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Abstract The assumption of the availability of port information at
design time of service compositions in Service-Oriented Architectures
(SOAs) is not valid for an increasing number of hosts on the Internet
that do not have a public, static IP address. Existing workflow engines
do not support services deployed on such hosts, as service invocations
require the availability of port information defined either in concrete
WSDL definitions or within a deployment descriptor of the BPEL work-
flow engine. This paper presents a workflow engine that supports runtime
look-up of service endpoints based on a P2P middleware. Using a service
identifier based on a DHT identifier, Service Proxy objects that encapsu-
late port information are downloaded over the structured P2P network
from the host where the service is deployed. A Service Proxy delegates
service invocations to an abstract protocol adaptor framework that uses
dynamic invocation mechanisms to provide a protocol-independent exe-
cution of remote services, e.g., over GIOP/IIOP or SOAP. This allows us
to specify binding- and port-agnostic service compositions in BPEL us-
ing abstract WSDL and our service identifiers. To validate our approach,
we extended the ActiveBPEL workflow engine to support the discovery
and consumption of services using our P2P middleware and the abstract
protocol adaptor.

1 Introduction

One goal of Service-Oriented Architectures (SOAs) is to integrate and com-
pose services that are deployed on heterogeneous middleware paradigms, e.g.,
CORBA, RMI, and J2EE. Web Services standards have been introduced to
provide a language and platform-independent way of describing and invoking
services on these platforms, and techniques for the composition of Web Services
have emerged, such as the Business Process Execution Language (BPEL) [1,2].
Approaches have been developed to assist in the design and deployment of ser-
vice compositions, such as semantic [3] or model-driven [4] techniques that help
search the space of available services. However, they are based on middleware
that requires the availability of binding and port information at deployment
time.

In this paper, we present a strategy where service endpoints are looked up
at runtime by an adapted workflow engine to support the binding to services



deployed on hosts that do not have a public, static IP address. Additionally, the
presented client-side programming model is unaware of the actual interaction
protocol and thus supports late binding using a protocol adapter framework
configured at runtime. This allows us to support the deployment of services
on hosts with DHCP-allocated IP addresses and, using Relay Peers, hosts that
reside behind a Network Address Translation (NAT) Gateway.

The SOA and workflow engine described in this paper have been designed as
part of the Digital Business Ecosystem (DBE) project1, which aims at providing
a SOA based on a P2P architecture for use by small-to-medium sized enterprises
(SMEs). We identified the following requirements for the DBE SOA:

– Support for port-agnostic service compositions using service addressing and
discovery mechanisms that do not require higher cost public IP addresses;

– Dynamic invocation mechanisms to promote loose coupling between con-
sumers and the service invocation protocol;

– Enable service providers to advertise their services independent of the un-
derlying paradigm (RMI, CORBA, J2EE, etc.) without wrapping the service
into a Web Service container;

This paper focuses on service composition using BPEL which is built on top
of Web Services Definition Language (WSDL) [5]. Abstract WSDL and BPEL
together can enable service compositions to be defined independent of binding
and port details. We implemented a Service Proxy framework that allows binding
and protocol information for services to be encapsulated into objects that can
be downloaded at runtime to access the service. Service Proxy objects use an
Abstract Protocol Adaptor (APA) that enables the decision on which protocol
to use to be delayed until runtime when the Service Proxy object is downloaded.
Service Proxy objects are located using a service identifier that is based on a
Distributed Hash Table (DHT) identifier in a structured P2P network. The P2P
network is based on Bamboo [6] and all peers active in the system, including those
without public, static IP addresses, can be located using the DHT identifier.
Service identifiers can be discovered in a Service Registry. Finally, we extended
an open source BPEL workflow engine, ActiveBPEL [7], to integrate it with our
implementation of the P2P network, Service Proxy and APA frameworks.

