
Practical Security

88 	 Published by the IEEE Computer Society	 1089-7801/11/$26.00 © 2011 IEEE� IEEE INTERNET COMPUTING

M any Internet and Web applications use ses-
sion identifiers. Too often, developers of
those applications make the bad assump-

tion that all is well because session identifiers
are only known to authorized users. However,
in many cases, session identifiers can leak out or
be guessed, sometimes trivially. If presenting an
identifier is the only authorization an applica-
tion requires, it can represent an easily exploited
vulnerability. Although these vulnerabilities are
old and well-known, some recent examples of
problems arising from them show that develop-
ers must remain on guard against them.

Some Real Examples
Internet and Web applications employ identifiers
for users, hosts or services, and sessions. I’m con-
cerned here with their use as part of an autho-
rization solution, rather than for user or service
authentication. The most common implementation
of session identifiers today is probably as values
stored in “cookies” for Web applications or their
equivalents. One recent bad example of handling
session identifiers relates to a small office/home
office broadband router that uses session identifi-
ers with insufficient randomness in a Web-based
administrative interface. Basically, attackers can
guess these identifiers because they depend on
only a sequential counter and what looks like
a time stamp with a 1-second granularity. The
YGN Ethical Hacker Group reported this vulner-
ability in early August 2010 (http://yehg.net/lab/
pr0js/advisories/2wire/[2wire]_session_hijacking
_vulnerability), and the vendor incorporated a
fix into its release later that month. However,
such products are rarely, if ever, patched, so the
vulnerability likely remains exploitable for quite
some time.

Although major websites might be unlikely
to use such simple session identifiers, other hosts

are on the path between users and those web-
sites, and the developers of those hosts might
make such mistakes, even though the problems
of simply-constructed session identifiers have
been known for many years. The proliferation
of devices such as smartphones and home gate-
ways and the lack of an automated software
update mechanism for many of them will unfor-
tunately likely ensure that such vulnerabilities
are with us essentially forever.

This example is simple, but there are less-
obvious cases in which identifiers can be
guessed. For example, in March 2010, Andreas
Bogk reported a vulnerability in how PHP gen-
erates session identifiers (http://seclists.org/full
disclosure/2010/Mar/519). In this case, the attack-
er’s job is fairly complex but still within the capa-
bilities of any significant sized enterprise. Luckily,
there’s a well-defined method of avoiding the
vulnerability by configuring a separate source
of randomness (www.phparch.com/2010/04/09/
possible-vulnerabilities-found-in-php-session
-ids). Nonetheless, such issues continue to arise,
even with well-tested systems like PHP.

As an example of a leaked session identifier,
iSecPartners, a consiulting firm, reported in
April 2010 that Twitter’s Web session identifiers
are sometimes sent via unsecured HTTP (rather
than TLS) so that Web proxies can copy them
and use them to log in (www.isecpartners.com/
advisories/2010-001-twitter.txt). The report also
claimed that these session identifiers have the
same lifetime as a user’s password, so leaking
them remains dangerous until a user changes
his or her password. To make matters worse, the
DNS entry for Twitter was reportedly hijacked
temporarily in December 2009. During that
time, Twitter’s clients would have sent their ses-
sion identifiers, in the clear, to whatever address
the hijackers chose.

Leaky or Guessable
Session Identifiers

Stephen Farrell • Trinity College Dublin

Leaky or Guessable Session Identifiers

JANUARY/FEBRUARY 2011� 89

There are two issues here. One is
that the session identifier’s lifetime
is very long. The second is that,
because those values are sent in the
clear, the end user can’t validate
the identifier’s destination. How-
ever, a service like Twitter’s, which
is available on so many different
platforms (including mobile devices
that can’t use TLS) and has such a
huge user population, might rea-
sonably continue handling session
identifiers this way, given the costs
of making changes. Additionally,
few users check whether they’re
connecting to the right site because
user interfaces have trained them to
follow the bad practice of just click-
ing through certificate warnings.
Nonetheless, it seems fair to criti-
cize such a system. So far, to my
knowledge, Twitter hasn’t publicly
responded to this report, although
it might, of course, have put in
place countermeasures.

This case shows how what we call
session identifiers sometimes can be
valid for much longer than what you
might consider to be a session’s life-
time. This is probably driven by the
real user requirement to avoid con-
stantly reauthenticating. However,
plans for meeting that requirement
should use short-lived identifiers
with some secure mechanisms for
automated renewal.

