Identification and Characterization of the Multidrug Resistance Gene *cfr* in a Panton-Valentine Leukocidin-Positive Sequence Type 8 Methicillin-Resistant *Staphylococcus aureus*IVa (USA300) Isolate[∇]

Anna C. Shore, † Orla M. Brennan, † Ralf Ehricht, † Stefan Monecke, † Stefan Schwarz, † Peter Slickers, and David C. Coleman*

Microbiology Research Unit, Dublin Dental School & Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland¹;

Alere Technologies GmbH, Jena, Germany²; Institute for Medical Microbiology and Hygiene, Faculty of

Medicine "Carl Gustav Carus," Technical University of Dresden, Dresden, Germany³; and Institute of

Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany⁴

Received 11 August 2010/Returned for modification 24 September 2010/Accepted 27 September 2010

The staphylococcal cfr gene mediates resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A, a phenotype that has been termed PhLOPS_A. The cfr gene has mainly been associated with coagulase-negative staphylococcal isolates from animals, and only a few cfr-positive methicillin-resistant Staphylococcus aureus (MRSA) isolates have been described so far. This study reports the first description of a cfr-positive MRSA isolate (M05/0060) belonging to the pandemic Panton-Valentine leukocidin (PVL)-positive sequence type 8 MRSA IVa/USA300 (ST8-MRSA-IVa/USA300) clone. The cfr gene was detected in M05/0060 using a DNA microarray which was used to screen PVL-positive MRSA isolates for the presence of virulence genes, typing markers, and antimicrobial resistance genes. Antimicrobial susceptibility testing revealed that M05/0060 exhibited the cfr-associated resistance phenotype. Molecular analysis identified the presence of cfr and a second phenicol resistance gene, fexA, on a novel 45-kb conjugative plasmid, which was designated pSCFS7. Within pSCFS7, a DNA segment consisting of cfr, a truncated copy of insertion sequence IS21-558, and a region with homology to the DNA invertase gene bin3 of transposon Tn552 from Bacillus mycoides was integrated into the transposase gene tnpB of the fexA-carrying transposon Tn558. The emergence of a multidrug-resistant cfr-positive variant of ST8-MRSA-IVa/USA300 is alarming and requires ongoing surveillance. Moreover, the identification of a novel conjugative plasmid carrying the cfr gene indicates the ability of cfr to spread to other MRSA strains.

Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen and a significant cause of hospitalacquired infection and, more recently, community-acquired infection worldwide. Globally, different MRSA strains predominate in different geographical locations. In Ireland, a diverse range of MRSA strains have prevailed at different time periods (40), but for the last decade sequence type 22 MRSA IV (ST22-MRSA-IV) isolates have dominated in Irish hospitals (41), while ST30-MRSA-IVc and ST8-MRSA-IVa have predominated among community-acquired MRSA (CA-MRSA) isolates (37). Since ST8-MRSA-IVa, also known as USA300, was first reported in 2000 as a cause of skin and soft tissue infections in the United States, it has become the prevalent CA-MRSA strain in the United States, and evidence suggests that it is also emerging as a major nosocomial MRSA strain in the United States (6, 43). Originally, ST8-MRSA-IVa isolates harbored only the methicillin (mecA) and erythromycin [msr(A)] resistance genes, but they have since spread worldwide while also acquiring additional resistance determinants, including *erm*(A) and *erm*(C), *tet*(M) and *tet*(K), and *mupA*, which encode resistance to macrolides-lincosamides-streptogramin B (MLS_B), tetracyclines, and mupirocin, respectively; most of these resistance determinants are located on plasmids (8, 12, 27, 43, 44). In addition, resistance to fluoroquinolones (levofloxacin), gentamicin, and trimethoprim-sulfamethoxazole and reduced susceptibility to vancomycin and daptomycin have also been observed among some ST8-MRSA-IVa/USA300 isolates (10, 11, 32, 43).

Mobile genetic elements, including plasmids, bacterio-phages, pathogenicity islands, transposons, and chromosomal cassettes, play a vital role in the dissemination of virulence and antimicrobial resistance genes in *S. aureus* (3, 14, 24, 34–36, 47). The *cfr* gene can be plasmid or chromosomally located and encodes resistance to five classes of antimicrobial agents, i.e., phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A, a phenotype that has been termed PhLOPS_A (23). Each of these antimicrobial classes contains antimicrobial agents that are used in the treatment of staphylococcal infections in either human or veterinary medicine, including chloramphenicol, florfenicol, clindamycin, lincomycin, pirlimycin, linezolid, retapamulin, tiamulin, valnemulin, and quinupristindalfopristin (23). The gene *cfr* encodes an rRNA methyltransferase that methylates the adenosine at position 2503 in 238

^{*} Corresponding author. Mailing address: Microbiology Research Unit, Division of Oral Biosciences, School of Dental Science and Dublin Dental Hospital, University of Dublin, Trinity College Dublin, Dublin 2, Ireland. Phone: 353 1 6127276. Fax: 353 1 6127295. E-mail: david.coleman@dental.tcd.ie.

[†] These authors contributed equally to this study.

Published ahead of print on 4 October 2010.

TABLE	1.	Novel	PCR	primers	used	in	the	study

Gene or region amplified	Primer	Nucleotide sequence $(5' \rightarrow 3')$	Nucleotide coordinates		
cfr	cfrF1	GACTTTCGGCACCGGTAAT	3419–3437 ^a		
•	cfrR3	CAGTAGTCCATTCATATTTG	$4681-4662^a$		
fexA	fexAF2	GCGTGATTCCTAAGCTATT	7146–7164 ^a		
v	fexAR1	GAGAACCGAATCTTTAATCA	8800-8781 ^a		
radC	radC-fw01	AGAGAAAATGCCAATGCAATCA	1736892–173687 ^b		
	radC-rv02	TCACCGATTATAATATGATCCAATAAATCT	1736773–1736744 ^b		

^a Nucleotide coordinates based on the nucleotide sequence of plasmid pSCFS3 (GenBank accession number AM086211).

rRNA (Escherichia coli 23S rRNA gene numbering) within the overlapping binding sites for these antimicrobial agents (20).

