
Implementation of an AmI Communication Service Using a Federated
Event System Based on Aspects1

1 This work is partially financed by IST-2-004349-NOE AOSD-Europe and the Spanish Ministry of Technology and Science, CICYT, under

grant TIN2005-09405-C02-01.

Lidia Fuentes,
LCC Malaga University

lff@lcc.uma.es

Daniel Jimenez,
LCC Malaga University

priego@lcc.uma.es

Rene Meier,
DSG Trinity College,
rmeier@cs.tcd.ie

Abstract

Event-based communication can be considered naturally
suited to support Ambient Intelligence and Ubiquitous
Computing applications due to its asynchronous nature and
due to loose coupling between application components.
Event systems support different properties depending on the
specific problem domain for which they have been
developed. Using these event systems in a federated way,
where events are disseminated across the boundaries of a
single event system, has been possible in some areas.
However, such federation has typically been realized as
bilateral inter-working federation between designated pairs
of event systems that rely on hardcoded architectures, which
are inherently difficult to maintain when systems evolve over
time. This paper presents an Ambient Intelligence platform,
called AOPAMI, that uses aspects to enable truly
multilateral federation between inter-working heterogeneous
event systems. AOPAMI also solves the technology evolution
problem using the Aspect Oriented Software Development
paradigm.

1. Introduction

Ambient Intelligence applications are becoming the
new revolution in computer science that is being
supported by several organizations such as [1], [2], and
[3] as well as by the work of individuals such as [4],
and [5]. The next 10-15 years will likely be the era of
the Ambient Intelligence (or AmI) and we will be
surrounded by thousands of intelligent devices and
applications that will help to fulfill everyday tasks.
Today this kind of application is gaining acceptance
due to the reduced manufacturing cost of the
supporting hardware devices, the increase of users of
portable devices such as mobile phones, PDAs and
laptops and the development of new communication
technologies such as WiFi or Bluetooth.

AmI applications are distributed and loosely
coupled in nature and as a consequence, event systems
are a natural choice for realizing communication.
Unfortunately, there exist different event systems, each
one providing solutions for specific domains and
problems such as Siena [6], Steam [7] and CNS [8]. As
a result, if we select one of these systems to implement
an AmI application we might find that this application
will be unable to interact with others applications that
use different event systems.

Meier and Cahill [9] provide a classification of
event systems that categorizes event systems according
to a set of properties. Ryan et al. [10] has used this
taxonomy and has shown that it is possible to
implement a Federated Event System (FES). The FES
provides a direct event translation between systems
providing an adaptation mechanism for event system
properties. This mechanism adapts the events produced
in one system to a common and neutral representation,
called the FES event model. This model enables the
transformation from its representation to other event
systems representations. As a consequence, this
mechanism enables transparent access to the services
provided by a diverse set of event systems, thereby
creating a multilateral inter-working federation of
event systems while maintaining the independence and
coherence of the individual event systems.

However, this adaptation mechanism has some
limitations. The first limitation is that it is not always
possible to perform an adaptation of the events from
one system to another. This limitation is due to the
heterogeneity in the capabilities of the event systems
and due to differences in event formats. Thus, only a
subset of event system properties and features is
available to be used in the FES. The second limitation
is that it neither provides mechanisms to handle the
evolution of event systems over time, for example, due
to technological changes, nor considers possible
changes to the event system configuration used at

3081-4244-1326-5/07/$25.00/©2007 IEEE

runtime, for example, due to modifications to the
environment. In the first case, if we need to add
support for a new event system or an existing event
system changes, it will be necessary to modify and to
recompile the entire application and then to redeploy
the system on all devices in order to update the
application. The workload associated with this task is
expected to be considerable given the scale of such
applications. In the second case, the application always
uses a fixed set of event systems and it can not be
adapted to change these at runtime. This feature
allows, for example, to disable or to unload those event
systems that are not anymore used, thus, saving
significant computational resources. Finally, it also
enables us to decide, even at runtime, which one event
system the platform will use to forward the events.
This decision can be taken at every moment depending
on the environment variable values and state.

Based on our previous experiences refactoring
applications using the Aspect Oriented Software
Development (or AOSD [11]) paradigm [12] [13], we
have developed a middleware platform, called
AOPAmI. This paper shows the benefits of using the
AOSD paradigm for addressing the heterogeneity,
evolution and adaptation issues in FES applications.
We show how the AOPAmI platform can be
effectively applied to develop FES applications.

