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Steady states of ax3 parametric oscillator with coupled polarizations
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Polarization effects in the microcavity parametric oscillator are studied using a simple model in which two
x3 optical parametric oscillators are coupled together. It is found that there are, in general, a number of steady
states of the model under continuous pumping. There are both continuous and discontinuous thresholds, at
which new steady states appear as the driving intensity is increased: at the continuous thresholds, the new state
has zero output intensity, whereas at the discontinuous threshold it has a finite output intensity. The discon-
tinuous thresholds have no analog in the uncoupled device. The coupling also generates rotations of the linear
polarization of the output compared with the pump, and shifts in the output frequencies as the driving polar-
ization or intensity is varied. For large ratios of the interaction between polarizations to the interaction within
polarizations, of the order of 5, one of the thresholds has its lowest value when the pump is elliptically
polarized. This is consistent with recent experiments in which the maximum output was achieved with an
elliptically polarized pump.

DOI: 10.1103/PhysRevB.68.075324 PACS number~s!: 71.36.1c, 42.65.Yj, 42.25.Ja, 78.20.Bh
er
to
ne
te
e

ty
r-
te
ni
en
cs
n.
es

e
se
w
n
d
g

in
n

m
h
th
th

sl
s

pe
th
io

ed’’

-

f. 2
he
dy-
oth
a are
co-

ing

ag-
the

the
sfy
tion
os-

ing
h
ara-
ity
za-
lar
of

ef-
the

n,
e
ns

ile
I. INTRODUCTION

Semiconductor microcavities are high finesse Fabry-P
structures, typically consisting of a planar semiconduc
cavity layer bounded by Bragg mirrors. The mirrors confi
two-dimensional photons, which mix with the exciton sta
of quantum wells embedded in the cavity. Such mixing giv
a type of two-dimensional polariton known as a ‘‘cavi
polariton.’’1 The nonlinear dynamics of cavity polaritons co
responding to polariton-polariton scattering has been ex
sively studied, due to the possibility of observing boso
effects such as stimulated scattering. Recent experim
have demonstrated new aspects to the nonlinear dynami
coherentpolaritons: parametric oscillation and amplificatio

Parametric oscillation and amplification in microcaviti
has been demonstrated using both pulsed2,3 and
continuous-wave4 excitations. In these experiments, a las
tuned near to the energy of the lower polariton mode is u
to generate a coherent polariton field in the microcavity. O
ing to a x (3) nonlinearity provided by the exciton-excito
interaction, this pump mode is coupled to ‘‘signal’’ an
‘‘idler’’ modes at lower and higher energies. The couplin
corresponds to the scattering of pairs of pump polaritons
the signal and idler, in contrast to the coupling in the co
ventional x (2) optical parametric oscillator,5 which corre-
sponds to the fission of pump photons. Above a critical pu
intensity, the gain due to the nonlinearity outweighs t
damping of the signal and idler modes. When this occurs,
steady state in which there is a single coherent field at
pump becomes unstable towards a state which also has
herent fields at the signal and idler. In the continuou
pumped experiments, this instability develops spontaneou
and the new steady state is reached. In the pulsed ex
ments of Ref. 2 however, there is not enough time for
instability to develop spontaneously before the excitat
0163-1829/2003/68~7!/075324~7!/$20.00 68 0753
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pulse is over. Instead it is triggered using a second ‘‘se
laser pulse injected into the signal mode.

The theory of microcavity parametric oscillation and am
plification was initially developed by Ciutiet al.6 and
Whittaker.7 In the former, the pulsed measurements of Re
are treated within a quantum optics formalism, while t
latter used classical nonlinear optics to explain the stea
state behavior. The dynamical equations which occur in b
models are the same, demonstrating that the phenomen
essentially classical effects, with the exception of the in
herent luminescence which occurs below threshold.8 More
recent theoretical work by Savastaet al.9 includes frequency-
dependent nonlinearities and nonlinear absorption, aris
from exciton-exciton correlations.

Parametric oscillation requires a significant electrom
netic response at the wave vectors and frequencies of
signal and idler. Thus the signal and idler must lie near
polariton dispersion. The signal and idler must also sati
the requirements of wavevector and frequency conserva
in the generation process. In the conventional parametric
cillator, these two requirements are usually met by exploit
birefringence.5 Thus the polarizations of the fields for whic
the device operates are prescribed. In the microcavity p
metric oscillator however, the unusual dispersion of cav
polaritons allows them to be met irrespective of the polari
tions. This is achieved for pump fields near to a particu
‘‘magic’’ wave vector. In this paper we study the effects
these polarization degrees of freedom.

