus 30 19 60 6 48 9.4
Cerebellum 0 64 5 250 15.3
L thalamus 26 23 10 111 10.8

Retrieval: practice by load interaction
L cingulate gyrus 8 4 35 24 495 13.7
L supramarginal gyrus 45 53 50 40 109 10.0
L precentral gyrus 41 19 60 4 65 8.6
R supramarginal 53 49 25 22 208 11.8
R superior occipital gyrus 4 86 45 19 64 9.9
R insula 49 11 5 228 11.3

E�ect of practice
Encoding: practice e�ect only
L superior parietal lobule 26 71 45 7 38 8.2
L inferior occipital gyrus 53 75 5 19 56 7.3
L insula 45 11 5 42 8.5
R precentral gyrus 34 8 30 6 13 8.7
R precentral gyrus 23 19 50 6 11 10.5
R middle occipital gyrus 45 71 5 37 16 8.7
Anterior thalamus 0 4 10 112 13.7

Encoding: practice e�ect and load e�ect
L superior parietal lobule 41 64 60 7 15 8.6
L amygdala 23 4 15 10 6.4

Encoding: practice e�ect and practice by load interaction
R insula 30 11 20 47 11 7.0
R middle occipital gyrus 34 86 15 19 56 10.3
L cerebellum 8 45 10 22 10.7

L, left; R, right; BA, Brodmann’s areas.
Local maxima are listed based on the type of e�ect (practice e�ect, load
e�ect, practice by load interaction) each showed in the functional ROI
analysis (see Materials and methods). Coordinates correspond to those from
the Montreal Neurological Institute (MNI) reference brain template.
e�ect on mean RTs [F (1,8) 0.218, P > 0.6] but did a�ect mean
error rates reliably [F (1,8) 19.97, P < 0.01]. Finally, there was no
signi�cant interaction between the e�ects of memory load a
amount of practice on mean RTs, [F (1,8) 0.645, P > 0.6], but
these factors had signi�cant interacting e�ects on mean error ra
[ F (1,8) 5.44, P < 0.05]. A post hoc analysis showed that thi
interaction was driven by the signi�cant increase in mean error ra
from early to late for high memory load trials (7 12%) without
corresponding change for the low load trials (4% errors ear
compared with 3% errors late).

Imaging data mapwise analyses

We identi�ed regions showing a main e�ect of task and a
e�ect of practice (Fig. 3 and Table 1) during each task period
(encoding, delay, and retrieval). As shown inFig. 3a, there was a
main e�ect of task across several frontal, temporal, parietal, an
extrastriate regions in each of the task periods. The e�ects
practice within these regions are reported below in the R
analyses.

The practice e�ect analysis revealed a network o� ronta
parietal, temporal, and subcortical regions during encoding t
were more active during early scans as compared to late scans
the session (Fig. 3b). No regions showed a signi�cant practice
e�ects during the delay and retrieval periods. All brain region
illustrated inFig. 3b showed decreases in activation from early t
late in the session. Furthermore, activity in all of these regions w
signi�cantly above baseline during the early scans. No region
any task period showed signi�cant activation increases from ear
to late in the session.

Imaging data functionally de�ned ROI analyses

To determine whether regions showing a main e�ect of ta
were also in�uenced by practice and load, we carried out sub
quent planned contrasts of the regions identi�ed in the mapw
analyses reported above(Fig. 3a) . For the main e�ects ROIs,
during encoding, only three regions (in left middle temporal gyr
left postcentral gyrus, and left insula) didnot also show e�ects of
practice. During delay and retrieval periods for the main e�e
ROIs, no regions showed practice e�ects. Several of these region
during delay and retrieval did, however, show practice by loa
interactions, with high load trials showing a disproportiona
decrease from early to late compared with low load trials. Th
local maxima for these regions and the type of e�ect found in ea
region are listed in theTable 1.

We conducted further planned ANOVAs to examine the region
identi�ed by the mapwise analyses of practice (regions shown
Fig. 3b, left and middle panels) to determine whether they we
also in�uenced by memory load. During encoding, we found lo
e�ects and practice by load interactions in several parietal, occi
ital, and subcortical regions. We also found regions showing
practice e�ect only. Average signal in these regions decreased
35% from early to late for high load trials and by 30% for low loa
trials. The local maxima of each region are listed in theTable 1,
grouped by the type of e�ect (practice e�ect only, practice and lo
e�ects, practice by load interaction) found in each region.

