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The dynamics of the Sherrington-Kirkpatrick model at T=0 starting from random spin configurations is
considered. The metastable states reached by such dynamics are atypical of such states as a whole, in that the
probability density of site energies, p���, is small at �=0. Since virtually all metastable states have a much
larger p�0�, this behavior demonstrates a qualitative failure of the Edwards hypothesis. We look for its origins
by modeling the changes in the site energies during the dynamics as a Markov process. We show how the small
p�0� arises from features of the Markov process that have a clear physical basis in the spin glass, and hence
explain the failure of the Edwards hypothesis.
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Complex systems like granular media have a large num-
ber of metastable �blocked� configurations. When shaken or
tapped, they quickly relax into another metastable state. A
subsequent tap will result in another blocked or jammed
state, and so on. The complexity �entropy� of metastable
states in granular systems or spin glasses is extensive in the
system size. Edwards and co-workers have proposed that the
quasiequilibrium steady state which results from repeated
tapping can be described using a thermodynamic measure
over the metastable states.1,2 The strongest version of such a
hypothesis predicts that a system adopts configurations that
maximize the entropy. In weaker versions parameters such as
the energy or volume are fixed, and the system adopts con-
figurations that maximize the entropy consistent with the
constraints.

Edwards hypotheses have met with a high degree of suc-
cess in many complex systems. Some recent examples in-
clude predicting �i� the distribution of contact forces,3 and
the effective temperature,4 in simulations of granular media,
�ii� the dynamical entropy and correlation functions in the
slow-dynamics regime of the Kob-Anderson model,5 and
�iii� the distribution of steady-state energies in the tapped
Sherrington-Kirkpatrick model.6 They give some good ap-
proximations for the zero-temperature constrained dynamics
of finite-dimensional Ising ferromagnets though are known
to fail in some respects.7,8 We note also support in the con-
text of the slow dynamics of mean-field spin-glass models,
where it has been argued that the effective temperature coin-
cides with the Edwards temperature.5,7 The underlying gen-
eral idea that dynamics does not strongly select among meta-
stable states is yet more widely used to attribute slow
dynamics to a proliferation of metastable states—in optimi-
zation algorithms,9 for example.

Here we study dynamics in the the canonical Sherrington-
Kirkpatrick �SK� model, for which the metastable states are
already well understood.10,11 We show that the metastable
states selected by dynamics are of a very special character in
which the energy 2�i to flip the spin at site i has a distribu-
tion p��� which is small for ��0. Generic metastable states
have p�0��0. The dynamically selected metastable states
are a vanishing fraction of the totality of metastable states in

the thermodynamic limit and therefore, according to the Ed-
wards hypothesis, should not be expected to be selected. We
provide a model of the dynamics that explains why it con-
verges onto this tiny subset of the metastable states.

The SK Hamiltonian is H=−��ij�JijSiSj =− 1
2�i�i, where

Si= ±1, �i=Si� j�iJijSj is the “site energy,” equal to one-half
of the energy change on flipping the spin Si, and ��ij� indi-
cates a sum over all pairs of sites. The interaction strengths
Jij are independent random variables from a Gaussian distri-
bution with zero mean and standard deviation 1/�N.

We consider the nonequilibrium behavior of the model
under single-spin relaxational dynamics,12–14 starting from a
random initial state. We consider the T=0 limit of this dy-
namics, as in Refs. 6, 7, and 15, because it allows the meta-
stable states to be clearly identified. Further motivation for
studying this limit comes from its use in contexts ranging
from hysteresis in the SK model16 to domain growth in fer-
romagnets; it corresponds to the basic Hopfield neural-
network algorithm, and to the greedy steps in the WALK-SAT

algorithm.9

The state evolves by flipping single spins with �i�0, i.e.,
those that are opposed to the local magnetic field on their
site, until no such spins remain. Different choices for the
order of spin flips lead to different versions of the algorithm.
In the “sequential” algorithm a randomly selected unstable
spin is flipped at each timestep, while in the “greedy” algo-
rithm the most unstable �minimum �i� spin is flipped. The
behavior of these different algorithms is remarkably
similar.15