The rest of this paper is structured as follows. In
section 2 we discuss the benefits of using a federated
event system. Section 3 describes an example
application. Section 4 presents the AOPAmI platform
describing its main features. In section 5, we explain
the application implementation process, indicating the
problems faced when adapting existing applications to
the AOPAmI platform. Finally, in the last section we
present our conclusions and future work.

2. Federating Event Systems

Event based middleware is nowadays applied in a
growing number of different application domains
including finance, telecommunications, smart
environments, health care and entertainment. The use
of event systems allows the integration of
heterogeneous applications in an anonymous and
scalable way, due to the properties inherent to event
systems [10]. These event systems provide a wide
range of services to the applications that use them.
However, the problem of integrating different event
systems in order to use their services in a multilateral
inter-working and federated way has not been widely
considered by researchers. The use of a FES provides a
powerful tool to build truly distributed applications

that can use a wide range of services provided by the
different event systems integrated in the federation.

For example, suppose we design a control
application that detects invalid value ranges in multiple
applications controlling a production chain. The
applications throw control events every time that a task
finishes, and we have different event systems for each
application used in the production chain. If we want to
avoid the problems derived from the integration of
these event systems, our choice will be to use a FES.
This FES integrates all the used event systems and
enables the easy introduction of new event systems in
the production chain. Otherwise, we will be forced to
modify the implementation of the control application
each time a new event system is added. The use of a
FES is justified here, because it provides an elegant
solution to the heterogeneity problem associated with
the use of different event systems.

Another problem that can be solved used FES is
system scalability. Suppose that the event systems do
not provide content-based filter capabilities. But, they
must send only those events whose contents match a
specific criterion, for example, values that are out of
range. Consider the importance of this problem if the
communication channel used by the system only
support a limited amount of events. As a consequence,
we must minimize the number of events thrown by the
system. An adequate way to achieve this is to develop
a FES that provides filtering capabilities for all the
event systems integrated into it.

As a conclusion, we must say that implementing a
FES is complex, but it provides a transparent
communication mechanism that does not interfere with
the original event system behaviour. Additionally, the
resulting system maintains all the benefits associated
with the use of event systems, such as scalability and
loose coupling between entities that use the FES.

3. Using Federated Event Systems

The distributed application example, which we have
selected to evaluate our approach, is split in several
parts that are executed on different hardware devices,
as is illustrated by Figure 1. Together these
applications form a typical FES application that
exhibits the problems associated with distributed event
based applications such as device heterogeneity,
scalability and limitation on communication. To
illustrate all these problems and how the FES solve
them, we have taken the following example from the
work of [10]. In this paper, we show how to adapt this
example from the FES to AOPAmI as well as the
advantages of using aspects.

309

Figure 1 FES example

The first application, identified as Vehicle in the
Figure 1, is located inside a moving vehicle and sends
events containing information about the vehicle
identifier, position (GPS) and speed at regular time
intervals using an ad-hoc wireless connection. These
events are gathered by one or more fixed traffic
monitor applications, noted as TrafficMonitor in the
figure. These events are forwarded to a traffic control
center, indicated by SienaServer, using fixed
communication connections. The delivered events and
the information that they contain will be used by the
final application, named TrafficMonitoringApp, in
order to determine if the vehicle is circulating at an
adequate speed or in the right direction.

The main problem with this scenario is that each
application is using a different event system for
disseminating events and that each application is
implemented in a different programming language.
Concretely, the Vehicle application is running a
CORBA ORB implemented in Java. This application
uses the CORBA Notification Service CNS to send
location events to the nearby traffic monitor
applications acting as event producers. Each instance
of the second application type, the TrafficMonitor,
runs a C++ application and the STEAM event system.
This application receives STEAM events from the
Vehicle application and sends them to the control
center using the Siena event system. Therefore, this
application acts both as an event consumer and as an
event producer. Finally, the third application, the
traffic control center, is implemented in Java and uses
a Siena client connected a Siena server. The Siena
server catches the events produced by TrafficMonitor
applications acting as an event consumer.