The cfr gene was originally identified in coagulase-negative staphylococci (CoNS) from animals (18, 39) but more recently has also been found in a very limited number of Staphylococcus aureus isolates and CoNS from humans (25, 26, 31, 45) and animals (16, 18). It is usually plasmid borne, and three plasmids, pSCFS1, pSCFS3, and pSCFS6 (15, 17, 18), have been characterized in detail. Plasmid pSCFS1 (17.1 kb) also harbors additional antimicrobial resistance genes, including erm(33), encoding MLS_B resistance, or lsa(B), encoding reduced susceptibility to lincosamides (17). The larger plasmids pSCFS3 (36 kb) and pSCFS6 (43 kb) also carry the Tn558-associated phenicol resistance gene fexA. In pSCFS3 and pSCFS6, cfr is integrated at different positions within the transposase genes tnpA-tnpB or tnpC of Tn558 (15, 18). In some staphylococcal isolates, cfr is located in the chromosomal DNA (15, 45). Recently, cfr has also been reported for the first time in a nonstaphylococcal strain, Bacillus sp. strain BS-01 from swine feces in China (7). The cfr gene was detected on a novel 16.5-kb plasmid, pBS-01, in this Bacillus strain, along with transposon Tn917 harboring the MLS_B resistance gene erm(B) (7).

Here we report the first case of human clinical infection with an MRSA isolate belonging to the pandemic Panton-Valentine leukocidin (PVL)-positive ST8-MRSA-IVa/USA300 strain harboring the multidrug resistance gene *cfr*. The aim of the present study was to comprehensively characterize the *cfr*-positive MRSA isolate and the genetic environment of the *cfr* gene.

MATERIALS AND METHODS

Bacterial isolates. A previously described collection (37) of Panton-Valentine leukocidin (PVL)-positive MRSA isolates, recovered in Ireland between 1999 and 2005, was characterized using DNA microarrays (see below). One isolate (M05/0060) was found to harbor the multidrug resistance gene *cfr* and was characterized in detail in the present study. This isolate was originally recovered from a 26-year-old Irish male with a superficial scalp abscess (37).

Two ST8-MRSA-IVa/USA300 reference strains, for which full genome sequences are available (USA300-FPR3757 [GenBank accession no. CP000255] and USA300-TCH1516 [GenBank accession no. CP000730]), were included for comparison of DNA microarray hybridization profiles. The plasmid-free novobiocin-resistant *S. aureus* strain XU21 was used as a plasmid recipient in filter mating experiments (48).

Antimicrobial susceptibility testing. All PVL-positive MRSA isolates previously underwent antibiogram-resistogram (AR) typing using disk diffusion (37). Comparative antimicrobial susceptibility testing of M05/0060, its plasmid-cured derivative M05/0060-C1, the plasmid-free *S. aureus* recipient strain XU21, and its transconjugant derivative XU21-T1 (see below) was performed by broth microdilution as described in CLSI documents M07-A8 (4) and M100-S20 (5). In addition, further susceptibility tests on M05/0060 and the transconjugant derivative

XU21-T1 were performed using Vitek-2 (AST P580 panel, susceptibility tests for Gram-positive bacteria; bioMérieux, Nürtingen, Germany) and Etest (chloram-phenicol, clindamycin, linezolid, and quinopristin-dalfopristin; bioMérieux) according to the manufacturer's protocols.

DNA microarray analysis. The StaphyType kit (Alere Technologies, Jena, Germany) was used for DNA microarray analysis of isolates, reference strains, and derivatives. The StaphyType kit consists of individual DNA microarrays mounted in eight-well microtiter strips which detect 334 *S. aureus* gene sequences, including species-specific, antimicrobial resistance, and virulence-associated genes, as well as typing markers (29, 30). Genomic DNA for use with the DNA microarray was extracted from all isolates by enzymatic lysis and using the Qiagen DNeasy kit (Qiagen, Crawley, West Sussex, United Kingdom) as described previously (29). The DNA microarray procedures were performed according to the manufacturer's instructions and have been described previously in detail (28, 29).

Molecular typing. Pulsed-field gel electrophoresis (PFGE); spa, staphylococcal cassette chromosome mec (SCCmec), and toxin gene typing; and multilocus sequence typing (MLST) analysis of the PVL-positive MRSA isolates were performed as described previously (37, 42). The cfr-positive MRSA isolate M05/0060 also underwent direct repeat unit (dru) typing, which was performed as described previously (41).

Plasmid analysis. Plasmid curing was performed by culturing M05/0060 in brain heart infusion (BHI) (Oxoid Ltd., Hampshire, United Kingdom) broth at 43°C for 24 h at 200 rpm. This was followed by subculture into fresh BHI broth and incubation as before for five consecutive rounds, after which individual colonies obtained following plating on BHI agar were screened for loss of resistance to chloramphenicol (30 µg/ml) by replica plating. Conjugative transfer of cfr to the plasmid-free, novobiocin-resistant S. aureus recipient strain XU21 was conducted by filter mating (49). Putative transconjugants were plated onto BHI agar containing 100 µg/ml novobiocin to select for the recipient strain and 30 µg/ml chloramphenicol to select for a putative cfr-carrying plasmid. Putative cured derivatives and transconjugants underwent DNA microarray analysis and comparative antimicrobial susceptibility testing as described above. Plasmid DNAs from M05/0060, its plasmid-cured derivative M05/0060-C1, and a transconjugant derivative of XU21 (XU21-T1) were extracted and purified using a modified alkaline lysis method (38). The size of the cfr-carrying plasmid detected in the transconjugant derivative XU21-T1 was determined based on the sum of the fragment sizes obtained following digestion of plasmid DNA with the restriction endonuclease BglII (Roche Diagnostics GmbH, Mannheim, Germany).

Molecular characterization of the novel cfr- and fex4-carrying plasmid pSCFS7. The cfr and fex4 genes of M05/0060 were amplified and sequenced using primers cfrF1/cfrR3 and fexAF2/fexAR1, respectively (Table 1), using GoTaq DNA polymerase (Promega, Madison, Wisconsin) according to the manufacturer's instructions and the following conditions: 94°C for 2 min; 34 cycles of 95°C for 30 s, 50°C for 2 min, and 72°C for 1 min; and a final extension at 72°C for 10 min. PCR products were purified using the Genelute PCR cleanup kit (Sigma-Aldrich Chemical Co. Tallaght, Dublin, Ireland). DNA sequencing of amplimers was performed commercially by Geneservice (Source Bioscience, St. James's Hospital, Dublin, Ireland).