The T=0 dynamics of the SK model converges onto one-
spin-flip-stable states, in which every spin aligns with its
local field. This model is an attractive one in which to con-
sider the Edwards hypothesis, because these metastable
states have been studied analytically.10,11 The key results are
shown in Fig. 1, in which the calculated and measured en-
tropy �“complexity”� and distribution of local energies of the
metastable states are compared. The converged energies do
not cluster at the peak of the complexity curve, but are in-
stead clustered in a narrow range around E�−0.7, so the
dynamics certainly does not sample the metastable states
uniformly. Furthermore, the computed p��� is qualitatively
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different from the flat-average p��� at the converged energy:
The computed p��� has a negligible intercept, whereas the
flat-average p��� has a significant finite intercept. Thus the
dynamics does not uniformly sample the metastable states at
the converged energy. Furthermore, repeated “tapping” of a
randomly selected fraction of spins does not alter this con-
clusion: In our simulations the steady state does not develop
an intercept. Thus the states reached by the dynamics are
always qualitatively different from the totality of metastable
states of the same energy, and in the thermodynamic limit
they are a negligible fraction of these states. In other situa-
tions, it has been observed that the blocked states reached by
the dynamics have different energies to those typical of the
blocked states as a whole.17 Our work shows this feature too,
but furthermore that the dynamically generated states are
even atypical of the states of the same energy.

To understand why the typical metastable states are not
realized we must look to the dynamics. We simplify the
problem by considering only the population of site energies
��� and making the working assumption that the evolution of
p��� can be modeled in terms of a Markov process in this
population.

The population dynamics is designed to parallel the real
spin-glass dynamics. At each step an unstable spin i is
flipped, corresponding to �i→−�i. In the spin glass the other
site energies � j shift by an amount

�� j;i = − 2SiSjJij . �1�

Here Si and Sj denote the spin configuration before the flip.
To obtain a population dynamics we replace the drifts �� j;i
with functions of the site energies. In the Markov approxi-
mation we replace them with independent random variables,
whose distribution P��� j;i � ���� depends only upon the site
energies at each step.

Similar approaches have previously been applied to the
SK model,13,18 granular media,1 the WALK-SAT algorithm,9

and spin models on random graphs.14,17 Previous work on the
SK model has attempted to calculate P��� j;i � ����. Although
this approach has met with some success,18 it leads to very
involved models. Owing to their complexity, these models
are only tractable numerically, and their physics remains ob-
scure. We therefore take a different approach, which is to
determine the general features of P��� j;i � ���� that suffice for
a qualitative understanding of the dynamics.

We can deduce some of the general features of
P��� j;i � ���� directly from �1�. Because the model is com-
pletely connected, summing the drifts over all the unflipped
spins gives the sum rule � j�i�� j;i=−2�i. Therefore, to
model the dynamics with a Markov process, we must take
P��� j;i � ���� to have a mean proportional to 1/N in the large-
N limit. Since S2=1, the variance of the drifts is then just
associated with that of the bond distribution,

	�� j;i
2 
 − 	�� j;i
2 � 4/N . �2�

Our simulations of the spin-glass dynamics converged in
�N flips. Since Jij =O�1/�N�, the third and higher cumulants
of �� j;i are higher order in 1/N than the mean and variance.
Therefore the total drift produced by the higher cumulants is
negligible over the convergence time, and we may take
P��� j;i � ���� to be Gaussian. Any correlations between the
drifts �� j;i and the fields � j would have a qualitative effect
on the evolution of p���. We looked for such correlations by
taking the states generated during the spin-glass dynamics
and numerically evaluating the drifts when spins are flipped.
The results are shown in Fig. 2. Each point is the total drift
of an unflipped spin as a function of its site energy when all
spins with site energies in a small range are flipped.

Note the general correlation between the drifts and the
site energies, which can be seen in Fig. 2. The overall drift
on flipping a spin i is fixed by the sum rule but it is nonuni-
formly distributed among spins according to their energies:
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FIG. 1. Discrepancies between simulations of sequential spin-
glass dynamics on a system of 5000 spins and the analytical
predictions based on flat-measure assumptions. Left panel, curve
�left axis�: Complexity of metastable states of energy E, ��E�
= �1/N�ln Ns�E� for the SK model, where Ns�E� is the mean number
of metastable states with energy E. Bar �right axis�: Histogram of
the converged energies for 65 runs of the sequential spin-glass dy-
namics. Right panel, curve: Average p��� in the metastable states of
energy −0.7. Histogram: Average p��� over the final states of the
spin-glass dynamics.
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FIG. 2. Total changes in the site energies, �i�� j;i of unflipped
spins when all spins with site energies in the ranges −1.0��i

