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Steady states of ay® parametric oscillator with coupled polarizations
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Polarization effects in the microcavity parametric oscillator are studied using a simple model in which two
x° optical parametric oscillators are coupled together. It is found that there are, in general, a number of steady
states of the model under continuous pumping. There are both continuous and discontinuous thresholds, at
which new steady states appear as the driving intensity is increased: at the continuous thresholds, the new state
has zero output intensity, whereas at the discontinuous threshold it has a finite output intensity. The discon-
tinuous thresholds have no analog in the uncoupled device. The coupling also generates rotations of the linear
polarization of the output compared with the pump, and shifts in the output frequencies as the driving polar-
ization or intensity is varied. For large ratios of the interaction between polarizations to the interaction within
polarizations, of the order of 5, one of the thresholds has its lowest value when the pump is elliptically
polarized. This is consistent with recent experiments in which the maximum output was achieved with an
elliptically polarized pump.
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[. INTRODUCTION pulse is over. Instead it is triggered using a second “seed”
laser pulse injected into the signal mode.

Semiconductor microcavities are high finesse Fabry-Perot The theory of microcavity parametric oscillation and am-
structures, typically consisting of a planar semiconductoplification was initially developed by Ciutiet al® and
cavity layer bounded by Bragg mirrors. The mirrors confineWhittaker! In the former, the pulsed measurements of Ref. 2
two-dimensional photons, which mix with the exciton statesare treated within a quantum optics formalism, while the
of quantum wells embedded in the cavity. Such mixing givedatter used classical nonlinear optics to explain the steady-
a type of two-dimensional polariton known as a “cavity state behavior. The dynamical equations which occur in both
polariton.” The nonlinear dynamics of cavity polaritons cor- models are the same, demonstrating that the phenomena are
responding to polariton-polariton scattering has been exteressentially classical effects, with the exception of the inco-
sively studied, due to the possibility of observing bosonicherent luminescence which occurs below thresfdidore
effects such as stimulated scattering. Recent experimentecent theoretical work by Savasthal® includes frequency-
have demonstrated new aspects to the nonlinear dynamics dépendent nonlinearities and nonlinear absorption, arising
coherentpolaritons: parametric oscillation and amplification. from exciton-exciton correlations.