To investigate whether *cfr* was associated with the *fexA*-carrying transposon Tn558 in the *cfr*-carrying plasmid pSCFS7 identified in M05/0060, plasmid DNAs from M05/0060 and the transconjugant derivative XU21-T1 harboring pSCFS7 were subjected to PCR analysis for the different regions of Tn558. The transposase genes *tnpA*, *tnpB*, and *tnpC* and the region from *tnpB-fexA* were amplified from M05/0060 and XU21-T1 using previously described primers and conditions (18). Since the *tnpB* amplicon obtained was larger than expected for Tn558 in

^b Nucleotide coordinates based on the nucleotide sequence of MRSA strain COL (GenBank accession number CP000046.1).

4980 SHORE ET AL. Antimicrob. Agents Chemother.

both strains, PCRs were also performed using the gel-purified *tnpB* amplification product obtained with template DNAs from both organisms using previously described *cfr*-specific primers (18). Gel purification was performed using the QiaexII PCR cleanup kit (Qiagen). The resulting amplicon from M05/0060 was cloned as described previously (18) and sequenced by primer walking (MWG, Ebersberg, Germany).

Primers radC-fw01 and radC-rv02 (Table 1) were designed and used to amplify the radC gene covering the potential chromosomally located cfr integration site in M05/0060, using Taq DNA polymerase and the following conditions: 95°C for 2 min; 35 cycles of 95°C for 30 s, 64°C for 20 s, and 72°C for 2 min; and a final extension at 72°C for 5 min.

Nucleotide sequence accession numbers. The nucleotide sequences of *cfr*, *fexA*, and the 4,043-bp *tnpB* amplicon of M05/0060 have been deposited in GenBank under accession numbers FN995111, FN995110, and FR675942, respectively.

RESULTS

Phenotypic and genotypic characteristics of M05/0060. M05/0060 exhibited the same MLST (ST8) and spa (t008), dru (dt9g), and SCCmec (IVa) types as the ST8-MRSA-IVa/USA300 clone (44). In the present study, DNA microarray analysis of M05/0060 and comparison with DNA microarray data for two whole-genome-sequenced ST8-MRSA-IVa/USA300 reference strains (FPR3757 and TCH1516) (9, 13), revealed that M05/0060 was indistinguishable from the ST8-MRSA-IVa/USA300 strain TCH1516, apart from carriage of cfr and fexA (Table 2). Antimicrobial susceptibility testing revealed that M05/0060 exhibited the cfr-associated resistance phenotype (PhLOPS_A), including resistance to chloramphenicol, florfenicol, clindamycin, linezolid, tiamulin, virginamycin M₁, and quinupristin-dalfopristin (Table 3).

Confirmation of the presence of cfr and fexA. The presence of cfr and fexA in M05/0060 was confirmed by PCR and sequencing of the entire cfr and fexA genes. The cfr sequence of M05/0060 exhibited 100% identity with cfr of pSCFS1 (GenBank accession number NC 005076.1) (17) and pSCFS6 (AM408573.1) (15) and 99.9% identity with cfr of pSCFS3 (AM086211.1) (18) due to a single nucleotide difference at nucleotide position 761 of cfr with no resulting amino acid change. The fexA sequence of M05/ 0060 exhibited 100% identity with fexA of Bacillus sp. strain BS-01 (GU591496.1) and 99.9% identity with fexA of pSCFS3 (AM086211.1), Staphylococcus lentus (AJ549214.1 and AJ715531.1), Staphylococcus warneri (AM408573.1), and Staphylococcus simulans (AM086400.1) due to two nucleotide differences at nucleotide positions 391 and 913, which resulted in two amino acid changes, from isoleucine to valine and valine to isoleucine, respectively.

Localization of cfr and fex4 in M05/0060 on the novel plasmid pSCFS7. The radC integration site in M05/0060 was examined using primers spanning this integration site, because to date cfr has been reported to be colocated with tnpB on transposon Tn558 and this transposon as well as other members of the Tn554 transposon family are known to integrate specifically into radC (19, 33). This can, for instance, be observed in the published genome sequence for S. aureus Mu50 (GenBank accession number BA000017) or in other S. aureus strains which carry Tn554 (22). As PCR using primers spanning this integration site yielded a product of the expected length (approximately 150 nucleotides), it was assumed that (i) cfr was not located there and (ii) it was not localized on a chromosomally integrated Tn554/Tn558-like transposon.

Dilution series of unfragmented and RNA-free M05/0060 total cellular DNA were subjected to DNA microarray analysis, and signals for *fexA* and *cfr* were significantly more intense in stepwise-diluted samples than all other species markers, including 23S rRNA. Since the microarray method uses a linear labeling and amplification procedure, the higher signal intensity observed for *fexA* and *cfr* relative to housekeeping genes suggested that M05/0060 harbored multiple, most likely plasmid-borne copies of these genes.

The plasmid location of cfr and fexA in M05/0060 was confirmed by curing and conjugation experiments. Plasmid profiling identified the presence of a ca. 45-kb plasmid in M05/0060, which was absent in its cured derivative M05/0060-C1 and present in the transconjugant XU21-T1. Comparative susceptibility testing revealed the presence of the cfr-associated resistance phenotype in XU21-T1 but its absence in the XU21 parental strain and the plasmid-cured derivative M05/0060-C1 (Table 3). Moreover, microarray analysis confirmed that M05/ 0060-C1 and XU21-T1 were indistinguishable from M05/0060 and XU21 except for the absence and the presence of cfr and fexA, respectively (Table 2). Following the purification of plasmid DNA from transconjugant XU21-T1, this ca. 45-kb conjugative plasmid was found to differ in its BgIII restriction pattern from the previously described nonconjugative, cfr-carrying plasmids pSCFS1, pSCFS3, and pSCFS6 (15, 17, 18), and it was therefore designated novel plasmid pSCSF7.