2 Background

Service composition is a quite general term which is often used in relation to
Web Service composition, because Web Services can be viewed as a service inte-
gration architecture covering many standards, languages and frameworks. BPEL
[2] has become the accepted standard language for executable business processes
defined by WSDL interfaces. It defines a process-centric model for the formal
specification of the behaviour of business processes based on the interaction of
the executable process and its partners [8]. A key aspect of BPEL is the notion of

1 http://www.digital-ecosystem.org



partner links. Partner links describe the relationship between two services at the
interface level, by providing both a link to services that are invoked by the pro-
cess and also to clients which are invoking the process. The BPEL process itself
knows only about partner links and is unaware of the underlying dependency on
the concrete WSDL bindings and service endpoints. The BPEL specification does
not require a static declaration of port-specific data, because an endpoint refer-
ence element allows for explicit dynamic assignment of service endpoints during
the execution of a BPEL process [9]. Implementations of existing BPEL engines
require concrete port and binding definitions to be available at deployment time,
usually SOAP bindings and static endpoints. BPEL engines like BPWS4J [10]
and ActiveBPEL [7] do not support the internal assignment or selection of ser-
vice endpoints within their implementations when executing BPEL workflows so
therefore this assignment must be defined by the BPEL developer.

Service discovery and selection have already been recognised and tackled by
several research groups by introducing semantics into the process of designing
and executing BPEL workflows. The METEOR-S project [11,12,13,14] provides
tools to enable automatic service discovery and selection at deployment time
based on constraints, which then uses the BPWS4J engine to execute static
BPEL workflows. Service compositions are specified in BPEL but the required
Web Services are described in service templates [11]. Service templates define a
semantic description of a service [15] as well as constraints for service selection
like user’s preferences for service partners, Quality of Service (QoS) require-
ments, and service dependencies. An enhanced Universal Description, Discovery
and Integration (UDDI) registry is queried with the service templates for match-
ing service descriptions [16]. Matching service descriptions are further analysed
if they meet the specified constraints [13]. Finally the best matching service is
selected and with late-binding an executable BPEL process generated at deploy-
time. Another approach to overcome the static definition of services in a BPEL
workflow comes from work done by the OWL-S research community [17]. They
introduce a Semantic Discovery Service (SDS) that serves as a dynamic proxy
between the BPWS4J engine and services [18]. Instead of invoking requests on
statically bound services, the BPWS4J engine routes requests to the SDS. Ser-
vices are described, advertised, and discovered via an OWL-S service profile. The
SDS finds a matching service (or chain of services) and invokes the endpoint at
runtime. Upon receiving a reply from the partner the SDS forwards the response
back to the BPWS4J engine. Synthy [19] decouples a Web Service composition
into logical and physical design stages. The logical stage establishes a relation-
ship based on semantic annotations between candidate services for a composition
while the physical stage is responsible for creating one or more concrete BPEL
workflows based on QoS parameters relevant for this workflow. Additionally,
Synthy adds a fault-tolerant level to workflow execution. Multiple workflows can
be created at the physical design stage and deployed with the runtime engine.
These executable workflows can be ranked according to QoS metrics. In case of
a runtime failure in a workflow the runtime engine can select the next ranking
workflow to be executed.



However, these projects do not address the look-up of endpoint information
at runtime for a known service. There has been some existing work on the Web
Services Invocation Framework (WSIF) [20,21] to enable delaying the decision
on which binding to use until the service is executed, although it requires that
multiple bindings are specified in advance with one of them chosen at runtime.
Consequently, WSIF does not address the issue of services deployed on hosts
that do not have a public IP address. The next section introduces our approach
based on a structured P2P network and Service Proxies.

3 DBE SOA and the Workflow Engine

3.1 The DBE SOA

This section gives a brief overview of how service proxies, identified by a per-
sistent and unique ServiceID, are discovered and downloaded using a structured
P2P network. The DBE SOA provides two services to enable service registra-
tion/discovery and service binding, respectively. Firstly, a Service Registry is
used to register and discover ServiceIDs along with their associated abstract
WSDL. Secondly, a structured P2P network based on a Distributed Hash Table
(DHT) architecture [6] is used to download a Service Proxy that encapsulates
binding and port information for the service.

The Service Registry is currently a centralised component that provides ser-
vice registration and look-up operations for both abstract WSDL and ServiceIDs
for deployed service instances. BPEL developers can use the Service Registry to
discover service instances to use in a service composition. We are in the process
of developing a decentralised Service Registry based on an unstructured P2P
network, described in [22].