Parametric oscillation and amplification in microcavities Parametric oscillation requires a significant electromag-
has been demonstrated using both puiSedand netic response at the wave vectors and frequencies of the
continuous-wavkexcitations. In these experiments, a lasersignal and idler. Thus the signal and idler must lie near the
tuned near to the energy of the lower polariton mode is usegolariton dispersion. The signal and idler must also satisfy
to generate a coherent polariton field in the microcavity. Ow-the requirements of wavevector and frequency conservation
ing to a x® nonlinearity provided by the exciton-exciton in the generation process. In the conventional parametric os-
interaction, this pump mode is coupled to “signal” and cillator, these two requirements are usually met by exploiting
“idler” modes at lower and higher energies. The coupling birefringence’ Thus the polarizations of the fields for which
corresponds to the scattering of pairs of pump polaritons intéhe device operates are prescribed. In the microcavity para-
the signal and idler, in contrast to the coupling in the con-metric oscillator however, the unusual dispersion of cavity
ventional x(?) optical parametric oscillatdr,which corre-  polaritons allows them to be met irrespective of the polariza-
sponds to the fission of pump photons. Above a critical pumgions. This is achieved for pump fields near to a particular
intensity, the gain due to the nonlinearity outweighs the*magic” wave vector. In this paper we study the effects of
damping of the signal and idler modes. When this occurs, théhese polarization degrees of freedom.
steady state in which there is a single coherent field at the There are two recent experiments on the polarization ef-
pump becomes unstable towards a state which also has cfects in microcavities that are resonantly pumped near to the
herent fields at the signal and idler. In the continuouslymagic wave vector, one using continuous-wave excitdffon,
pumped experiments, this instability develops spontaneousland one using pulsed excitatihBoth these papers argue
and the new steady state is reached. In the pulsed expethat their observations imply the existence of interactions
ments of Ref. 2 however, there is not enough time for thebetween polaritons of different circular polarizations. While
instability to develop spontaneously before the excitatiorsome aspects of the pulsed dataere recently explained
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using a model without such interactiotfsthey may still be  and exciton in the polariton, i.e., the Hopfield coefficients.
necessary to understand the steady-state experiments of R&hey appear because it is only the excitonic part of the po-
10. Furthermore, interactions between polaritons of differentariton which interactsf,(t) is the external driving field for
polarizations seem to be necessary to explain the polarizatiohe pump, in a frame rotating at the appropriate polariton
dependence of four-wave mixing experiments infrequency. For the continuously pumped situation we con-
microcavitiest®> They could originate from interactions be- sider in the present papdr,(t) =f,exp(=idyt), wheres,, is
tween excitons of different polarizations, which have beenhe pump detuning. The nonlinear term in the pump equation
used to explain the polarization dependence of four-waveia) describes the scattering of pairs of polaritons out of the
mixing in quantum wells™**° pump field, while the terms in Eqélb) and(1c) provide the
Because the parametric oscillator involves the dynamicgorresponding growth in the signal and idler fields. The non-
of coherent polaritons, and not simply scattering, the conseinear exciton blue shift’ is neglected for simplicity.
quences of an interaction between polaritons of different po- To incorporate the polarization degrees of freedom, we
larizations are not obvious. In this paper, we investigate thentroduce pump, signal, and idler fields for the other circular
effects of polarization coupling on the steady states of gpolarization, denoting their exciton amplitudes py, s,
simple model. andi | . Without any coupling terms, their dynamics is given
The remainder of this paper is organized as follows. Inpy the analogs of Eq(l). However, we now introduce a
Sec. Il we present the model. In Sec. Il we eXplOfe thesecondx(S) excitonic non”nearity which Coup|es the up- and
steady states of the model. The steady-state calculation gown-spin excitons. Rather than derive a realistic micro-
subdivided: in Sec. Il A we calculate the pOSSible values Ofscopic model of exciton Spin Scattering, we treat this phe-
the pump pOlariton ﬁEIdS, in Sec. lll B we calculate the 0Ut-nomeno|ogica”y by Choosing the simp|e f0%|¢T|2| ¢l|2
put fields for those values of the pump fields, and in Secye assume that the coefficientsandg, are independent of
lI'C we combine these results with the “pump depletion” momentum and energy. While the former is physically justi-
equations to determine the behavior for a particular externajed because the wavelengths of the polaritons which scatter
drive. In Sec. IV we qualitatively compare our results with are much |arger than any excitonic |ength séa“els more

the continuously pumped experiments reported in Ref. 10gjfficult to rule out the possibility of an energy-dependent
and comment on the stability of our solutions. Finally, Sec. Vprocess.

summarizes our conclusions. The first-order Coulomb interactions between excitons of
opposite polarizations are, in fact, negligibt®at the small
Il. MODEL wave vectors relevant for the parametric oscillator. However,

interactions between excitons of opposite polarizations can

The model we analyze in this paper is a generalization of .. t.0m higher-order scattering procesSe@ur cross-

the scalar treatment described in Ref. 7. That model consi jolarization coupling could be considered as a renormalized

ers the scattering between pump, signal, and idler polantonl teraction that includes higher-order scattering. One ex-

of one circular polarization. The exciton amplitudes in theseample of a higher-order scattering process which could pro-
fields are denoted bg, , s;, andi,. They are time depen-

dent the exciton field at th mb wave vedior for duce an interaction betweenl excitons is second-order
ent, so the excrion field at the pump Oa € ve 9r09 electron-electron or hole-hole exchange mediated by*the
example, takes the formy (t)expi(k,.r— wpt), whereo,, is

he | b h polariton f plic excitons. It has also been suggested that a cross-polarization
the lower branch polariton frequency. For simplicity, We aS-jyieraction could be mediated by excited states of the