Molecular characterization of the genetic environment of cfr on plasmid pSCFS7. When cfr and fexA have previously been identified on the same plasmid, the cfr gene and its flanking regions were found to be integrated into the transposase genes of the fexA-carrying transposon Tn558 (15, 18). Tn558-directed PCRs revealed that while the amplicons for tnpA, tnpC, and tnpB-fexA obtained using M05/0060 and transconjugant XU21-T1 template DNAs corresponded in size to those obtained for a complete Tn558, the tnpB amplicon obtained with both M05/0060 and XU21-T1 was approximately 2.5 kb larger than expected. PCR detection of cfr using this gel-purified larger tnpB amplicon obtained from both M05/0060 and the transconjugant XU21-T1 as templates and primers cfr-fw and cfr-rv (18) yielded an amplicon of the expected size for both strains, which suggested that a cfr-carrying DNA segment had been integrated into the *tnpB* reading frame in pSCFS7. To confirm this hypothesis, the *tnpB* amplicon from M05/0060 was cloned and sequenced. The entire tnpB amplicon of pSCFS7 comprised 4,043 bp and consisted of initial (positions 1 to 859) and terminal (positions 3826 to 4043) tnpB segments (Fig. 1). A largely truncated IS21-558 element was detected (positions 846 to 1131), of which only the 3' terminus of istBS and the downstream region, including the terminal inverted repeat, were present. The region downstream of this IS21-558 relic (positions 1132 to 3254), including the entire cfr gene (positions 1622 to 2671), exhibited 99.9% nucleotide sequence identity to the corresponding cfr sequences of pSCFS3 and pSCFS6 (15, 18). The adjacent 187 bp did not reveal significant homology to sequences deposited in the databases but were followed by the 5' end of a reading frame (positions 3442 to 3825) whose 127-amino-acid product revealed 78% identity and 90% similarity to the transposon Tn552 DNA-invertase Bin3 from Bacillus mycoides Rock3-17 (ACMW01000216) (Fig. 1). Analysis of the boundaries of this integrated DNA segment revealed

TABLE 2. DNA microarray hybridization profiles of the two USA300 reference strains FPR3757 and TCH1516, M05/0060, its cured derivative M05/0060-C1, the *S. aureus* recipient strain XU21, and its transconjugant derivative XU21-T1^a

		Hybridization result for ^b :								
Class	Gene(s)	USA300- FPR3757	USA300- TCH1516	M05/0060	M05/0060-CI	XU21	XU21-T1			
Species markers	katA, coa, nuc, spa	POS	POS	POS	POS	POS	POS			
agr group	agr group I	POS	POS	POS	POS	POS	POS			
SCCmec-associated markers	mecA	POS	POS	POS	POS	NEG	NEG			
	$\Delta mecR$	POS	POS	POS	POS	NEG	NEG			
	mecR/1	NEG	NEG	NEG	NEG	NEG	NEG			
	ccrA/B-1	NEG	NEG	NEG	NEG	NEG	NEG			
	Q9XB68-dcs	POS	POS	POS	POS	NEG	NEG			
	ccrA/B-2	POS	POS	POS	POS	NEG	NEG			
	kdp-SCC locus	NEG	NEG	NEG	NEG	NEG	NEG			
	ccrA/B-3	NEG	NEG	NEG	NEG	NEG	NEG			
	ccrC, ccrA/B-4	NEG	NEG	NEG	NEG	NEG	NEG			
Antimicrobial resistance genes	blaZ/I/R	NEG	POS	POS	POS	NEG	NEG			
	erm(A), erm(B)	NEG	NEG	NEG	NEG	NEG	NEG			
	erm(C)	POS	NEG	NEG	NEG	NEG	NEG			
	lnu(A)	NEG	NEG	NEG	NEG	NEG	NEG			
	msr(A), mph(C)	NEG	POS	POS	POS	NEG	NEG			
	aacA-aphD	NEG	NEG	NEG	NEG	NEG	NEG			
	aadD	NEG	NEG	NEG	NEG	NEG	NEG			
	aphA3/sat	NEG	POS	POS	POS	NEG	NEG			
	dfrS1	NEG	NEG	NEG	NEG	NEG	NEG			
	far1	NEG	NEG	NEG	NEG	NEG	NEG			
	mupA	POS	NEG	NEG	NEG	NEG	NEG			
	tet(K)	POS	NEG	NEG	NEG	NEG	NEG			
	tet(M)	NEG	NEG	NEG	NEG	NEG	NEG			
	cat	NEG	NEG	NEG	NEG	NEG	NEG			
	cfr	NEG	NEG	POS	NEG	NEG	POS			
	f́exА	NEG	NEG	POS	NEG	NEG	POS			
Virulence-associated genes	tst1	NEG	NEG	NEG	NEG	NEG	NEG			
	sea, seb, see, seh	NEG	NEG	NEG	NEG	NEG	NEG			
	sec/l, $sed/j/r$	NEG	NEG	NEG	NEG	NEG	NEG			
	seg/i/m/n/o/u	NEG	NEG	NEG	NEG	NEG	NEG			
	sek/q	POS	POS	POS	POS	NEG	NEG			
	lukF/S-PV	POS	POS	POS	POS	NEG	NEG			
	lukF/S-hlg, hlgA	POS	POS	POS	POS	POS	POS			
	sak/chp/scn	POS	POS	POS	POS	NEG	NEG			
	etA/B/C	NEG	NEG	NEG	NEG	NEG	NEG			
	edinA/B/C	NEG	NEG	NEG	NEG	NEG	NEG			
	arcA/B/C/D	POS	POS	POS	POS	NEG	NEG			
Capsule type	Capsule type 5	POS	POS	POS	POS	POS	POS			
-	Capsule type 8	NEG	NEG	NEG	NEG	NEG	NEG			

^a The StaphyType kit (Alere Technologies, Jena, Germany) was used for DNA microarray analysis of isolates, reference strains, and derivatives. Full data sets are available upon request.

two potential recombination sites, one of 14 bp between *tnpB* and *istBS* and another of 13 bp between *bin3* and *tnpB* (Fig. 2). These putative recombination sites are assumed to play a role in the integration of this 2,980-bp segment and the concomitant 433-bp deletion of *tnpB*.