The interaction between load and practice on mean error rate
the behavioral data raises the possibility that the changes
activation from early to late were a result of decreased accura
and not due to the e�ects of practice per se. To address this,
carried out the analysis for correct trials only. In other words, th
regions we identi�ed as showing practice e�ects for correct a
incorrect trials(Fig. 3b) were re examined using data from corre
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trials only. We found no di�erences between data from corre
trials only and data including all trials.

To distinguish between fatigue and practice as explanations
the activation decreases we observed, we carried out the follow
additional analysis: participants were divided into ‘‘higher err
rate’’ and ‘‘lower error rate’’ groups based on a median split o
early versus late accuracy scores. The higher error rate group (N
5) had an increase in error rate of 6.11% from early to late, and t
lower error rate group (N 4) had an increase of only 2.78%.

If the decreases in activation we observed are due to increas
participant fatigue, then the higher error rate group, which lik
felt more fatigue, should show greater decreases in activation fr
early to late. This should be especially true for encoding, whic
showed the major e�ect of practice (seeFig. 3b). Therefore, we
examined the percent signal change (based on mean param
estimates) in the regions showing decreases during encoding (
panel in Fig. 3b) for both higher error rate and lower error ra
participant groups.

Although the groups di�ered in the overall amount of activ
tion, in contrast to what one would expect i� atigue was the ca
of the observed activation decreases, the decreases for these
groups were nearly identical (0.041 and 0.039 for the higher a
lower error rate groups, respectively; [F (1,124) 0.166, P > 0.68]
for the interaction).
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Discussion

Our goal in the current experiment was to investigate whet
practice in�uences WM processes di�erentially during repetitiv
performance of a face WM task. We investigated practice relate
activation changes from early to late in a scanning session acro
low (1 or 2 faces) and high (3 or 4 faces) memory loads fo
di�erent task periods (encoding, delay, retrieval) of a face workin
memory (WM) task. We found e�ects of practice based on tw
types of analyses across a group of participants: (1) we identi�
regions in a mapwise analysis showing a main e�ect of task an
further examined these regions for practice (changes in activat
from early to late in the scanning session) and load (high lo
versus low load) e�ects, (2) we identi�ed regions in a mapwis
analysis showing a main e�ect of practice by comparing ear
versus late runs in the session and further analyzed these regi
for load e�ects and practice by load interactions. In these analys
practice was shown to produce activation decreases. We found
evidence for practice related increases in activation or for shifts
the locations of activated regions from early to late in the sessi

Importantly, the neural e�ects of practice we identi�ed we
independent of evidence o� earning in the behavioral data. In ot
words, neural activity changes over time as the task is perform
repetitively, but these changes are not dependent on behav
changes typically associated with skill learning. Thus, our resul
challenge the idea that dynamic changes in activation are linked
faster or more accurate performance as has been commo
reported in experiments on cognitive and motor skill learni
(e. g. Berns et al., 1997; Karni et al., 1998; Poldrack et al.,
1998). Instead, the neural activity we observed changes over tim
but is independent of task improvement, suggesting that there
important neural changes associated with learning that are
captured in the behavioral data.

These �ndings have several important implications for exam
ining dynamic changes in neural activity as a task is perform
repetitively. Variability of neural activity across the time course o
the scanning session (or over several sessions) is a commo
methodological ‘‘problem’’ for imaging. Unless an fMRI experi
ment is speci�cally designed to examine skill learning, mo
studies are designed to capture a �xed neural pro�le associa
with a particular cognitive process. To accomplish this, sign
change values may be normalized to eliminate within sessi
variance. While some of this variance is due to intrinsic scann
�uctuations, some are due to important learning related change
neural activity. Thus, the process of discounting this ‘‘noise’’ i
likely to also eliminate these experimentally relevant activati
changes. Although several fMRI experiments have examined ear
and late phases o� earning (e.g.,Muller et al., 2002; Sakai et al.,
1998; Toni et al., 2001; Tracy et al., 2001), the present study
employs a working memory task rather than a traditional motor
association learning paradigm, and does not involve improv
performance associated with skill acquisition.

The in�uence of working memory load on task related activi
has been reported elsewhere(Druzgal and D’Esposito, 2003). That
study reported that activation increased parametrically with me
ory load in the prefrontal cortex (PFC) and the fusiform face are
(FFA), but not in the fusiform object area (FOA), during encodin
and delay periods. Those results suggest that the PFC and FFA a
sensitive to increasing demand for WM resources. In the prese
study, we focus speci�cally on the in�uence of practice and t
interaction between practice and memory load. To this end,
manipulation o� oad was used to determine whether activatio
changed di�erentially with practice as WM demands increase.