The DHT architecture supports the deployment of services on hosts that do
not not have a public IP address by providing a globally unique DHT identifier
that is used to logically identify hosts in the DBE SOA, including those that
reside behind NAT Gateways or have a DHCP allocated IP address. Peers that
reside behind a NAT Gateway join the DHT by discovering a Relay Peer2 that
acts as a virtual server for their DHT identifier [24], relaying all messages to and
from the NAT-restricted peer. Relay peers must have open static IP addresses.

The ServiceID contains two parts: the DHT identifier that identifies the peer
that hosts the service and a local service identifier used by an application server
on the peer. The ServiceID can then be used at runtime to discover the host
for a service, enabling the Service Proxy object containing the actual binding
information to be downloaded.

The Service Proxy Once a consumer has discovered a ServiceID in the Service
Registry, it can be used to download a Service Proxy from the service provider’s
2 The discovery of Relay Peers is outside the scope this paper, but systems such as

Skype use extensive caching of Relay Peer IP addresses and monitoring of perfor-
mance [23].



(a) Service Discovery (b) Service Consump-
tion

Figure 1. Discovering and downloading a Service Proxy using a Structured P2P
Network

application server. The request for the Service Proxy is routed over the structured
P2P network using the ServiceID to the peer hosting the service. If the peer
hosting the service is NAT-restricted, the request is forwarded to its destination
by a Relay Peer, see Figure 1 (a). The Service Proxy is deployed in the provider’s
local application server using a local, persistent unique identifier generated by
the application server3 and the endpoint information for the service, i.e., either
the IP address of the peer itself or the IP address of its Relay Peer if it is
a NAT-restricted peer. When the application server receives a request for a
ServiceID, it returns a locally deployed Service Proxy for the service if found. A
Service Proxy is a Java object that encapsulates the configuration information
for services. Within this information the port-specific data, mainly the current
endpoint address for a service, is found and can be used to interact with a
service, see Figure 1 (b). The introduction of a Relay Peer into an invocation
path introduces new failure modes to the transport protocol, meaning that not all
invocation protocols are suitable for services deployed on NAT-restricted peers.
For example, the use of SOAP RPC could result in lost replies if the Relay Peer
unexpectedly fails.

The Service Proxy also specifies the invocation protocol and other binding re-
lated information which are supported by the service provider. A service provider
can deploy a service with more than one protocol, i.e., more than one Service
Proxy, enabling the consumer to choose the binding mechanism most appropriate
for their environment. A Service Proxy Framework was implemented to provide
a simple API for service consumers to download and handle proxies within the
DBE environment.

3 We use the Sun Servent application server, see http://swallow.sourceforge.net



3.2 Abstract Protocol Adaptor

Middleware often ties the deployed services and the interacting clients to their re-
spective invocation protocols, such as CORBA’s GIOP/IIOP or Java’s RMI. The
emergence of XML-based Web Services standards, such as WSDL and SOAP,
help overcome cross-platform limitations. WSDL is not exclusively tied to the
SOAP protocol. It enables the specification of multiple bindings, for example for
EJBs, JMS, and IIOP.

Figure 2. The APA Class Diagram

The Abstract Protocol Adaptor (APA) is a client-side programming model
that provides a dynamic invocation interface, similar to that provided by WSIF,
to make calls on a generic RPC invocation interface called PAInvoker (depicted
in Figure 2). The APA framework can be integrated into any component, which
requires a protocol-independent communication mechanism, such as a workflow
engine. The APA promotes loose coupling between clients and the protocol used
to access a services, as the protocol is declared or discovered at runtime rather
than at compile time. The APA is configured at invocation time by a Service
Proxy object with the necessary endpoint, the required invocation protocol, and
possibly additional configuration. The Service Proxy exposes the same interface
as the APA , and delegates invocations to the APA with all configuration values.
The APA is ignorant of protocols and simply delegates the invocation to the
respective concrete protocol adaptor PA at runtime. If a service is implemented
to support a single invocation protocol, e.g., SOAP, then the client application
will need a compliant SOAP protocol adaptor to create the SOAP calls.