�−0.5 are flipped, in configurations generated by 100 �left panel,
671 flipped spins�, and 500 �right panel, 420 flipped spins� steps of
the greedy algorithm on a system of 5000 spins. This algorithm
converged after 2465 flips. The straight lines show linear fits to the
data.
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Highly unstable spins tend to have their site energies
strongly increased, at the expense of a reduced increase or a
decrease in the site energies of the more stable spins. This is
physically reasonable because a very unstable spin has
mostly unsatisfied bonds, while a very stable spin has mostly
satisfied bonds. Therefore the spin i is likely to be connected
to a highly unstable spin by an unsatisfied bond, and to a
highly stable spin by a satisfied bond, producing the ob-
served correlation.

We now consider whether the general features we have
identified can explain aspects of the spin-glass dynamics, in
particular the observation that it apparently converges in �N
time steps, to a state with a small intercept and an approxi-
mately linear p���. We adopt the following minimal model,
which captures the behavior of the distribution p��� at small
� and at late times. We make the simplest assumption, that
the drift �� j;i in the value of � j resulting from flipping an
unstable spin i is a Gaussian random variable with mean c /N
�c�0� and variance �2 /N, where, according to Eq. �2�, �2

=4. This assumption is motivated by the correlations visible
in Fig. 2, which lead us to expect that the mean drift of a
low-energy spin is nonvanishing as the converged state is
approached. Since the assumption of a constant drift violates
the previously derived sum rule, it cannot be correct for all
sites. Our model is designed to address the behavior of
p�� , t� at small �.

The equation of motion for p�� , t� is, for large N,

�p��,t�
�t

=
1

q�t�
�p�− �,t����� − p��,t���− ��


− c
�p��,t�

��
+

�2

2

�2p��,t�
��2 , �3�

where q�t�=�−	
0 p�� , t�d� is the weight in the negative side of

the distribution �from which the flipped spins are drawn� at
time t, and the units of time are such that there are N moves
per unit time.

The first term in �3� derives from the flipping process �i
→−�i, which simply transfers the population from negative
to positive � at a rate of 1 spin per time step. The second
term derives from the mean of the drifts, which leads, within
our model, to a uniform convection in the � space. The final
diffusion term is due to the fluctuations in the drifts. All these
processes occur on the same time scale, taking �N steps, or
a time �N0, to produce an effect of order 1 on p�� , t�.

To understand the solutions to Eq. �3� we first consider the
case �2=0. The equation of motion can then be solved ana-
lytically, to give p�� , t� in terms of integrals over p�� ,0�.
The results are shown in the top panel of Fig. 3, for a Gauss-
ian initial condition and c=4. The number of spins with �
�0 is always decreasing at a finite rate, due to the convec-
tion across �=0 and the flipping process. Thus this process
certainly converges, reaching q�t�=0 in a finite time. In gen-
eral the decay of p�0, t� near the end of the evolution is linear
in time, which combines with the convection to produce a
linear p���, with no intercept, in the converged state. The
slope depends on the initial conditions and on c. It diverges

as c→0, where the resulting p��� is just the half Gaussian
created by the flipping.

For �2�0, we have solved �3� numerically. The resulting
p�� , t� are shown in the lower three panels of Fig. 3. For
these values of c and �2 the behavior at early times is similar
to that with �2=0. The diffusion, however, smooths out the
singularities �discontinuity of slope at �=0� evident in the
�2=0 solutions, and broadens the distribution, but the tail of
unstable spins continues to decay at a significant rate. This
can be understood by noting that while the positive slope at
�=0 leads to a diffusion current back toward ��0, for these
parameters this current is too small to overcome the loss due
to flipping and convection. In contrast, if c is too small the
solution with �=0 would have a large average slope at �
=0, and the diffusion would have a major effect.