Now we will explain how events are disseminated
from the Vehicle application to the traffic control
center application. In the first place, the Vehicle
application sends a CNS event. This event is sent to
other CNS enabled applications in the environment.
Additionally, this event is sent through a gateway
element identified as G1 in Figure 1.

This element converts the event format from CNS
to FES and from FES to STEAM and delivers the
adapted event to the second application. Then, the
TrafficMonitor application receives the STEAM event
and process it determining that it must be sent to the
control center through a Siena server. In order to

achieve this, the STEAM event is converted to the FES
representation by the G2 gateway shown in Figure 1,
and encoded again as a Siena event to be delivered to
the Siena server. Finally, the Siena server receives the
event and delivers it to all the Siena clients interested
in it, in our case the TrafficMonitoringApp application.

4. The AOPAmI Framework

As we have indicated at the beginning of this paper,
we have extended the AOPAmI framework in order to
implement a FES. The AOPAmI platform (Aspect
Oriented Platform for AmI) is an aspect-oriented
middleware (AOM) platform. An AOM alleviates
much of its complexity by allowing that concerns such
as communication, coordination, location, persistence
and security that crosscut the application to be
modularized. This modularization hence facilitates the
system evolution and makes it more robust to
accommodate new application requirements. In
AOPAmI we put special emphasis in addressing the
evolution and adaptation issues.

Aspect technologies separate and encapsulate
crosscutting concerns in modules called aspects.
Aspects can only be invoked at some well defined
execution points inside components called join points
(e.g. component creation, disseminating a message or
an event). The aspects code is weaved into the
components that are crosscut by the aspect obliviously
from the point of view of the components. The
information about which aspects have to be weaved
into a component and when, is specified in an aspect
language using a set of composition rules. In our
approach the aspect language is a Domain Specific
Language or DSL for AmI applications (AOPAmI-
DSL) that defines the platform architecture as is shown
in [14]. The file holding the configuration of the
AOPAmI platform, as is shown In Figure 2, is parsed
by the platform when it is started. After this phase the
platform instantiates the required base elements,
identified by a series of InstantiateBeseElent tags in
Figure 2, which we explain later. This configuration
information is internally stored by the platform so it
can be changed at runtime. We call base elements to
both components and aspects. The difference between
them is the way in which they are composed in the
application. On the one hand, aspects modify the

310

component’s normal behaviour by intercepting and
modifying the disseminated events. On the other hand,
components are not conscious about the existence of
aspects that change their behaviour. In Addition, base
elements can take on both the component and the
aspect role in the application.

<platformArchitecture>
 <baseElements>
 <baseElement role="gateway">
 ...
 <impls selected="default">
 <impl id="default"
 mainclass="STEAM.STEAMGateway"/>
 </impls>
 </baseElement>
 <baseElement id="Coord">...</baseElement>
 <baseElement id="Location">...</baseElement>
 <baseElement id="Communication">...</baseElement>
 <baseElement id="CNStoFES">...</baseElement>
 <baseElement id="FEStoSTEAM">...</baseElement>
 </baseElements>
 <properties>
 <property id="deviceID" type="String" value="Vehicle"/>
 ...
 </properties>
 <compositionRules>
 <compositionRule when="EVENT" coordElement="Coord">
 <from><baseElementRef role="gateway"/></from>
 <events><event id="sendEvt"/></events>
 <composition>
 <evaluation>
 <concurrent><role name="Location"/></concurrent>
 <concurrent><role name="CNStoFES"/></concurrent>
 </evaluation>
 </composition>
 </compositionRule>
 <compositionRule when="BEFORE_SEND">
 <from><baseElementRef role="Coord"/></from>
 <to><baseElementRef role="Communication"/></to>
 <events><event id="sendEvt "/></events>
 <composition>
 <evaluation>
 <concurrent><role name="FEStoSTEAM"/></concurrent>
 </evaluation>
 </composition>
 </compositionRule>
 ...
 </compositionRules>
 <instanciateBaseElements>
 <instanciateBaseElement role="Coord"/>
 <instanciateBaseElement role="Location"/>
 <instanciateBaseElement role="CNStoFES"/>
 <instanciateBaseElement role="FEStoSTEAM"/>
 <instanciateBaseElement role="Communication"/>
 <instanciateBaseElement role="gateway"/>
 </instanciateBaseElements>
</platformArchitecture>