sume that the t?qre polarigon Erequencies satisfy the triple,  itonsl” The importance of higher-order Coulomb terms in
resonance Cond't'on‘#:‘”s“‘fi - We also assume that the first-principles calculations of polariton scattering has re-
time dependence of the amplitudes is slow compared W'”&ently been discussed by Kworg al18
the polariton splitting, so the upper branch can be omitted The jnteraction between excitons of opposite spins intro-
from the moge_l. The scattering is modeled by a term proporgyces two new types of polariton scattering terms into the
tional to| ¢,|* in the Lagrangian density, corresponding to aequations of motion. Ify, is constant as we assume these
X(_S) nonlinearity. The equations governing the exciton am-+th have the same strengty, but for now we add sub-
plitudes are then scripts in order to distinguish the processes in Egs. The
first process we describe as cross-polarization parametric
scattering, where a pair of pump polaritons of opposite po-
larization scatter into signal and idler modes, also of opposite
polarization. These terms are written with a coefficigpt
The second process we describe as a polarization flip, where
s+ ;<p%i}k =0, (1b) a pump and signal, or idler, polariton exchange polarizations.
This flip process is given a strenggly. A similar flip process
can also occur between signal and idler polaritons, but this
I d possibility is neglected here, making the assumption that the
N W a+ Yi signal and idler amplitudes are small compared with that of
the pump.
Herey,, etc, are the homogeneous line widths of the polar- With these polarization-coupling terms, the equations for
iton states, an¢, and X, are the amplitudes of the photon the spin-up fields are

[ (d N
— |t
|Xp|2 dt ‘P

. C
pT+2KSTITp?=X—SfT(t), (1a)

i d N
CxgElde

i+ Kkp?st=0. (10
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i (d N
— |ty
|Xp|2 dt P

P+ 2kSi1pT +9c(s)i1+5i|)p] Joo

o Cp . Efl's_ Hoo1
+gS(STSL+|T|L)pl:x_fTqu_|5pt)’ (2a) %, 40 %
i d 2: % ik * o — i _'-O‘Oléz
_W(ﬁ+ys St +KkpPjiT +9cPpiP i +9sPipTS; =0, EO.S_ Joos 2
(2b) I \/-0.03
i (d . - . . T s e v S Y B T L
_W a+7i i1+ KPSy +9cpip ST +9sp;pTi =0. Pump-down intensity, I /I, Pump-down intensity, I /I,
(20

FIG. 1. Left panel: allowed intensities of the pump fields giving

. . ] . steady-state operation with= 0.2 (solid lineg, andg=0 (dashed
;ll—ir;)?)iﬁgu'[ﬁtelzosn;)sinolt;eg(eelg il.:‘yEtggzipm—down fields are given b}fnes). The sloping line and dots are for comparison with Fig. 4. The
. ) . sloping line is a circularity ofe=0.1 for the pump fields, corre-
In_ What.f.O”OWS We.WIII not be concerned W'th_the abso- sponding to the circularity of the drive used for Fig. 4. The dots
lute intensities of the fields or external pumps. This allows us,, the pump fields at the thresholds of Fig. 4. Right panel: cor-
to eliminate the normal coupling by scaling all the fields

- responding signal detuning fog=0.2. For both plots ys
and the pumps according toC{/Xp)f;—(Cp/Xp)fiVk  =0.25 meV, y,=1.0 meV, |XJ?=0.5, |X,|2=0.97, and 85,=0.

=F,, andp;— pT/\/;, etc. After this rescaling, the cou- The intensities of the pump fields are given relative to that for
pling strengths in Eqs(2) are replaced by their ratios to steady-state operation with a single polarizatigy,
Kk:0.—0./k=0, etc.