The APA can be extended to implement any number of protocol adaptors that
can create the necessary setup for a dynamic invocation of a remote service. So
far, the following three protocol adaptors have been implemented, SOAP, kSOAP
and object serialisation over HTTP. The SOAP PA supports the invocation of
remote Web Services which expose SOAP endpoints. The kSOAP PA supports
Web Service communication from mobile clients to kSOAP compliant services.

3.3 Adapting the ActiveBPEL Workflow Engine

The DBE SOA, Service Proxy, and APA frameworks have been integrated into
an open source BPEL workflow engine, called ActiveBPEL. The ActiveBPEL
organisation [7] has implemented a pluggable workflow architecture in Java that



is fully compliant with the BPEL specification, version 1.1 [1]. The engine runs
on a servlet container and uses the Axis Web Services container for commu-
nicating with other Web Services and clients. It supports SOAP bindings for
service invocations. Taking advantage of the pluggable architecture, our work
mainly involved integrating this engine with the structured P2P network and
APA framework by substituting the default invocation handler with our cus-
tomised one.

Figure 3. Design, Deployment, and Consumption of a BPEL Process

The deployment process for our adapted workflow engine requires a set of
abstract WSDL definitions for all the services aggregated within the BPEL pro-
cess, see step 1 in Figure 3. These abstract WSDL definitions effectively pro-
vide general representations of the technical interface of each service without
any information about deployment platforms, bindings to that platform, or the
endpoint location of the service. Within the architecture of the DBE a service
provider publishes their abstract WSDL definition to a Service Registry with a
ServiceID attached. During the design stage of a BPEL process, abstract WSDL
definitions are selected to represent a service within the process, see step 2 in
Figure 3. The partner relationship between the BPEL process and the selected
service interfaces are defined in the EndpointReferences (EPRs), specified by
WS-Addressing [25], as part of the PartnerLink in the Process Deployment
Descriptor (PDD) of the ActiveBPEL engine. The ActiveBPEL engine supports
the dynamic binding to ports with the dynamic and invoker endpoint refer-
ence strategies. However this requires the BPEL developer to specifically include
the assignments and related activities within the BPEL process and possibly im-
plement some additional service to provide the updated endpoint information.
In our approach, we avoid using explicit assignments within the BPEL process
by declaring the ServiceID of the associated published service as a dynamic
URI reference to the service in the Address element within the EPR of the



PartnerLink . This ServiceID is used to discover Service Proxy objects that
contain the binding and port information of a service instance at runtime. The
complete BPEL process, containing a reference to the abstract WSDL defini-
tions and their ServiceIDs, can be deployed to our extended workflow engine,
see step 3 in Figure 3. The deployment process also publishes the service’s ab-
stract WSDL and ServiceID to the Service Registry, see step 4. Consumers can
then discover composed services in the Service Registry, see step a, and invoke
them, potentially via a Relay Peer, see steps b to d.

Figure 4. Modified ActiveBPEL Engine

The runtime process for our adapted workflow engine, illustrated in Figure 4,
differs only in the behaviour of Invoke activities. The Invoke activity at-
tempts to invoke an external service based on the abstract WSDL definition
and the partner relationship. Our extension to the engine extracts the declared
ServiceID for a service from the EPR instead of extracting an endpoint URL
to bind to the service with SOAP, see workflow engine in Figure 3. Using this
ServiceID, the Service Proxy is downloaded over the structured P2P network.
Once a Service Proxy is located and downloaded, it is used to delegate the invo-
cation of an operation to the protocol adaptor framework. The engine is unaware
of the binding and port information for this dynamic invocation, as this infor-
mation is encapsulated by the configuration capacity of the Service Proxy. This
enables transparent consumption of services, independent of location, transport,
protocol, and even data model.

4 Discussion

Our work has been evaluated by comparison with related work in the area of the
execution of BPEL-defined service composition. We examine the performance
of our approach for binding- and port-independent composition in relation to
other approaches using the following criterion: support for abstract WSDL, in-
teraction paradigm, endpoint discovery and binding mechanisms. The use of the
abstract WSDL results in a reduced level of coupling between a service definition
and service instance. The interaction paradigm, endpoint discovery, and bind-
ing mechanism enable a dynamic invocation approach and hide the underlying



middleware paradigm. The results presented in Table 1 are based on our analy-
sis of these approaches (see Section 2). Due to the lack of concrete information
regarding the binding mechanisms used in Meteor-S, the assumption was made
that the communication protocol is SOAP.