Figure 2 AOPAmI Architecture example

In AOPAmI, the relations between base elements
are defined outside their source code, in the AOPAmI-
DSL as a set of rules. Two of these rules are shown in
Figure 2 enclosed by the compositionRules tag. As a
consequence, the base elements do not maintain direct
references among themselves. Therefore, we can
provide different implementations for the same role
name in the application in order to address the device
specific requirements such as memory and execution
constraints. For example, we can provide several
different implementations of a base element that model

different communication technologies such as WiFi or
Bluetooth and refer to it using the same role name. In
Figure 2, it is shown the definition of a gateway base
element (baseElement tag) that provides only one
implementation impl tag of this element. In order to
add new implementations of this base element, we
simply add new impl tags and identify then using the
id attribute. Finally, we need to change the selected
attribute in the impls tag in order to reflect which
implementation will be used by the platform.

Using the AOPAmI platform we are able to modify
the event model configuration depending on the
application requirements and on the hardware
restrictions. We can adapt this configuration even at
runtime without stopping the application or modifying
a single line of code. For example, we can change the
set of event systems within the FES, adding or
removing them from the application, or decide to
which ones the system will use to disseminate events
by simply modifying the composition rules shown in
Figure 2. We can also accommodate all the different
event types (untyped, typed and structured) to the
AOPAmI event representation without changing the
system implementation. Using AOPAMI, we are able
to change the event propagation model if the adapted
event system supports more that one. For example, we
can model the push and pull event propagation models
in the CNS event system using base elements.
Switching between the two models will be as simple as
changing the selected implementation of the required
base elements and some rules. We can add new
features to event models such as content and subject
filters, real time restrictions or security by adding the
adequate base elements and rules. Another advantage
is that we are able to add new features incrementally to
the system. Moreover, these features can be enabled or
disabled in the application whenever it is needed if
they are orthogonal.

5. AOPAmI and Federate Event Systems

In this section, we show how we have modelled the
original FES application using the AOPAmI platform,
the challenges that we have faced and the advantages
derived from this implementation. In order to
implement the distributed application presented in
section 3 using AOPAmI, we have to implement two
different applications.

5.1. Adapted Applications

The first application, the Vehicle application shown
in Figure 3, is modelled in Java using JacORB [15],

311

which provides a CNS implementation. As JacORB
and AOPAmI are implemented using Java, this
adaptation is as easy as instantiate a new java object.

The second application, shown in Figure 3, is in
charge to receive STEAM events and to send Siena
events to the traffic control center. This application is
implemented in C++ and, thus, we need an integration
technology such as JNI Java [16] in order to create a
bridge between both languages. But, two limitations
arose from this solution.

The first limitation is that the target device must
support a Java Virtual Machine (JVM). The second
one is that only primitive Java types are supported as
parameters and return values for the functions written
in C++. Thus, in order to do not overload the AOPAmI
platform with superfluous methods, we created a java
class that acts as a launcher for the AOPAmI platform.
This class implements all the methods needed by the
TrafficMonitor application to disseminate events and
to perform all the necessary parameter transformations.

5.2. Application Base Elements

Now we are going to describe the set of base
elements used by the applications and the functionality
that they model. In both applications we have followed
the same model, but the base element implementations
differs depending on the application’s purpose. Figure
2 describes the base elements used by the Vehicle
application using a series of baseElement tags.

The most important base element in both
applications is the gateway. This element models the
object that the application will use to disseminate
events using the FES. We have two gateway
implementations in the applications. The
STEAMGateway, which is able to accept STEAM
events and the SIENAGateway, which is able to accept
Siena events. The definition of the first one can be
seen in Figure 2. Notice that we use the gateway role
name to refer to this element through the rest of the
architecture description instead of using the real class
name. For example, it is used in the first composition
rule on Figure 2 to indicate that the rule will be applied
only if the element throwing the event (from tag) is the
gateway element. Notice that this base element is
usually composed with other base elements as a
component because it does not modify the normal
application behavior as opposed to other base elements
that we describe later. This composition is reflected in
the composition rules that describe the platform
architecture.