A. Allowed pump fields and detunings

ll. PARAMETRIC OSCILLATION To determine the pump amplitudes and detunings for
: . . hich steady-state operation is possible, we note that since
For particular amplitudes of the pump fields, E¢ab) w . X : s
and(2c¢) admit harmonic solutions with finite amplitudes for E(Iqér(g)r;so:lomgg:ig?;:ﬁ’hzzlgtfgri \(,aviltr;,n&\‘/a?lﬂgelr??enr?r!sagg
the signal and idler fields. To find these steady states, we s qe pump pZIgriton intensitiess = p | gl ~|p |2' this oc
= . i 1P LIRS :
p;(t) =p;exp(=isyt), etc. When the detunings obey curs when
26,=65t 6, ©)
(AAF—12)(AAF —12)=g111 (21— A~ A})
the equations for the signal and idler amplitudes become .
time independent; defining complex rescaled detunihgs X(21 = As— A7), @)
=—(8p+ivy)=—(Sp+ivp)/[X,/% etc., they read
which directly determined,; as a function ofl| and the
A.s +p2i* + i* 4 x5 =0, 4 detunings. Since the determiné¢d should be real it also
S1TRT TARPITARPLS, @ gives an equation, parametrized hy, among the detunings,
x| w2 . % oy which combines with Eq(3) to determineds and &§; as a
AT +pyos+9pypys +gpypi] =0. (5 function of I .

. . . In Fig. 1, we illustrate the pump fields and signal detun-
Along with their spin-flipped counterparts, Edd) and(5)  ihgs giving steady-state operation, for a resonant pump with

form a set of linear homogeneous equations, parametrized b (=0.25 meV, y,=1 meV, g=0.2, and the Hopfield coef-
the pump amplitudes, for the signal and idler amplitudes: ficients|X4|2=0.5 and|X;|?=0.97. We have estimated these

damping rates and Hopfield coefficients to be those of the

S experiment reported in Ref. 11. The curves describing the
i? allowed pump fields look very similar to those for the un-
M =0. (6) coupled device, shown as dashed lines, except that the de-

generacy, where both polarizations are on threshold, has been
split. The signal detuning shows small deviations from the
uncoupled case, where it would be zero with this resonant
The matrix of coefficientdvl, combined with the condition pump. These shifts of the signal detuning from its uncoupled
(3), determines the pump amplitudes and detunings fowalue are due to the spin-flip processes and the imbalance in
which steady-state operation is possible, and the signal arttie damping of the signal and idler; without spin flips or for
idler fields in these steady states, as functions ofys’=7v," the condition for the intensities to be real is
¥s17i,0p,0, and the Hopfield coefficients. ImMAAF =0, as in the uncoupled device.
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We can determine whether the form shown in Fig. 1 is 2
general for smalf by using perturbation theory to calculate
how the degeneracy is split by the coupling. We expand the :
left-hand side of Eq(7) to first order in the deviation of the 150
pump intensities from the degeneracy and the change in the
detunings compared to the uncoupled case, and take th
right-hand side to be unchanged to leading order. EIiminating,{
the detunings such that the fields remain real, we find that the=
shifts in the pump intensities obey a real quartic form. Owing
to its complexity, we have not studied this quartic in general.
However, for the special case of a resonant pump it become: 95

413(a’ 41261 ,) (51, + 81 )2 +a"=0, (8)

wherea=a’'+ia” is the right-hand side of Eq7) evaluated

on the degeneracy. EquatidB) always has the form seen

near the degeneracy in Fig. 1, so the structure of that figure is ) ) )

general for resonant pumping and sngll _ FIQ. 2. Allowed pump-up |nt_enS|ty as afpnctlon of p_ump-down
We can also use perturbation theory away from the deger{ltensity forg=0.2 (thin solid lineg, 1.0 (thin dashed ling 2.0

eracy, to study the shift in the allowed pump fields produceo(thln do_tted ling, 5.0 (thick solid I_|n_es), 7.0 (thick dashed lines

by a smallg. Again for a resonant pump, the leading devia_lp.o(thlck dotted lineg The remaining parameters are as used for

tion in I, from an uncoupled solution in which =1, is on Fig. 1.