Practice e�ects

Of all the task related regions(Fig. 3a) we identi�ed, we found
regions showing additional e�ects of practice during the encod
period only. Interestingly, we found only three encoding relat
regions that did not show a practice e�ect, indicating that th
regions are involved in encoding processes that are not in�uen
by task repetition. These regions are in left middle temporal gyr
left postcentral gyrus, and left insula. Because activity in the
regions does not change with practice, these regions are lik
involved in encoding processes that are not sensitive to stimu
novelty or to changes in encoding e�ciency. Because this practic
related activation is primarily left lateralized, one candidate pr
cess is subvocal verbalization (e.g., providing names or labeling)
faces during encoding.

The mapwise contrast of early versus late session changes
activation also indicates that the in�uence of practice is se
primarily during encoding. This �nding is consistent with theori
of memory that hypothesize that encoding is an active proc
requiring attention, whereas retrieval processes (e.g., motor
sponse) are more automatic(Naveh Benjamin et al., 2000). There
is also evidence from divided attention studies that encoding
more strongly a�ected by dual task interference than retrie
(Craik et al., 2000). Because o� ts higher demands on attentio
the active encoding process may more readily bene�t fro
practice. This bene�t may re�ect improvements in general enco
ing processes rather than in processes speci�c to particular stim
That is, practice related decreases are unlikely due to grea
familiarity with the memoranda given that similar e�ects ha
been observed previously with highly familiar letter stimu
(Jansma et al., 2001)and with extremely simple, three dot stimu
with trial unique con�gurations(Garavan et al., 2000).
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Regions showing a practice e�ect without a correspondin
main e�ect of task may re�ect mediation of cognitive process
necessary for successful task performance during the initial phas
of task learning only. All of these regions showed signi�can
activity above baseline during the early period of the scanni
session, indicating that these regions are related to task perf
mance. That these regions do not show signi�cant task relat
activity across the session highlights a bene�t of our practic
related analysis. With this approach, we identi�ed additional tas
related brain regions that traditional analyses fail to detect.

We observed activation decreases in several regions norma
associated with motor processing.Murray et al. (2000) have
proposed that a basal ganglia prefrontal network, including o
puts to the thalamus, is critically involved in the formation
arbitrary visuomotor associations and abstract rules. Thus, th
decreases we observed in the anterior thalamus, putamen, a
right anterior frontal gyrus may result from subjects’ decreasin
need to focus on task rules as the task became well practiced.

It is possible that repetition priming e�ects contributed to
decreases with practice we found in visual processing regions,
have been reported previously(Martin and van Turennout, 2002).
It is unlikely, however, that repetition priming can fully explain th
e�ects we found. First, if the practice related decreases were
result of repeated viewing of the same stimuli, asvan Turennout et
al. (2000) found for objects during passive viewing andHenson et
al. (2002) found for faces on an implicit task, we would expect t
see decreases during the retrieval period as well as during enco
ing, particularly in primary visual regions. Second, because th
activation decreases occurred throughout the brain, it is likely th
multiple systems are a�ected by practice, not just low lev
perceptual processing systems.

It is also possible that the null e�ects of practice during t
delay and retrieval periods may re�ect a lack of statistical pow
due to the small sample size and division of the functional data in
early and late phases. However, the practice e�ects we observ
during encoding (i.e., activation decreases) suggest that the sta
tical power and sample size are adequate for detecting of e�ects
interest. While small (i.e., undetected) practice e�ects may hav
been present during the delay and retrieval periods, the encod
period clearly shows the greatest e�ects.

The changes in activation we observed in the absence
behavioral evidence o� earning suggests that, in agreement w
some motor learning studies(Shadmehr and Holcomb, 1997;
Staines et al., 2002), neural changes with task experience ma
occur even without faster task performance. Although RT did n
change across the session, error rates did increase from early to l
on high load trials. This raises the possibility that the practic
related changes we found were due to participant fatigue
decreased e�ort late in the session.

However, the analysis of the ‘‘higher error rate’’ and ‘‘lower
error rate’’ groups (see Results) showed no di�erence betwee
groups in percent signal change from early to late. Rather th
implicating fatigue as the major cause of the observed activat
decreases, these �ndings are consistent with our interpretation
the decreases we observed during encoding re�ect changes
e�ciency with task practice.