After the gateway elements, we found the adaptors.
We need a pair of them to perform the event adaptation
between a specific event system and FES and vice
versa. Concretely, in the first application we found two
of these named CNStoFES and FEStoSTEAM as it is
shown in Figure 3. The first one transforms the CNS
events received by the STEAMGateway base element
to the FES event format. The second one transforms
the FES events into the STEAM format using
conversion Table 1. Other data associated to the event,
as for example the event type, are also adapted
automatically from one event system to another. Notice
that these base elements are usually composed with
other base elements acting as aspects, because they
modify the normal application behaviour. Notice also
that how base elements are composed is completely
described in the composition rules shown in Figure 2
and that as a consequence; base elements have not
knowledge of how they are being composed by the
platform.

Table 1. FES to STEAM Conversion Table
AOPAmI FES Type STEAM parameter Type
java.lang.String S_EventParameterDeclaration.S_STR
java.lang.Integer
java.lang.Short

S_EventParameterDeclaration.S_INT

java.lang.Float
java.lang.Double

S_EventParameterDeclaration.S_DBL

JavaSLSLocation S_EventParameterDeclaration.S_POS

java.lang.Long S_EventParameterDeclaration.S_TIM
java.lang.Boolean S_EventParameterDeclaration.S_INT
java.lang.Object Not Supported by STEAM

If we examine carefully conversion Table 1, we
notice the adaptation problem that arises here. The
problem is that STEAM does not support all possible
parameter types provided by CNS, for example
Boolean or Object values. The opposite it is also true,
because STEAM defined a local S_POS type that it is
not supported directly by CNS. As a result, in some
cases we must perform some parameter adaptations.
For example, in AOPAmI we have defined a class
called JavaSLSLocation that models the S_POS type.
Other adaptation is from the CNS numeric parameters
to the FES numeric types (Integer and Double). In this
case some loss of precision may occur when adapting
the numeric values. Finally, the conversion of Boolean
values is an extreme case. We have no other choice
that to convert them to integers. This is needed because
STEAM does not support Booleans. Additionally, we
need to remember the name of these parameters in
order to convert then back to CNS.

312

Vehicle (Java application) uses CNS
AOPAmI platform

STEAMCoordination

CNStoFES

FEStoSTEAM STEAMCommunication

JacORB
CORBA ORB

Platform
Architecture

File
(XML)

CNS

TrafficMonitor (C++ application) uses STEAM

Java Launcher Application (JNI)

AOPAmI platform

SIENACoordination

SIENALocationSTEAMtoFES

FEStoSIENA SIENACommunication

Platform
Architecture

File
(XML)

STEAMLocationSTEAMGateway

SIENAGateway

Figure 3 Vehicle and TrafficMonitor Applications

The second application uses another pair of
adaptors named STEAMtoFES and FEStoSIENA that
are composed similarly to the two previously
presented. The conversion table from STEAM to FES
is the inverse of Table 1. Finally, the conversion
between FES and Siena is straightforward because
there is a direct correspondence between Siena and
FES formats.

The following important base elements used by the
applications is the locator, named STEAMLocation
and SIENALocation and identified as Location role
name in Figure 2. These elements maintain a list of
available STEAM and SIENA devices in the
environment. When an event is disseminated through
the STEAMGateway, this list is added to the event as a
property that is used by the platform to send the event.
Notice that we have composed this base element with
the gateway element, as an aspect, using a rule instead
of providing a hardcoded implementation of this
property inside the coordination or gateway elements.
Doing this, we provide a more flexible implementation
and we make use of a platform mechanism to add
information to the event as needed. This information
can be used afterward by the coordination element to
process the event throw by the gateway base element.

One of the most important base elements in any
AmI applications is the coordination base element.
Each AOPAmI application defines and uses one of
these events to process the events received by the
platform. STEAMCoord and SIENACoord are our
example coordination elements identified in Figure 2
as the Coord base element. These elements can be
implemented using a transition diagram or a hard
coded decision tree. This decision is up to the
programmer and depends on the device capabilities. In
the examples we used the hardcode version because
the coordination model is very simple. We only need
to redirect the events to all the devices in the
environment indicated in the property added by the
Location base element. Notice that when an event is
thrown by a base element and a composition rule is
applicable, then the platform always evaluates a
coordination element. An example of this is shown in
the first evaluation rule on Figure 2 where the

coordination element, indicated by the coordElement
attribute, is evaluated as an aspect. Notice that this
element can be used as a normal component when it
sends messages to other base elements. This behaviour
is depicted in the second composition rule (see from
tag) shown in Figure 2.