DISCUSSION

This is, to our best knowledge, the first report of a human infection with the major pandemic MRSA clone ST8-MRSA-IVa/USA300 harboring the multidrug resistance gene *cfr*. Iso-

lates of this PVL-positive MRSA clone are commonly associated with skin and soft tissue infections but also with life-threatening necrotizing pneumonia. Therapy options for the latter condition are very limited, since glycopeptide antibiotics tend to have poor penetration into lung tissue and reduced susceptibility to vancomycin has been observed among MRSA isolates, including USA300 (10, 11). Daptomycin cannot be used in cases of pneumonia, as it reacts with lung surfactant (2). While rifampin, levofloxacin, and fosfomycin are viable options, resistance to these antimicrobial agents is common and can emerge during therapy. The synergistic effect of sul-

^b POS, positive (i.e., yielded a hybridization signal corresponding to the gene indicated); NEG, negative (i.e., failed to yield a hybridization signal corresponding to the gene indicated). FPR3757 and TCH1516 are two USA300 reference strains for which full-genome sequences are available (accession numbers CP000255 and CP000730, respectively).

4982 SHORE ET AL. Antimicrob. Agents Chemother.

TABLE 3. Antimicrobial resistance profiles of M05/0060 harboring the *cfr*-encoding conjugative plasmid pSCFS7, its cured derivative M05/0060-C1 lacking pSCFS7, *S. aureus* recipient strain XU21, and its transconjugant derivative XU21-T1 harboring pSCFS7

Isolate or derivative	cfr and fexA carriage		$MIC (\mu g/ml)^a$								
	cji and jeza carriage	TIA	VIR M ₁	Q-D	LZD	CLI	CHL	FFC	ERY	OXA	VAN 1 1 1 1 1
MRSA M05/0060	cfr, fexA	≥128	32	2	8	≥128	256	256	≥64	≥32	1
MRSA M05/0060-C1		1	1	0.5	1	0.25	8	4	≥64	≥32	1
S. aureus XU21		1	1	0.25	1	0.25	8	4	0.5	0.12	1
S. aureus XU21-T1	cfr, fexA	≥128	32	2	4	≥128	128	256	0.5	0.12	1

^a TIA, tiamulin; VIR M₁, virginamycin M₁; Q-D, quinupristin-dalfopristin; LZD, linezolid; CLI, clindamycin; CHL, chloramphenicol; FFC, florfenicol; ERY, erythromycin; OXA, oxacillin; VAN, vancomycin. Resistance to tiamulin, virginamycin M₁, quinupristin-dalfopristin, linezolid, clindamycin, chloramphenicol, and florfenicol is indicative of the PhLOPS_A phenotype.

fonamide and trimethoprim under *in vivo* conditions is in dispute, which limits its use in life-threatening conditions. Ceftobiprole is not yet available in most countries, and for tigecycline, clinical experience is still lacking. Thus, treatment of necrotizing pneumonia and of other serious infections caused by PVL-positive MRSA relies primarily on vancomycin and oxazolidinones, such as linezolid, and resistance to the latter is encoded by *cfr* or can be due to mutations in the domain V region in the 23S rRNA gene (46).

The *cfr* gene identified in the ST8-MRSA-IVa isolate M05/0060 in the present study was located, along with *fexA*, on a novel 45-kb conjugative plasmid designated pSCFS7. There have been two previous reports of plasmids that carry both *cfr* and *fexA* in staphylococci, including pSCFS3 and pSCFS6. Both of these plasmids have been detected only in staphylococcal isolates from animals (15, 16, 18), and in each plasmid *cfr* is integrated into the *fexA*-carrying transposon Tn558 (15, 18). In pSCFS3 and pSCFS6, the Tn558 elements are disrupted and in part truncated by the insertion of DNA segments of 4,674 bp and 9,594 bp, respectively, which comprise the *cfr*

gene along with one or two copies of the insertion sequence IS21-558 and, in the case of pSCFS6, the clindamycin resistance gene lsa(B) (15, 18). In contrast, in the novel plasmid pSCFS7, the tnpB gene of Tn558 was disrupted and in part deleted by the insertion via recombination of a DNA segment of 2,980 bp carrying cfr, a truncated IS21-558 (upstream of cfr), and $\Delta bin3$ (downstream of cfr) (Fig. 1). The bin3 gene encodes a DNA invertase and has previously been reported only in the transposon Tn552 from $Bacillus\ mycoides$. These observations, coupled with the recent report of cfr in a $Bacillus\ sp.$ isolate (7), point toward the mobility of cfr, its ability to spread to different bacterial species, and the role that recombination processes play in the stable fixation of cfr in new vector plasmids.

The *cfr*-positive ST8-MRSA-IVa isolate M05/0060 harboring *cfr* on the novel plasmid pSCFS7 differs significantly from at least two of the three previously reported cases of *cfr*-positive *S. aureus* isolates recovered from humans and from those from animals. A *cfr*-positive MRSA isolate from a Colombian patient belonged to ST5/ST221-MRSA-I, and *cfr* was chromosomally located (1, 45). A *cfr*-positive methicillin-susceptible *S.*

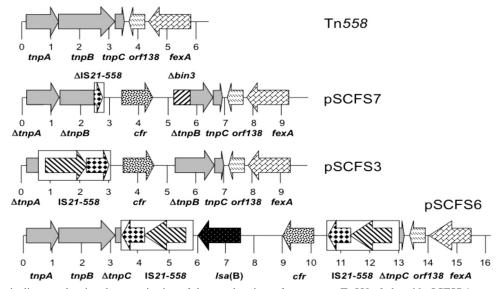


FIG. 1. Schematic diagram showing the organization of the novel variant of transposon Tn558 of plasmid pSCFS7 (accession no. FR675942) relative to Tn558 (AJ715531) and the Tn558 variants harbored by plasmids pSCFS3 (AM086211) and pSCFS6 (AM408573). The positions and orientations of the genes coding for transposition functions (tnpA, tnpB, and tnpC), antimicrobial resistance [fexA, resistance to florfenicol and chloramphenicol; cfr, resistance to phenicols, lincosamides, oxazolidinones, pleuromutilines, and streptogramin A antibiotics; lsa(B), reduced susceptibility to lincosamides], or unknown functions (orf138) are indicated by arrows. Δ , truncated gene. A distance scale in kb is shown below each map.