Several additional �ndings are also inconsistent with th
observed decreases being related to fatigue rather than pract
First, participants’ reaction times were faster from early to late
the session (by an average of 5 ms for low load trials and 23 ms f
high load trials). While these decreases were not signi�cant, th
trend would not be expected if participants were experienc
greater fatigue and distraction during the late trials. Secon
decreases in activation were observed for both low load and h
load trials, while increased error rate occurred only during hig
load trials. Third, and most importantly, the main e�ect of ta
analysis showed that the extent of overall activity was great
during retrieval (2087 active voxels) than during encoding (62
active voxels). A generalized fatigue or attention e�ect would b
expected to produce decreases in activity from early to late in b
task periods, although we report decreases only during encodin

Furthermore, while other fMRI studies have reported decreas
in activation with practice on WM tasks(Garavan et al., 2000;
Jansma et al., 2001; Milham et al., 2003), these studies did no
isolate separate components of WM and therefore did not conta
‘‘built in’’ control for general attention e�ects as in the curren
experiment. Finally, these experiments showed improvements
performance during the scanning session that accompanied act
tion decreases, suggesting that fatigue and attention e�ects can
explain these decreases. Thus, the most relevant existing da
which are consistent with the data we present here, do not sup
the fatigue explanation.

Practice by load interactions

We conducted a further analysis in the functional ROIs t
examine practice related changes across both high and lo
memory loads to investigate the nature of the e�ect of pract
on speci�c WM processes. Regions showing e�ects of practice bu
not load may be involved in general learning processes: ones n
speci�c to WM. Other regions, a�ected both by practice an
memory load, may be more important for implementing WM
speci�c encoding strategies, such as chunking, which may becom
optimized once the task has been well learned. Recent WM stud
suggest that greater activation for increased memory load is due
additional recruitment of cognitive resources required for succe
ful maintenance in high WM load conditions(D’Esposito et al.,
2000).

The pattern o� nteraction between practice and memory load
activity within a particular brain region may indicate the nature
the WM processes instantiated there. For example, an interaction
which the load e�ect disappears with practice may indicate
process that is required when the task is novel but not when i
performed with expertise. Conversely, additive e�ects betwe
practice and load may indicate a process that becomes m
e�cient with practice, but is required for the successful perfo
mance of the task.

In our practice e�ect ROIs identi�ed by the mapwise analyse
several regions (right insula, right middle occipital gyrus, and le
cerebellum) showed practice by load interactions during encodi
with high load trials showing greater decreases from early to la
than low load trials. In the main e�ect of task ROIs, we found
practice by load interactions in several other regions. While w
observed these interactions in all three task periods, only t
interaction regions during encoding also showed e�ects of practi
These �ndings suggest that regions specialized for increasin
e�ciency with practice may also be in�uenced by load. Furthe
more, it appears that practice interacts with load in a complex w
that may not be apparent when examining the early versus
signal change alone.

Overall, these �ndings suggest that load e�ects may attenu
with practice. This attenuation o� oad e�ects is striking because
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indicates that the relationship between information being enco
and corresponding brain activation may change �exibly with ta
experience. Clearly, this result challenges any simple mappin
between brain activation levels and information processing load
revealing that this mapping is likely to be contingent on
participant’s familiarity with the task, it suggests that objecti
di�erences in task demands may be minimized by the e�ciency
the encoding mechanisms.

Learning and neural e�ciency

The �nding that practice related decreases occurred predo
nantly during the encoding period, and not during the delay
retrieval periods, provides strong evidence that practice in�uen
WM processes di�erentially. There are several theories of encod
ing e�ciency that o�er insight into how subjects may hav
generated encoding strategies that were implemented more
cessfully with practice. For example, chunking is a process th
involves condensing information into discrete units to be held
WM. Greater knowledge and expertise of a particular doma
allows more chunking o� nformation related to that domain
occur (Gobet et al., 2001; Miller, 1956). In this experiment, faces
can be considered visual stimuli for which subjects have spec
expertise(Gauthier et al., 1999). Subjects may use face expertise to
organize individual facial features into chunks more e�ciently
the task becomes familiar.