threshold whilel | is well away from it obeys

) fields: supposing§=(sT Ji7,8,iT) is an eigenvector oM

5'¢:_g—uz[4|lm—(ys’—7i’)2]- when ¢ =¢ =0, then e'=(s;e’ite " ,s,e",
2(ys' v —17) iTe™'?) is the corresponding eigenvector for finite phases.
Thus for a small value of one polarization, turning on the "€ Phases of the pump fields have such a simple effect
cross-polarization coupling increases the threshold for th@€cause there is no phase dependence in the form of the
other polarization. There is therefore a regionlof just ~neraction energy we have chosen. A nonlinearity such as
above the uncoupled threshold, in whick(l ) is multival- (Re)*, rather thar|$|*, might lead to a more complicated
ued, although this is not visible on the scale of Fig. 1. Suctfffect of the pump phases. .
behavior is possible because in the uncoupled device the '" Fid: 3, we plot the components of the eigenvector of
signal and idler fields of the below-threshold polarization are?€r° €igenvalue for the pump fields shown in Fig. 1. We have
zero, and hence there is no loss through these channels. Wi rmalized the eigenvector so th_at the total intensity is 1 and
a finite coupling however, these fields become finite, provid-Ne Phase of the signal up field is zero, and taken the pump

ing another loss channel. The modes do not always mix ifields to be real and positiye. T_he idl'er fields are always
this way however; for general pump detunings the initia/SMaller th_an the cor_respondlng S|gnal fields due to the stron-
shift can be to higher or lower thresholds. ger damping of the idlers. The crossings of the signal curves

In the strong-coupling limig— s, the solutions to Eq(7) occur when the intensities in the two pump components are
for y¢# v/ have eitherl, or I =0. The approach to this

limit is illustrated in Fig. 2, where we plot the allowed pump T L T ' —1%
fields for increasing values aj. The lower branch simply 06_T Wil U . 1
collapses towards the origin. The upper branch disappears | | 705m
then reappears as two disjoint branches with asymplgtes o5 4 11 1 1
=0 andl =0. These branches then merge, before finally - 1 O
collapsing into the origin. Eoar 1T 1 8
g 1 . N 4 +-05m §
: o Eo3F T i 5= A S & &
B. Signal and idler fields L AVAHE 0 .
T RV - —~—— -1
We now consider the signal and idler fields in the steady ©2] FLERNY 1 1
states. These fields are determined, up to an overall comple I AL | T o 15w
. . 0.1+ VR TN N
scale factorz, by the eigenvector ol corresponding to the i R BN / i
zero eigenvalue. o R B . NI

The eigenvectors dfl, unlike the eigenvalues, depend on
the phases of the pump fields; and ¢, . This dependence
can be extracted by noting thist can be written in the form FIG. 3. Signal fields(solid lines and conjugate of the idler
STM S, where S is a diagonal matrix with entries fields (dashed linescorresponding to the steady states shown in
e '?1,e'¢1,e7"¢1,e'%. Thus the phases of the pump fields Fig. 1, scaled such that the total intensity is 1 and the phase of the
simply shift the arguments of the steady-state signal and idlesignal up component is zero.
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equal. In the regiom, /1y<<1, the polarization with the larg- an external drive of fixed circularityy=0.1, and varying
est pump fields also has the largest signal and idler fields, bumtensity. The top panel shows the intensities of the pump
that ordering is reversed in the regiop/l1,>1. Forl /1,  fields, and the bottom panel shows the output intensity. In-
<1, the phase differences between corresponding compareasing the driving intensity from zero we first find two
nents in the two polarizations lie near to zero, while forcontinuous thresholds, where steady states appear starting
I /15>1 they lie near tor. with zero output intensity. The pump fields at these thresh-
The two circular components of the signal field can beolds are marked as filled dots in Fig. 1. At these points, the
combined to form, in general, an elliptically polarized state.pump intensities match, up to a common factor, with the
The phase differences between the two components of thariving intensities1 ;| = |F; |%/|A |2 For this small value of
signal that can be seen in Fig. 3 correspond to rotations df, they are approximately the thresholds for each polarization
the ellipse describing the signal polarization compared wittof the uncoupled device. With increasing driving, the output
that describing the pump polarization. Such polarization rointensity in each of these steady states increases and, in con-
tations are absent in our model if there are no spin-flip prostrast to the uncoupled device, the pump fields change. In-
cesses. creasing the driving intensity still further, we find a third
threshold at which a new steady state appears, and then splits
C. Dependence on the driving fields into two states. This third threshold is discontinuous, i.e., the

solution appears with a finite output intensity. It corresponds
The steady state reached in the device is selected from thg o purﬁg fields marked with tE\e open dg{c in Fig. 1.p

possibilities shown in Fig. 1 by the external driving fields,
according to the steady-state version of the pump equation
(2a), IV. DISCUSSION