Finally the last base element used by the
applications is the communicator, identified using the
Communication role name in Figure 2. Each
application defines and uses one of such elements,
identified as STEAMCommunication and
SIENACommunication. The functionality of these
base elements is sent the events to the target devices
and usually they are composed as components in the
application.

5.3. The Application Execution

After explaining which base elements are defined
by the applications, we will show how they are used.

Firstly, when the Vehicle application is started, it
instantiates and configures the AOPAmI platform
using the platform architecture file shown in Figure 2.
This file describes the base elements used by the
application, as is shown in Figure 3. After AOPAmI
has instantiated all the required elements, indicated by
a series of instantiateBaseElement tags, the Vehicle
application obtains a reference to the STEAMGateway
base element. This object is equivalent to the gateway
G1 object in the original example and it is used to
disseminate events using the AOPAmI platform.

When the application sends a CNS event, this event
is passed to the gateway base element. The gateway
generates an AOPAmI event that it is intercepted by
the platform. The platform checks for rules that can be
applied on this situation. In this case a rule, the first
rule shown by Figure 2, is found. We determine that
the rule is evaluated only when an event is thrown
because of the EVENT value assigned to the when
attribute in the compositionRule tag. This rule also
indicates that when a sendEvent event (events tag) is
thrown by the gateway base element (from tag), then
the platform will compose this base element with the
Location and the CNStoFES base elements (evaluation

313

tag). The base elements will be evaluated as aspects in
the order indicated by the rule, and they will probably
modify the event contents and properties. Finally, the
rule states that a coordination base element, indicated
by the coordElement property of the rule, will be
evaluated. This last base element corresponds in our
example to the Coord element.

At the application level, by applying these two
aspects we achieve two goals. Firstly, the platform
adds a list of available STEAM devices to the event
using the Location base element. And secondly, the
platform converts the event format from CNS to
STEAM using the CNStoSTEAM base element.
Finally, after that, the coordination element
(STEAMCoord) is evaluated the modified event. This
element will decide to which STEAM devices send the
event using the information provided by the event and
by the platform. As a consequence, none, one or more
messages are generated. Note that a message is an
event, which has a destination. In our platform, this
destination is other element. In this case, the
destination is the STEAMCommunication element.

The new message is sent to the platform and the
platform checks for the applicable rules. In the
example describe by Figure 2, a rule is found that
states that when a message sendEvent (events tag) sent
by the Coord base element (from tag) to the
Communication element (to tag) is found. Then, before
the message is delivered to the Communication
element (the attribute when takes the BEFORE_SEND
value in the compositionRule), the message will be
composed with the FEStoSTEAM base element.

At the application level the platform adapts the
event format from FES to STEAM using the
FEStoSTEAM element as an aspects that modifies the
normal element composition. Finally, the event is
delivered to the STEAM device or devices selected by
the coordination element using the
STEAMCommunication element.

The second application works similarly to the first
one. After receiving a STEAM event, the
TrafficMonitor application decides to forward this
event using the SIENAGateway base element. But in
this case we made the transformation from STEAM to
SIENA event format. Finally, the event originally
generated using a CNS event system is delivered and
processed by a Siena event system.

Note that in both previous examples it is not
necessary that the applications receive and handle
events coming from other event systems. This
functionality can be easily implemented in AOPAmI
by adding the appropriate base elements and
composition rules. For example, to receive STEAM
events in the Vehicle application, we only need a

STEAMtoFES and a FEStoCNS elements and a rule to
compose them. This composition will take place when
the STEAMCommunication element receives a remote
event from other STEAM application.

6. Conclusions

This work has investigated the possibility and
benefits of applying the AOSD paradigm using the
AOPAmI platform to develop a FES. Starting from the
example and the set of properties identified in the work
of [9] and [10], we have been able to implement a
functional AOPAmI FES prototype. This prototype has
combined three different event systems namely Siena,
STEAM and CNS establishing a communication
channel among them.

The use of AOPAmI has clearly added some
benefits to the FES application, such as adaptability,
modularisation and reusing. A consequence of this is
that using AOPAMI, we will be able to extend this
system by identifying new event system properties not
considered previously. These properties then can be
modelled and integrated in the FES as new base
elements and rules adding even more functionality to
existing and new applications.