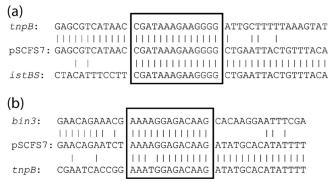


FIG. 2. Potential sites used for the integration of the 2,966-bp *cfr*-containing segment into the *tnpB* reading frame, thereby causing a 433-bp deletion of *tnpB*. (a) Recombination site between the 5' end of *tnpB* and IS21-558. Displayed are the *tnpB* sequence at positions 3369 to 3411 of plasmid pSCFS6 (accession no. AM408573), the *istBS* sequence at positions 4724 to 4682 of plasmid pSCFS6, and the sequence of pSCFS7 at positions 834 to 878. (b) Recombination site between *bin3* and the 3' end of *tnpB*. Displayed are the *bin3* sequence of *B. mycoides* at positions 4550 to 4512 (ACMW01000216), the *tnpB* sequence at positions 3726 to 3764 of plasmid pSCFS6, and the sequence of pSCFS7 at positions 3811 to 3853. Nucleotides identical to the sequence of pSCFS7 are indicated by vertical bars. The recombination sites, where crossover is believed to have occurred, are boxed.

aureus (MSSA) isolate from a patient in a hospital in the United States was a sporadic strain, and cfr was located on a 55-kb plasmid that was not further characterized (26). However, the cfr-positive MRSA isolates reported from an outbreak in a Spanish hospital were not investigated for the location of cfr (31), and while these isolates appeared to be closely related by PFGE, no details of MLST or SCCmec types were provided, so comparison to international MRSA strains is not possible (31). Reports of cfr among S. aureus isolates from animals have all involved pigs, including isolates belonging to ST9-MSSA and ST398-MRSA-V, and all these isolates harbored cfr on plasmid pSCFS3 (16, 18).

While cfr is still rare among S. aureus isolates, it appears to be more abundant among CoNS, and it is evident that CoNS from both humans and animals may act as a reservoir for cfr and other resistance genes in S. aureus. The cfr gene was first reported in 2000 from a bovine Staphylococcus sciuri isolate and has since been identified among additional S. sciuri isolates as well as in isolates of S. warneri, S. simulans, S. hyicus and S. lentus, all from animal sources (15, 18, 39). These CoNS from animals all harbored cfr on plasmid pSCFS1, pSCFS3, or pSCFS6 (15, 17, 18). In addition, there have been two recent reports of CoNS from humans harboring cfr, including two Staphylococcus epidermidis isolates from Mexico, in which the location of cfr was not determined (25), and the United States, in which cfr was localized on a 175-kb plasmid (26). While there have been no reports of cfr-positive staphylococci from Ireland prior to the present study, linezolid resistance has been reported among three clinical S. epidermidis isolates (21). However, it was not determined if cfr was present in these S. epidermidis isolates, and the linezolid resistance phenotype in these isolates may alternatively have been due to the presence of a mutation in the 23S rRNA gene. Interestingly, during the present study, problems in interpreting linezolid MICs using the Vitek-2 software were encountered. The Vitek-2 software

reported a linezolid MIC of 8 µg/ml for the cfr-positive MRSA isolate M05/0060, which is above the resistance breakpoint for linezolid (Table 3). However, the Vitek-2 software recommended that the linezolid susceptibilities should be manually changed to 4 µg/ml and that the isolate should be reported as susceptible to linezolid. While the authors of a 2008 study (1) did not encounter problems using the Vitek system, they did report problems with detecting cfr-mediated linezolid resistance using disk diffusion and Etest. The authors found that a cfr-positive MRSA isolate was reported as linezolid susceptible after 24 h of incubation with the Etest and suggested that a longer incubation period was required to detect this resistance phenotype (1).

Since ST8-MRSA-IVa/USA300 has proved to be a successful clone capable of epidemic spread, the emergence of a cfr-positive variant of this strain is cause for significant concern and warrants close surveillance. The localization of cfr on a novel conjugative plasmid and the identification of a potential novel integration site within Tn558 indicate that cfr has the ability to spread to other MRSA strains. Our finding of cfr in ST8-MRSA-IVa/USA300 would almost certainly not have occurred if we had not used the DNA microarray to screen for the presence of an extensive range of virulence and antimicrobial resistance genes among large numbers of MRSA isolates. Our findings highlight the effectiveness of such high-throughput systems for ongoing surveillance of MRSA.

ACKNOWLEDGMENTS

This work was supported by the Microbiology Research Unit, Dublin Dental School and Hospital, and the Friedrich-Loeffler Institut.

We thank Kerstin Meyer for excellent technical assistance with work undertaken at the Friedrich-Loeffler Institut. The *S. aureus* recipient strain XU21 and USA300 strains FPR3757 and TC1516 were kindly provided by Edet Udo, Kuwait University, Geoffrey Coombs, Royal Perth Hospital, Perth, Australia, and Sarah K. Highlander, Baylor College of Medicine, Houston, TX, respectively.