Although for some c and �2 the early-time behavior is
similar to that of the model with �2=0, we see that a new
regime appears at later times. As the tail of unstable spins
becomes narrower, the slope at �=0 increases, while the in-
tercept continues to decay. This slows the decay of q�t�,
which obeys dq /dt= �−1−cp�0, t�+ ��2 /2���p /�����=0, with
terms due to flipping, convection, and diffusion, respectively.
Indeed, in the the lower two panels the slope at �=0 is ap-
proaching the critical slope of 2 /�2 at which the diffusion
current balances the loss due to flipping. q�t� must continue
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FIG. 3. The solution to �3�, with a Gaussian initial condition and
c=4 �top three panels� and 8 �lowest panel�, for �2=0 �top panel�,
1 �middle panel�, and 4 �lower two panels�. Curves are plotted at
time intervals of 0.05. The bold curves in the lower two figures are
the earliest at which p�0, t��0.03. They agree with the histograms
obtained by direct simulation of the population dynamics model
with 5000 fields, shown for c=8 �crosses�.
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to decay, since the bulk of p��� will continue to diffuse and
convect, and by continuity this must reduce the tail of un-
stable spins. However this decay is extremely slow. Further-
more, it is an artifact of our low-energy approximation, in
which we replaced the �-dependent convection rate by a con-
stant. In a more complete treatment the biasing visible in Fig.
2 would tend to confine the bulk of the distribution to a
region centered on ��1, due to negative convection rates at
large �, whereas in the model the maximum of the distribu-
tion continues to drift to the right—see Fig. 3. We note that
the approximation scheme of Ref. 18 gives such negative
convection rates at large �.19

In an infinite system the Markov process and the spin-
glass dynamics terminate when q�t�=0. Our numerics sug-
gest that this does not occur in a finite time for the Markov
process, unless �=0. Hence it is inconsistent with the con-
jecture that the dynamics of the infinite spin glass converges
in a finite time. However, for moderate values of c the fea-
tures in p��� associated with the slowing of the dynamics
become so small that it would require a very large system for
them to be resolved. Therefore we suggest that the minimal
Markov model may be adequate to understand the conver-
gence seen in the spin-glass simulations, which are finite,
albeit large.

In the finite spin glass the converged p��� has a small
intercept, which we can estimate by fitting to histograms
such as those shown in Fig. 1. For N=1000 we obtain an
intercept of 0.06, and �0.03 for N=5000 and 10 000, con-
sistent with the intercept of 2 /�N suggested in Ref. 15. This
scaling is explained by the Markov model, since for p�0�
�1/�N the average diffusion flux from positive to negative
� is less than the one spin per time step transferred in the
opposite direction by the flipping. The dynamics will rapidly
converge after such an intercept is reached, with little further
change in p���.

Based on these arguments and the results for the direct
simulations of the spin glass, we suggest that the Markov
process will converge in a finite system when p�0, t� ob-
tained from Eq. �3� becomes comparable with 1/�N. For a
large enough c, this condition is met before the dynamics

becomes dominated by diffusion, and the resulting p�� , t�
has some features similar to that of the simulational result.
This can be seen in the lower two panels of Fig. 3, where we
mark in bold the p�� , t� at which p�0, t��0.03. This corre-
sponds to the smallest intercept we have seen in the spin-
glass simulations. Direct simulations of the minimal model
in a finite population lead to similar distributions.

To conclude, we have discovered a correlation between
the energy shifts and site energies in the spin-glass dynamics,
and shown that such a correlation can be sufficient for the
dynamics to converge to a metastable state in a large but
finite system. Since in the population-dynamics approach the
converged state will have a nearly continous p���, while the
typical metastable states have a discontinous one, the success
of a population-dynamics approach implies the failure of the
flat-measure one. Such success is only possible because the
population-dynamics converges: otherwise spins would flip
many times, and the Markov approximation would fail.

These considerations suggest an unusual picture of the
origins of slow dynamics in some complex systems. Disorder
and frustration do play a role, captured by the diffusion term,
in preventing a fast convergence of the dynamics, but this
role is limited by the drift. This causes the dynamics to con-
verge long before it has time to thoroughly explore the state
space, and so the Edwards hypothesis fails.

The Edwards hypothesis was shown to correctly predict
the form of the distribution of steady-state energies in simu-
lations of tapping the SK model in Ref. 6. Given our results,
this agreement now poses an intriguing problem. Perhaps the
true dynamical entropy �dyn�E� has an energy dependence
similar to that of the flat-measure entropy �edw�E�, so that
the energy distributions in tapping take similar forms. Since
the states are very different, however, it is unclear why this
should occur.
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