Related to the concept of chunking isEricsson and Kintsch’s
(1995) model o� ong term working memory, in which subjec
develop skill in a particular domain by applying strategies f
e�cient encoding in long term memory. These strategies beco
re�ned with repeated exposure to the task and stimuli. Thus, in t
experiment, early on in the session, subjects may carry o
ine�cient encoding procedures o� ndividual features o� ac
early on in the session. With task practice, however, subjec
may learn to use expert knowledge about faces to deve
strategies for encoding relevant features that will allow them
successfully discriminate between target and distractor faces.

Finally, Glassman (1999) has applied the concept of proce
dural knowledge to these models and has suggested that pr
dural memory (based on task knowledge and skill) serves as
focusing mechanism that serves as a priming mechanism
e�cient encoding and for facilitating chunking. He proposes th
brain regions involved in this focusing mechanism must be high
multimodal to incorporate complex timing, perceptual, and m
monic systems. Thus, the regions we observed showing enco
ing related decreases may be important early in the session
focusing knowledge about facial features, but less important l
in the session when encoding strategies have already be
established.

We found no brain regions showing activation increases wi
practice, and no new regions appearing late that were not ac
early in the session. This suggests that the change with practice w
one o� ncreased neural e�ciency for processes (e.g., chunkin
that remained constant across the task, and not a shift in strat
with increased practice. The present results of practice induc
activation decreases complement two previous investigations
WM practice e�ects (Garavan et al., 2000; Jansma et al., 2001),
both of which observed activation decreases with practice. O
interpretation is also consistent with results from a study that fou
practice related decreases in activity as participants learned to �
out task irrelevant responses on a version of the Stroop ta
Speci�cally, Milham et al. (2003) found di�erent pro�les of
practice related decreases in dorsolateral PFC and anterior cing
late corresponding to decreasing need for attentional control.

In other neuroimaging studies investigating the relations
between neural e�ciency and activation, results have been mix
Gray et al. (2003) reported a positive correlation between le
lateral prefrontal activation and intelligence scores(Gray et al.,
2003), suggesting that more prefrontal activity was associated w
more e�cient processing. Other studies have found that hig
intelligence was associated with greater activation decreases w
learning on a spatiomotor task(Haier et al., 1992b), and with less
spatial dispersion of the source of activity(Jausovec and Jausovec
2003). Other studies have reported correlations between better
performance and low activation levels(Haier et al., 1992a; Rypma
et al., 2002), which is consistent with our �ndings that activatio
decreases as processing becomes more e�cient.

The absence of behavioral evidence o� earning raises t
question of whether neural processingdid in fact become more
e�cient. It should be noted that response time measurements
trials such as these provide only indirect and uncertain inform
tion about the e�ciency of the preceding encoding process
However, the neural e�ciency hypothesis is supported by o
�ndings with respect to memory load. While the behavioral da
did not show evidence o� mproved performance, it did show
e�ect o� oad, with longer reaction times on high load trials th
on low load trials. Correspondingly, brain activity was greater fo
high than low load trials in several regions showing practi
e�ects and practice by load interactions. Consequently, that
more demanding task condition (high load) produced grea
activation levels suggests that the ease of processing is invers
related to activation levels. The observation that the load e�
dissipated with practice (i.e., activation on high and low loa
trials became indistinguishable with practice) suggests that p
cessing demands did decrease and that encoding proces
became more e�cient.

The suggestion that neural activation may change from early
late in a scanning session, even in the absence of behavio
evidence o� earning, has implications for data analysis in an
functional neuroimaging study involving repetition of a task
speci�c stimuli. The e�ects of an hour or two of practice with
task or speci�c stimuli typically are not considered in mo
experiments. Trials at the beginning of the scanning session, wh
the task and stimuli are unfamiliar, are averaged together with tr
at the end of the session, when the task and stimuli are perform
with greater ease and �exibility. By revealing dramatic chang
from early to late in practice, this experiment shows that practi
related variance may be of great interest even when the task d
not require learning skills or associations. We suggest that t
neural pro�le of most tasks is not stable but changes as a funct
of time and participant experience over the course of scanni
Future imaging experiments may bene�t from viewing neu
activation as a dynamic, rather than static, phenomenon. O
way to address this issue is to modify standard fMRI data analys
procedures that eliminate within session signal variance in a w
that accounts for changes with time and task expertise.

This study suggests that task practice in�uences the amount
pattern of neural activation during just one scanning session, e
when this practice is not evident in the behavioral data. Th
these �ndings argue for a neural basis o� earning that is n
dependent on behavioral performance, and challenge the idea
cognitive processes can be mapped onto brain regions in a �x
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corresponding to repetitive task performance is both spatially a
temporally dynamic.
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