REFERENCES

- Arias, C. A., M. Vallejo, J. Reyes, D. Panesso, J. Moreno, E. Castaneda, M. V. Villegas, B. E. Murray, and J. P. Quinn. 2008. Clinical and microbiological aspects of linezolid resistance mediated by the *cfr* gene encoding a 23S rRNA methyltransferase. J. Clin. Microbiol. 46:892–896.
- Baltz, R. H. 2009. Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr. Opin. Chem. Biol. 13:144–151.
- Carroll, D., M. A. Kehoe, D. Cavanagh, and D. C. Coleman. 1995. Novel organization of the site-specific integration and excision recombination functions of the *Staphylococcus aureus* serotype F virulence-converting phages phi 13 and phi 42. Mol. Microbiol. 16:877–893.
- CLSI. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 8th ed. CLSI document M07-A8. CLSI, Wayne, PA.
- CLSI. 2010. Performance standards for antimicrobial susceptibility testing;
 20th informational supplement. CLSI document M100-S20. CLSI, Wayne,
- D'Agata, E. M., G. F. Webb, M. A. Horn, R. C. Moellering, Jr., and S. Ruan. 2009. Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into hospitals. Clin. Infect. Dis. 48:274–284.
- Dai, L., C. M. Wu, M. G. Wang, Y. Wang, S. Y. Huang, L. N. Xia, B. B. Li, and J. Z. Shen. 2010. First report of the multidrug resistance gene *cfr* and the phenicol resistance gene *fexA* in a *Bacillus* strain from swine feces. Antimicrob. Agents Chemother. 54:3953–3955.
- Diep, B. A., H. F. Chambers, C. J. Graber, J. D. Szumowski, L. G. Miller, L. L. Han, J. H. Chen, F. Lin, J. Lin, T. H. Phan, H. A. Carleton, L. K. McDougal, F. C. Tenover, D. E. Cohen, K. H. Mayer, G. F. Sensabaugh, and F. Perdreau-Remington. 2008. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann. Intern. Med. 148:249–257.
- Diep, B. A., S. R. Gill, R. F. Chang, T. H. Phan, J. H. Chen, M. G. Davidson, F. Lin, J. Lin, H. A. Carleton, E. F. Mongodin, G. F. Sensabaugh, and F. Perdreau-Remington. 2006. Complete genome sequence of USA300, an

SHORE ET AL. Antimicrob. Agents Chemother.

epidemic clone of community-acquired meticillin-resistant *Staphylococcus aureus*. Lancet **367**:731–739.

 Graber, C. J., M. K. Wong, H. A. Carleton, F. Perdreau-Remington, B. L. Haller, and H. F. Chambers. 2007. Intermediate vancomycin susceptibility in a community-associated MRSA clone. Emerg. Infect. Dis. 13:491–493.

4984

- Hageman, J. C., J. Patel, P. Franklin, K. Miscavish, L. McDougal, D. Lonsway, and F. N. Khan. 2008. Occurrence of a USA300 vancomycin-intermediate Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 62:440–442.
- Han, L. L., L. K. McDougal, R. J. Gorwitz, K. H. Mayer, J. B. Patel, J. M. Sennott, and J. L. Fontana. 2007. High frequencies of clindamycin and tetracycline resistance in methicillin-resistant *Staphylococcus aureus* pulsed-field type USA300 isolates collected at a Boston ambulatory health center. J. Clin. Microbiol. 45:1350–1352.
- 13. Highlander, S. K., K. G. Hulten, X. Qin, H. Jiang, S. Yerrapragada, E. O. Mason, Jr., Y. Shang, T. M. Williams, R. M. Fortunov, Y. Liu, O. Igboeli, J. Petrosino, M. Tirumalai, A. Uzman, G. E. Fox, A. M. Cardenas, D. M. Muzny, L. Hemphill, Y. Ding, S. Dugan, P. R. Blyth, C. J. Buhay, H. H. Dinh, A. C. Hawes, M. Holder, C. L. Kovar, S. L. Lee, W. Liu, L. V. Nazareth, Q. Wang, J. Zhou, S. L. Kaplan, and G. M. Weinstock. 2007. Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus. BMC Microbiol. 7:99–113.
- Ito, T., K. Okuma, X. X. Ma, H. Yuzawa, and K. Hiramatsu. 2003. Insights on antibiotic resistance of *Staphylococcus aureus* from its whole genome: genomic island SCC. Drug Resist. Updat. 6:41–52.
- Kehrenberg, C., F. M. Aarestrup, and S. Schwarz. 2007. IS21-558 insertion sequences are involved in the mobility of the multiresistance gene cfr. Antimicrob. Agents Chemother. 51:483–487.
- Kehrenberg, C., C. Cuny, B. Strommenger, S. Schwarz, and W. Witte. 2009. Methicillin-resistant and -susceptible *Staphylococcus aureus* strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene *cfr*. Antimicrob. Agents Chemother. 53:779–781.
- Kehrenberg, C., K. K. Ojo, and S. Schwarz. 2004. Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from *Staphylococcus sciuri*. J. Antimicrob. Chemother. 54:936–939.
- Kehrenberg, C., and S. Schwarz. 2006. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 50:1156–1163.
- Kehrenberg, C., and S. Schwarz. 2005. Florfenicol-chloramphenicol exporter gene fex4 is part of the novel transposon Tn558. Antimicrob. Agents Chemother. 49:813–815.
- Kehrenberg, C., S. Schwarz, L. Jacobsen, L. H. Hansen, and B. Vester. 2005.
 A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol. Microbiol. 57: 1064–1073.
- Kelly, S., J. Collins, M. Davin, C. Gowing, and P. G. Murphy. 2006. Linezolid resistance in coagulase-negative staphylococci. J. Antimicrob. Chemother. 58:898–899
- 22. Kuroda, M., T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa, I. Kobayashi, L. Cui, A. Oguchi, K. Aoki, Y. Nagai, J. Lian, T. Ito, M. Kanamori, H. Matsumaru, A. Maruyama, H. Murakami, A. Hosoyama, Y. Mizutani-Ui, N. K. Takahashi, T. Sawano, R. Inoue, C. Kaito, K. Sekimizu, H. Hirakawa, S. Kuhara, S. Goto, J. Yabuzaki, M. Kanehisa, A. Yamashita, K. Oshima, K. Furuya, C. Yoshino, T. Shiba, M. Hattori, N. Ogasawara, H. Hayashi, and K. Hiramatsu. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240.
- Long, K. S., J. Poehlsgaard, C. Kehrenberg, S. Schwarz, and B. Vester. 2006.
 The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob. Agents Chemother. 50:2500–2505.
- Malachowa, N., and F. R. Deleo. 2010. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 67:3057–3071.
- Mendes, R. E., L. Deshpande, E. Rodriguez-Noriega, J. E. Ross, R. N. Jones, and R. Morfin-Otero. 2010. First report of linezolid-resistant Staphylococcal clinical isolates in Mexico caused by cfr: evidence of in vivo cfr mobilization. J. Clin. Microbiol. 48:3041–3043.
- Mendes, R. E., L. M. Deshpande, M. Castanheira, J. DiPersio, M. A. Saubolle, and R. N. Jones. 2008. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob. Agents Chemother. 52:2244–2246.
- Monecke, S., B. Berger-Bachi, G. Coombs, A. Holmes, I. Kay, A. Kearns, H. J. Linde, F. O'Brien, P. Slickers, and R. Ehricht. 2007. Comparative genomics and DNA array-based genotyping of pandemic *Staphylococcus* aureus strains encoding Panton-Valentine leukocidin. Clin. Microbiol. Infect. 13:236–249.
- Monecke, S., and R. Ehricht. 2005. Rapid genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolates using miniaturised oligonucleotide arrays. Clin. Microbiol. Infect. 11:825–833.
- 29. Monecke, S., L. Jatzwauk, S. Weber, P. Slickers, and R. Ehricht. 2008. DNA