More generally, any system that
passes such session identifiers as
HTTP GET parameters via non
secured HTTP (that is, not over TLS)
is vulnerable because websites could
store logs or malicious proxies that
are en route to the intended desti-
nation in those values (http://cwe.
mitre.org/data/definitions/598.html).
So, it’s unlikely that Twitter is alone
in suffering from such problems.

Randomness, Entropy,
and Identifier Length
Before considering the obvious
question of how a developer can do
session identifiers right, I’d like to

clarify a little about randomness and
entropy. To start, think about a fairly
random string of bits. If I compress
the string using some kind of perfect
compression algorithm, the com-
pressed string’s length is the entropy
from the original string. When con-
sidering values that attackers can
guess, it’s the entropy and not the
original string’s length that’s impor-
tant to consider.

For a session identifier to be hard
to guess, it must appear random, have
reasonably good entropy, and have a
sufficiently large set of possible val-
ues from which it’s selected. If the
value isn’t sufficiently random, then
analysis of the values used (which
is usually easy to do) can show us a
way to trivially guess a good value.
If the set of possible values isn’t suf-
ficiently large, attackers can simply
try each possible value in turn until
they find an acceptable one.

Developers often select bad
sources for randomness, in par-
ticular for seeding pseudorandom
number generators. Simply using a
process identifier and the local time
in seconds isn’t sufficient. RFC 4086
(http://tools.ietf.org/html/rfc4086)
is a good source of guidance here,
and most cryptographic toolkits (for
example, openssl; www.openssl.org)
also offer good sources for random-
ness, if used correctly.

It’s also important to note that
attackers seldom care much about
which value they guess. They can
probably win the game with any
authorized session identifier, and, if
one session identifier is guessable,
usually many are. So the number
of currently valid session identifiers
also comes into play — another rea-
son for preferring short-lived session
identifiers. The Open Web Applica-
tion Security Project website (www.
owasp.org/index.php/Insuff icient
_Session-ID_Length) includes a rea-
sonable description of why session
identifiers should be around 128 bits
long. Specifically, with a 64-bit iden-

tifier that includes only 32 bits of
entropy (say, because of encoding or
other issues), a reasonably large bot-
net or enterprise could find a valid
session identifier within a few min-
utes. Although that level of attack is
perhaps unlikely for many websites,
high-profile or financial websites
could be subject to such attacks. As
a developer, it’s better not to assume
that your code will never be used in
such a context.

Some Recommendations
for Developers
So, how should a developer prop-
erly handle session identifiers? The
details will depend on the applica-
tion, but it’s generally good practice
to ensure that session identifiers
are as short-lived as possible. That
way, if they do leak out, the impact
is minimized. If possible, it’s prefer-
able to automatically and frequently
regenerate session identifiers, par-
ticularly if some significant part of
the session state has changed (for
example, if users want to modify
their stored settings or move from
the website’s shopping page to its
checkout). Wherever possible, ses-
sion identifiers should be limited to
secure TLS (or HTTPS) transport so
that they’re less vulnerable to theft.
Indeed, there’s really no good rea-
son these days to manage session
states at all via unsecured connec-
tions because everything required
for securing sessions with TLS is
readily available.

Session identifiers should also
have sufficient entropy to make
guessing impractical in all circum-
stances that the developer can envis-
age, not just for current use cases.
Code to generate and check identifi-
ers should also be part of a generic
library that gets reused. You don’t
want to redo this kind of develop-
ment for each new application, and
you do want to make sure that who-
ever writes and tests this code knows
something about the relevant threats.

Practical Security

90	 www.computer.org/internet/� IEEE INTERNET COMPUTING

If I were developing a generic
session-identifier-handling library,
I would probably consider encrypt-
ing all the identifier content and
including a message-authentica-
tion code (MAC) within the plain-
text before encryption. Because
the same application servers usu-
ally both encrypt and decrypt,
using a strong symmetric key and
the Advanced Encryption Standard
(AES) algorithm is probably suf-
ficient. Load-balancing and other
types of redundancy add a bit of
work to this, as does the require-
ment to enable encryption key
changes without disturbing the ser-
vice, but there are well-known ways

to handle those issues. If possible,
use some kind of hardware support
to store keys. Storing them in files
or a database makes it all too easy
for an administrator to accidentally
or deliberately leak keys. Finally, as
I’ve mentioned previously in this
column, use different keys for test-
ing and the live service.