In Ref. 10, the intensity and circularity of the signal out-
put were measured under continuous driving of the pump
field. The driving circularity was varied from circular to lin-
and its spin-flipped counterpart. The first term on the left-ear and the total pump intensity was of the same order of
hand side of Eq(9) describes the bare response of the pumpmagnitude as the threshold for a circularly polarized pump.
field, while the remaining “pump depletion” terms describe As the pump circularityr was decreased from 1, the signal
the effect on the pump fields of the nonlinear processegtensity increased by a factor of 5 to a maximum aat
which generate the signal and idler. The pump equatiBns ~0.4, and then decreased again. The circularity of the signal
determine the remaining four real unknowns; the argu-  was approximately constant, except near to linear pumping,
ments of the pump fields, and the total intensity of the outputvhere it dropped to zero.
fields, |z|>. The pump equations are independent of the over- Considering the pair process underlying the parametric
all phase of the zero eigenvector, arg corresponding to a oscillator, one might expect that without polarization cou-
single free phase among the output fields. pling the output would monotonically reduce as the pump

To solve the pump equation9), we first extract the de- circularity is reduced: scattering only occurs within each po-
pendence of the phases of the signal and idler on the phasgsgization, and moving away from circularity reduces the

of the pump, as discussed in Sec. Ill B. This gives population of each polarizatioti.However, such an interpre-
Car - tation overlooks the effects of pump depletion and coher-
e' JOPI|L [=[F,|e' &9, (100 ence. Because of these effects, the steady-state output of a

where L, is the left-hand side of Eq(9) evaluated for sing_le polarization pumped with intensiy is ggtua_lly pro-
arg p;=0. Taking the modulus of Eq(10) we have the Portional to VI = Vlivesn (Ref. 7. For total driving intensi-
general form _t|es grggter than twlce thg smgle-polanzatlon thresh.old,. there
is a critical pump circularity below which both polarizations
la+|2|28|=|F,], (11)  are above threshold. Below this critical circularity, the total
output increases as the pump circularity is reduced, with a
wherea and 8 are functions of the intensities of the pump local maximum for a linear pump. Thus an increase in the
fields. We solve Eq(11) to determine the output intensities output as the pump circularity is reduced does not in general
that are consistent with the strength of the pump-up drivingimply the existence of polarization coupling. However, with-
as functions of the intensities of the pump field¢l ) and  out such a coupling it is difficult to explain the dependence
I, . We then solve the spin-flipped version of E41) to  of output on pump circularity reported in Ref. 10: the en-
determine the output intensities consistent with the strengthancement away from circularity is too strong, and the out-
of the pump-down driving. Equating these two intensitiesput peaks for elliptical, rather than circular or linear, pump-
gives a nonlinear equation which we solve to deternhings  ing.
a function of the external pumps. The lower branches shown in Fig. 2 have no structure to
Figure 4 illustrates the solution to the pump equati®s  suggest that they would give a maximum output for an ellip-
The damping and Hopfield coefficients for the signal andtically polarized pump. However, the upper branches illus-
idler are as in Fig. 1. For the pump we have usgd trated forg=5 andg=7 do have such structure. As the
=0.1 meV and|Xp|2=O.8, which we again estimate to be pump circularity is reduced from 1, we would first go up
appropriate to the system studied in Ref. 11. We have takethrough the threshold for these solutions, then move back
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I . . only contain a single frequency for the pump, signal, and
B — n idler, and the treatment given here will be qualitatively cor-
______________ 1 rect. However, a splitting of the two circular polarization
e 1 states might be an alternative explanation for the steady-state
results of Ref. 10.
— The agreement between the polarization rotations seen in
I s ! s ! s 1 the pulsed experimerifsand the theory of Ref. 12 suggests
that a polarization coupling term is not required to explain
these results. However, this does not imply that the
polarization-coupling is always irrelevant. The polarization
rotations produced by a coupling could be small compared
with those produced by the blue shifts, allowing a good fit to
this aspect of the data without a coupling. Note also that the
, . | . 1 pulsed experiments are done at much higher excitation pow-
2 3 4 ers, typically around a 100 times greater, than the steady-
Driving intensity state experiments. The polarization coupling could also de-