- microarray-based genotyping of methicillin-resistant *Staphylococcus aureus* strains from Eastern Saxony. Clin. Microbiol. Infect. **14**:534–545.
- Monecke, S., P. Slickers, and R. Ehricht. 2008. Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol. Med. Microbiol. 53:237–251.
- 31. Morales, G., J. J. Picazo, E. Baos, F. J. Candel, A. Arribi, B. Pelaez, R. Andrade, M. A. de la Torre, J. Fereres, and M. Sanchez-Garcia. 2010. Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin. Infect. Dis. 50: 821–825.
- Moran, G. J., A. Krishnadasan, R. J. Gorwitz, G. E. Fosheim, L. K. McDougal, R. B. Carey, and D. A. Talan. 2006. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 355:666–674.
- Murphy, E., and S. Lofdahl. 1984. Transposition of Tn554 does not generate a target duplication. Nature 307:292–294.
- Novick, R. P., G. E. Christie, and J. R. Penades. 2010. The phage-related chromosomal islands of Gram-positive bacteria. Nat. Rev. Microbiol. 8:541– 551
- Novick, R. P., and A. Subedi. 2007. The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem. Immunol. Allergy 93:42–57.
- Perez-Roth, E., S. M. Kwong, J. Alcoba-Florez, N. Firth, and S. Mendez-Alvarez. 2010. Complete nucleotide sequence and comparative analysis of pPR9, a 41.7-kilobase conjugative staphylococcal multiresistance plasmid conferring high-level mupirocin resistance. Antimicrob. Agents Chemother. 54:2252–2257.
- 37. Rossney, A. S., A. C. Shore, P. M. Morgan, M. M. Fitzgibbon, B. O'Connell, and D. C. Coleman. 2007. The emergence and importation of diverse genotypes of methicillin-resistant *Staphylococcus aureus* (MRSA) harboring the Panton-Valentine leukocidin gene (pvl) reveal that pvl is a poor marker for community-acquired MRSA strains in Ireland. J. Clin. Microbiol. 45:2554–2563.
- Schwarz, S., M. Cardoso, and H. Blobel. 1989. Plasmid-mediated chloramphenicol resistance in *Staphylococcus hyicus*. J. Gen. Microbiol. 135:3329– 3336.
- Schwarz, S., C. Werckenthin, and C. Kehrenberg. 2000. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in *Staphylococcus sciuri*. Antimicrob. Agents Chemother. 44:2530–2533.
- Shore, A., A. S. Rossney, C. T. Keane, M. C. Enright, and D. C. Coleman. 2005. Seven novel variants of the staphylococcal chromosomal cassette *mec* in methicillin-resistant *Staphylococcus aureus* isolates from Ireland. Antimicrob. Agents Chemother. 49:2070–2083.
- 41. Shore, A. C., A. S. Rossney, P. M. Kinnevey, O. M. Brennan, E. Creamer, O. Sherlock, A. Dolan, R. Cunney, D. J. Sullivan, R. V. Goering, H. Humphreys, and D. C. Coleman. 2010. Enhanced discrimination of highly clonal ST22-methicillin-resistant *Staphylococcus aureus* IV isolates achieved by combining *spa*, *dru*, and pulsed-field gel electrophoresis typing data. J. Clin. Microbiol. 48:1839–1852.
- Shore, A. C., A. S. Rossney, B. O'Connell, C. M. Herra, D. J. Sullivan, H. Humphreys, and D. C. Coleman. 2008. Detection of staphylococcal cassette chromosome mec-associated DNA segments in multiresistant methicillinsusceptible Staphylococcus aureus (MSSA) and identification of Staphylococcus epidermidis ccrAB4 in both methicillin-resistant S. aureus and MSSA. Antimicrob. Agents Chemother. 52:4407–4419.
- Tenover, F. C., and R. V. Goering. 2009. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J. Antimicrob. Chemother. 64:441–446.
- 44. Tenover, F. C., L. K. McDougal, R. V. Goering, G. Killgore, S. J. Projan, J. B. Patel, and P. M. Dunman. 2006. Characterization of a strain of community-associated methicillin-resistant *Staphylococcus aureus* widely disseminated in the United States. J. Clin. Microbiol. 44:108–118.
- 45. Toh, S. M., L. Xiong, C. A. Arias, M. V. Villegas, K. Lolans, J. Quinn, and A. S. Mankin. 2007. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant *Staphylococcus aureus* resistant to the synthetic antibiotic linezolid. Mol. Microbiol. 64:1506–1514.
- Tsiodras, S., H. S. Gold, G. Sakoulas, G. M. Eliopoulos, C. Wennersten, L. Venkataraman, R. C. Moellering, and M. J. Ferraro. 2001. Linezolid resistance in a clinical isolate of *Staphylococcus aureus*. Lancet 358:207–208.
- Ubeda, C., P. Barry, J. R. Penades, and R. P. Novick. 2007. A pathogenicity island replicon in *Staphylococcus aureus* replicates as an unstable plasmid. Proc. Natl. Acad. Sci. U. S. A. 104:14182–14188.
- Udo, E. E., and L. E. Jacob. 1998. Conjugative transfer of high-level mupirocin resistance and the mobilization of non-conjugative plasmids in *Staphylococcus aureus*. Microb. Drug Resist. 4:185–193.
- Woodford, N., A. P. Watson, S. Patel, M. Jevon, D. J. Waghorn, and B. D. Cookson. 1998. Heterogeneous location of the *mupA* high-level mupirocin resistance gene in *Staphylococcus aureus*. J. Med. Microbiol. 47:829–835.