DBE Engine ActiveBPEL Meteor-S SDS

Abstract
WSDL

yes no noa no

Interaction
Paradigm

Web Services Web Services Web Services Web Services

Endpoint
Discovery

Runtime P2P
N/W

Design-timeb Deployment-
time

Runtime

Binding
Mechanism

Dynamic
Proxy

SOAP N/A
Dynamic
Proxy

a Uses Extended WSDL
b Also allows for in-model dynamic assignment of endpoints at runtime as stated in

the BPEL specification.
Table 1. Comparison of Workflow Engines

All workflow engines compared in this paper use the BPEL specification to
define a service composition. Two workflow engines are used in the different
approaches, ActiveBPEL and BPWS4J. BPWS4J provides the execution envi-
ronment for both Meteor-S and SDS, while ActiveBPEL was extended to support
dynamic endpoint look-up and binding.

The interaction paradigm for all approaches is based on Web Services stan-
dards and requires the services to be deployed in a Web Service container. With
our approach a service provider can expose a service using any supported mid-
dleware paradigm by the protocol adapter framework and abstract WSDL to
describe the interface of this service.

In terms of endpoint discovery, the ActiveBPEL engine offers the least flexi-
bility. The aggregated Web Services of the service composition needs to be dis-
covered at design time including the binding and port information. The Meteor-S
project focuses on developer tools that allow binding of Web Services to an ab-
stract process based on constraints and generate an executable process at deploy-
ment time [11]. Consequently, the resulting BPEL process is static with respect
to the endpoints of the chosen Web Services. While SDS does allow for the run-
time discovery of service endpoints, these endpoints are restricted to concrete
WSDL port definitions that can only be used by a host with a public IP address.
Our approach supports the discovery of endpoints at runtime using a Service
Proxy and a service identifier that logically identifies a host in the structured
P2P network.

The ActiveBPEL engine and the Meteor-S approach use the standard SOAP
binding mechanism for the invocation of services. The SDS is itself a locally



bound Web Service that acts as a single dynamic proxy between the workflow
engine and the Web Services to be discovered. In our approach, the binding
mechanism is not restricted to SOAP. Each service is associated with at least
one Service Proxy that encapsulates a binding model for the service.

A feature of our approach to endpoint discovery and service binding is that
services deployed on hosts with a non-static IP address can republish their Ser-
vice Proxies on events such as a change in the host’s Relay Peer or DHCP-
allocated address. This helps increase robustness of the SOA.

5 Conclusions and Future Work

This paper described a P2P SOA architecture with explicit support for hosts
without public, static IP addresses and a workflow engine based on our SOA
that supports binding- and port-agnostic service composition. Service interfaces
are described using abstract WSDL, and service consumption uses a Service
Proxy and Abstract Protocol Adaptor framework that can be extended to any
particular interaction paradigm supporting our dynamic invocation interface.
Service compositions are defined using BPEL, and service endpoints are looked
up at runtime using a service identifier, based on a DHT identifier, to download
a Service Proxy over the structured P2P network. This approach supports hosts
that reside behind a NAT Gateway by using a Relay Peer that acts as a virtual
server for the NAT-restricted peer. We extended the open-source ActiveBPEL
workflow engine in order to use the P2P SOA and the dynamic invocation frame-
work, and compared this extension with other composition approaches based on
BPEL. Our approach was shown to be more flexible for service providers to sup-
port hosts that do not have a public IP address and to be independent from the
underlying middleware paradigm.

Issues that remain open for future research include a more flexible and generic
execution of service compositions. Instead of downloading Service Proxies, a
XML-based configuration file can be used to configure a middleware component
that is responsible for the invocation. We are also working on a Relay Peer
election algorithm and invocation protocols that better support the different
failure modes introduced by Relay Peers in a service invocation path. In order
to increase the robustness of our DBE SOA the next version will be based on
a decentralised Service Registry available over an unstructured P2P network
and consequently avoiding single points of failure. Finally, we are extending the
workflow engine to support the intelligent selection of services at runtime for
specific domains in the DBE.
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