In many cases, a trade-off exists
between including data within a
session identifier and including just
handles or pointers to a database or
other store. Doing the former reduces
the work on the server when it
receives a session identifier but also
makes the identifiers bigger (usually
undesirable), and means that you
can’t easily change or revoke data
within the identifier while the iden-
tifier is still valid. The right balance
here will be application specific, so
the generic session-identifier library
will probably have an interface that
lets different applications include
different pieces of optional data
within the identifier.

Session identifiers can also con-

tain values that attempt to enforce
session continuity (for example, a
source IP address). The goal here is
to prevent session-identifier theft.
However, many sessions will appear
to come from the same IP address
(usually an outbound HTTP proxy),
so this technique has limited value.
Furthermore, it can cause problems
if a user roams or has a multihomed
host, which is becoming more com-
mon these days with devices sup-
porting both 3G and Wi-Fi. And
finally, unless the session identi-
fier is properly protected — that is,
encrypted and containing a MAC —
attackers can fake any such values.

However session identifiers are

handled, developers should carry out
some form of review before deploy-
ing the code. Typical issues that arise
include key storage (if identifiers are
encrypted) and key life-cycle man-
agement. If different contexts require
different identifier encoding and
interfacing to applications, a generic
session-identifier library might not
offer all the right interfaces that
applications require. The main thing
to consider is, that even though
the developer probably designed a
generic session identifier for just one
or two applications, people will likely
use it again in other contexts.

If the applications that use ses-
sion identifiers handle more sensitive
data, such as financial information,
then they’ll quite likely undergo
external security review — for exam-
ple, for conformance to the Payment
Card Industry Data Security Stan-
dard (PCI DSS; www.pcisecurity
standards.org/security_standards/
pci_dss.shtml) or other security
standards. In such cases, developers
should review any relevant secu-

rity standards before starting work
and not (as is common) attempt to
retrofit conformance, which is often
problematic. PCI DSS annual reviews
have also been known to show up
false positives (http://kb2.adobe.com/
cps/404/kb404762.html) related to
handling session identifiers. And,
although a developer might consider
modifying code in such cases to be
a gratuitous change, in the long run,
it’s better to conform to avoid the
cost of an annual discussion with
external security reviewers.

What about Users?
How can users tell whether a random-
looking session identifier is actually
simply a base64-encoded version of
the one-and-only password they use
for everything? In general, unfortu-
nately, they can’t and so must simply
decide whether to trust the system
that’s generating the session identi-
fiers. This is usually not going to be
a very well-informed decision, so the
best they can do is to use a different
name and password for each service,
though that’s often more work than
they’re willing to do.

The PCI DSS standard attempts
to provide more assurance to users
in such cases. Merchants that fail
a PCI DSS review face fines for
noncompliance, so they’re gener-
ally motivated to comply (www.
rbsworldpay.com/pc idss/index .
php?page=penalties&l=x). However,
outside the financial community,
no such standards are enforced. Of
course, compliance with PCI DSS
only means that the merchant han-
dles credit-card information prop-
erly. It doesn’t mean that all other
aspects of the merchant’s system are
similarly robust.

Perhaps a more interesting case is
a partnership in which one organi-
zation is using, or depending on, the
session identifiers the other gener-
ates. In this case, you might expect
a better review process, but the com-
plexity of linking various systems

It’s important to note that attackers seldom
care much about which value they guess.

Leaky or Guessable Session Identifiers

JANUARY/FEBRUARY 2011� 91

can mean that even what’s retrospec-
tively a really obvious flaw can still
occur. Perhaps the best publicized
recent case was the AT&T/Apple
iPad flaw (www.guardian.co.uk/
technology/2010/jun/10/apple-ipad
-security-leak) in which guessing the
identifier on a subscriber-identity
-module card was sufficient to get
a user’s email address. The actual
information leaked in that case was
less damaging than it could have
been, but the scale of the leak (more
than 100,000 email addresses) gen-
erated enough bad publicity to serve
as a warning to carefully review
your partners’ security measures,
as well as your own, when linking
complex Web services.