pend on sample parameters such as the energy difference

FIG. 4. Steady states, for the parameters of Fig. 1, with ahetween the pump polaritons and the biexcitdn
external drive of circularityo=0.1 and varying intensity. The in- '

tensity of the drive is expressed relative to that of the lowest thresh-
old in the uncoupled device with the same parameters.

= T I ]
R
-

=4 =3
>0 LR
N - N th
T T T

&4
T

o

Output intensity (a.u.) Pump field intensity, U1,
=

o
[=Fe,
—

V. CONCLUSIONS

We have studied the steady states of a model of microcav-
towards it, and for some parameters go below it again as whY parametric oscillation_ with co_upled polarizations. For
approach linear pumping. The circularity of the turning small va]ues of the coupling, we find two §teady states cor-
points illustrated fog=7 is o=0.47. While this is roughly '€sPonding to those of the uncoupled device. However, due
consistent with the experimental results, a detailed fit to thd® the increased scope for arranging the pump depletion,
experiment is beyond the scope of the present paper. It wouldl€r€ are also two steady states which appear discontinu-
involve a large number of parameters, and we expect th@USlY, i-€., with a finite value of the output intensity, as the
results to be sensitive to details left out of the present modefving intensity is increased. For general values of the cou-
such as the blue shifts. pling Fig. 2 suggests that there will be either one or two

It is only stable steady states which are relevant to concontinuous solutions, depending on the coupling and pump
tinuously pumped experiments. We have analyzed the stabifircularity. There may also be discontinuous solutions. For _
ity of some of the steady-state solutions to our model for 25°Me parameters more than one steady state can be stable, in
special case in which all the effective damping rates ardvhich case it should be possible to observe switching be-
equal,y’=y. =+ . Forg=0.1, there are two solutions with tween the states induced either by noise or by external

' Ip s i il
continuous thresholds and two with discontinuous threshprObeS' . o :
olds, as there are in Fig. 4. We find that only the solution Th?‘ couplmg between po!arlzatlons !ntroduces two types
with,the lowest threshold is stable. Fgr=2.0, we find only of mixing term into the equations of motion for the fields. As
one solution with a continuous threshold, aé well as two Withwe” as the straightforward analog of the process considered
discontinuous thresholds. In that case, both the continuoy the gncom;ptled rfr)oltéel, tSher(ra] are p;lc?cesses wh|ch| ex(;:htange
solution and one of the discontinuous solutions are stablé. € spins of two Tields. such spin-lip processes iead 1o a
Thus it is possible for our model to have stable solution otation of the output polarization with respect to the pump.

other than that with the lowest threshold, and to have mor hey also _produpe shift_s in th_e output f_requencies with vary-
than one stable solution ' Ing pump intensity or circularity, even in the absence of the

The pulsed experiments of Ref. 11 have recently beer§h|fts associated with the mean-field exciton-exciton interac-

addressed by Kavokiet al'2 Their theory reproduces the O™
experimentally observed rotations of the linear polarization
without scattering between polarizations. In their theory, the
rotation of the linear polarization comes from the different We thank Jeremy Baumberg and Peter Littlewood for dis-
blue shifts of the two circular polarization states. The presentussions of this work. P.R.E. acknowledges the financial sup-
work does not include this effect, because we have taken thgort of Sidney Sussex College, Cambridge, and D.M.W. that
detunings of the two polarization states to be the same. Wef the EPSRAGrant No. GR/A11601 This work was also
expect that if the blue shifts are small compared with thesupported by the EU network “Photon mediated phenomena
interactions between polarizations then the steady states with semiconductor nanostructures.”
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