Additionally, both the base elements and the
platform architecture definitions developed for this
example can be reused in other applications by simply
adapting the platform configuration to these systems.
Indeed, we reuse the Platform Architecture file shown
in Figure 2 in both the Vehicle and the TrafficMonitor
application examples. Moreover, by modifying the
platform architecture file, we can develop more
complex event system federation configurations adding
new functionality to existing applications.

An additional issue that was raised when adapting
the original application was that the AOPAmI platform
was originally designed to develop J2ME applications.
But, when using Siena and JNI we where forced to
create an extended version of the platform able to use
the J2SE features due to the requirements of these
event systems.

Finally, we have shown that AOPAmI is able to
deal with the integration issues of different
programming languages (Java and C++) in an elegant
way. In contrast, other AmI platforms such as PCOM
[17] or EMI2 [18] only consider a fixed set of
technologies and development languages and
applications are hardcoded, which limits the
application development.

As future work, we intend to integrate other event
systems in our FES modelling additional properties as
new base elements and refine the already developed

314

ones to improve their reusability. Additionally, we are
working on a set of tools to automate Platform
Architecture creation, test and verification.

7. References

[1] ISTAG web site: http://www.cordis.lu/ist/istag.htm
[2] IBM Pervasive Lab web site: http://www-

128.ibm.com/developerworks/wireless/library/wi-pvc/
[3] MIT Media Lab web site: http://www.media.mit.edu/
[4] J. Bravo, and X. Alamán, Ubiquitous Computing and

Ambient Intelligence, ISBN:84-9732-442-0, Thomson, 2005.
[5] V. Issarny et Al., "COCOA: COnversation-based

Service COmposition in PervAsive Computing
Environments", Proceedings of the IEEE International
Conference on Pervasive Services (ICPS), Lyon, France,
2006.

[6] Siena web site: http://serl.cs.colorado.edu/siena/
[7] R. Meier, and V. Cahill, “STEAM: Event-Based

Middleware for Wireless Ad Hoc Networks”, Proceedings of
the International Workshop on Distributed Event-Based
Systems (ICDCS/DEBS'02), Vienna, Austria, 2002.

[8] Object Management Group, CORBAservices:
Common Object Services Specification - Notification
Service Specification, Object Management Group.

[9] R. Meier, and V. Cahill, "Taxonomy of Distributed
Event-Based Programming Systems", The Computer Journal,
vol. 48, 2005, pp. 602-626.

[10] C. Ryan, R. Meier, and V. Cahill, "Federating
Heterogeneous Event Services," In Proceedings of the 3rd
International workshop on Distributed Event-Based Systems
(ACM/IEEE ICSE/DEBS'04), Edinburgh, Uk, 2004.

[11] Aspect Oriented Software Development (AOSD)
web site: http://www.aosd.net

[12] L. Fuentes, D. Jimenez and M. Pinto, “An Ambient
Intelligent Language for Dynamic Adaptation”, In
Proceedings of Object Technology for Ambient Intelligence
workshop (OT4AmI), Glasgow, Uk, 2005.

[13] L. Fuentes, D. Jimenez, and M. Pinto, “Development
of Ambient Intelligence Applications using Components and
Aspects”, Journal of Universal Computer Science, Volume.
12, Issue 3, 2006, pp. 236-251.

[14] L. Fuentes, and D. Jimenez, “An Aspect-Oriented
Ambient Intelligence Middleware Platform”, Proceedings of
3rd International Workshop on Middleware for Pervasive
and Ad-Hoc Computing (MPAC), Grenoble, France, 2005.

[15] JacORB web site: http://www.jacorb.org/
[16] JNI web site:

http://java.sun.com/j2se/1.5.0/docs/guide/jni/
[17] C. Becker, et Al, “PCOM – A Component System

for Pervasive Computing”, 2nd IEEE International
Conference on Pervasive Computing and Communication
(PerCom’04), Orlando, USA, 2004.

[18] D. López et Al., “EMI²lets: A Reflective Framework
for Enabling AmI”. I Symposium on Ubiquitous Computing
and Ambient Intelligence (UCAmI’2005), Thomson, ISBN
84-9732-442-0, Granada, Spain, 2005.

315