D espite fairly simple and well-
known ways to properly handle

session identifiers, sloppy develop-
ment practices continue to result in
the use of insecure session identifiers
on the Internet. Some kind of stan-
dard secure session-identifier format
that many tools can use might make
such mistakes less likely to occur in
the future. However, I’m aware of no
such activity currently under way,
in spite of how many systems handle
session identifiers. Perhaps a start in
that direction would be for develop-
ers of popular Web applications and
toolkits to publish specifications for
how they handle session identifiers.
From this, a de facto standard might
begin to emerge.�

Stephen Farrell is a research fellow at Trinity

College Dublin and cofounder of Tolerant

Networks Limited. His research interests

include security and delay/disruption-

tolerant networking. Farrell has a PhD

in computer science from Trinity College

Dublin. Contact him at stephen.farrell@

cs.tcd.ie.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

PURPOSE: The IEEE Computer Society is the world’s largest association of computing

professionals and is the leading provider of technical information in the field.

MEMBERSHIP: Members receive the monthly magazine Computer, discounts, and

opportunities to serve (all activities are led by volunteer members). Membership is open to

all IEEE members, affiliate society members, and others interested in the computer field.

COMPUTER SOCIETY WEBSITE: www.computer.org

Next Board Meeting: 2–4 Feb. 2011, Long Beach, Calif., USA

EXECUTIVE COMMITTEE
President: Sorel Reisman*

President-Elect: John W. Walz;* Past President: James D. Isaak;* VP, Standards

Activities: David Alan Grier (1st VP);* Secretary: Jon Rokne (2nd VP);* VP, Educational

Activities: Elizabeth L. Burd;* VP, Member & Geographic Activities: Sattupathu V.

Sankaran;† VP, Publications: David Alan Grier;* VP, Professional Activities: James

W. Moore;* VP, Technical & Conference Activities: John W. Walz;* Treasurer: Frank

E. Ferrante;* 2011–2012 IEEE Division VIII Director: Susan K. (Kathy) Land, CSDP;†

2010–2011 IEEE Division V Director: Michael R. Williams;† Computer Editor in Chief:

Carl K. Chang†

*voting member of the Board of Governors †nonvoting member of the Board of Governors

BOARD OF GOVERNORS
Term Expiring 2011: Elisa Bertino, Jose Castillo-Velázquez, George V. Cybenko, Ann

DeMarle, David S. Ebert, Hironori Kasahara, Steven L. Tanimoto

Term Expiring 2012: Elizabeth L. Burd, Thomas M. Conte, Frank E. Ferrante, Jean-Luc

Gaudiot, Paul K. Joannou, Luis Kun, James W. Moore

Term Expiring 2013: Pierre Bourque, Dennis J. Frailey, Atsuhiro Goto, André Ivanov,

Dejan S. Milojicic, Jane Chu Prey, Charlene (Chuck) Walrad

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Associate Executive Director, Director,

Governance: Anne Marie Kelly; Director, Finance & Accounting: John Miller;

Director, Information Technology & Services: Ray Kahn; Director, Membership

Development: Violet S. Doan; Director, Products & Services: Evan Butterfield;

Director, Sales & Marketing: Dick Price

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036

Phone: +1 202 371 0101 • Fax: +1 202 728 9614

Email: hq.ofc@computer.org

Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314 • Phone: +1

714 821 8380 • Email: help@computer.org

Membership & Publication Orders

Phone: +1 800 272 6657 • Fax: +1 714 821 4641 • Email: help@computer.org

Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo 107-

0062, Japan • Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553 • Email: tokyo.ofc@

computer.org

IEEE OFFICERS
President: Moshe Kam; President-Elect: Gordon W. Day; Past President: Pedro A.

Ray; Secretary: Roger D. Pollard; Treasurer: Harold L. Flescher; President, Standards

Association Board of Governors: Steven M. Mills; VP, Educational Activities: Tariq

S. Durrani; VP, Membership & Geographic Activities: Howard E. Michel; VP,

Publication Services & Products: David A. Hodges; VP, Technical Activities:

Donna L. Hudson; IEEE Division V Director: Michael R. Williams; IEEE Division VIII

Director: Susan K. (Kathy) Land; President, IEEE-USA: Ronald G. Jensen

revised 2 Dec. 2010