There are two recent experiments on the polarization
fects in microcavities that are resonantly pumped near to
magic wave vector, one using continuous-wave excitatio10

and one using pulsed excitation.11 Both these papers argu
that their observations imply the existence of interactio
between polaritons of different circular polarizations. Wh
some aspects of the pulsed data11 were recently explained
©2003 The American Physical Society24-1
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using a model without such interactions,12 they may still be
necessary to understand the steady-state experiments o
10. Furthermore, interactions between polaritons of differ
polarizations seem to be necessary to explain the polariza
dependence of four-wave mixing experiments
microcavities.13 They could originate from interactions be
tween excitons of different polarizations, which have be
used to explain the polarization dependence of four-w
mixing in quantum wells.14,15

Because the parametric oscillator involves the dynam
of coherent polaritons, and not simply scattering, the con
quences of an interaction between polaritons of different
larizations are not obvious. In this paper, we investigate
effects of polarization coupling on the steady states o
simple model.

The remainder of this paper is organized as follows.
Sec. II we present the model. In Sec. III we explore t
steady states of the model. The steady-state calculatio
subdivided: in Sec. III A we calculate the possible values
the pump polariton fields, in Sec. III B we calculate the o
put fields for those values of the pump fields, and in S
III C we combine these results with the ‘‘pump depletion
equations to determine the behavior for a particular exte
drive. In Sec. IV we qualitatively compare our results w
the continuously pumped experiments reported in Ref.
and comment on the stability of our solutions. Finally, Sec
summarizes our conclusions.

II. MODEL

The model we analyze in this paper is a generalization
the scalar treatment described in Ref. 7. That model con
ers the scattering between pump, signal, and idler polari
of one circular polarization. The exciton amplitudes in the
fields are denoted byp↑ , s↑ , and i ↑ . They are time depen
dent, so the exciton field at the pump wave vectorkp , for
example, takes the formp↑(t)exp i(kp .r2vp

0t), wherevp
0 is

the lower branch polariton frequency. For simplicity, we a
sume that the bare polariton frequencies satisfy the tr
resonance condition 2vp

05vs
01v i

0 . We also assume that th
time dependence of the amplitudes is slow compared w
the polariton splitting, so the upper branch can be omit
from the model. The scattering is modeled by a term prop
tional to uf↑u4 in the Lagrangian density, corresponding to
x (3) nonlinearity. The equations governing the exciton a
plitudes are then

2
i

uXpu2 S d

dt
1gpD p↑12ks↑i ↑p↑* 5

Cp

Xp
f ↑~ t !, ~1a!

2
i

uXsu2
S d

dt
1gsD s↑1kp↑

2i ↑* 50, ~1b!

2
i

uXi u2
S d

dt
1g i D i ↑1kp↑

2s↑* 50. ~1c!

Heregp , etc, are the homogeneous line widths of the po
iton states, andcp andXp are the amplitudes of the photo
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and exciton in the polariton, i.e., the Hopfield coefficien
They appear because it is only the excitonic part of the
lariton which interacts.f ↑(t) is the external driving field for
the pump, in a frame rotating at the appropriate polari
frequency. For the continuously pumped situation we c
sider in the present paper,f ↑(t)5 f ↑exp(2idpt), wheredp is
the pump detuning. The nonlinear term in the pump equa
~1a! describes the scattering of pairs of polaritons out of
pump field, while the terms in Eqs.~1b! and~1c! provide the
corresponding growth in the signal and idler fields. The no
linear exciton blue shift6,7 is neglected for simplicity.

To incorporate the polarization degrees of freedom,
introduce pump, signal, and idler fields for the other circu
polarization, denoting their exciton amplitudes byp↓ , s↓ ,
and i ↓ . Without any coupling terms, their dynamics is give
by the analogs of Eq.~1!. However, we now introduce a
secondx (3) excitonic nonlinearity which couples the up- an
down-spin excitons. Rather than derive a realistic mic
scopic model of exciton spin scattering, we treat this p
nomenologically by choosing the simple formg0uf↑u2uf↓u2.
We assume that the coefficientsk andg0 are independent o
momentum and energy. While the former is physically jus
fied because the wavelengths of the polaritons which sca
are much larger than any excitonic length scale,6 it is more
difficult to rule out the possibility of an energy-depende
process.

The first-order Coulomb interactions between excitons
opposite polarizations are, in fact, negligible15,16 at the small
wave vectors relevant for the parametric oscillator. Howev
interactions between excitons of opposite polarizations
arise from higher-order scattering processes.15 Our cross-
polarization coupling could be considered as a renormali
interaction that includes higher-order scattering. One
ample of a higher-order scattering process which could p
duce an interaction between61 excitons is second-orde
electron-electron or hole-hole exchange mediated by the62
excitons. It has also been suggested that a cross-polariz
interaction could be mediated by excited states of
excitons.17 The importance of higher-order Coulomb terms
first-principles calculations of polariton scattering has
cently been discussed by Kwonget al.18

The interaction between excitons of opposite spins int
duces two new types of polariton scattering terms into
equations of motion. Ifg0 is constant as we assume the
both have the same strength,g0, but for now we add sub-
scripts in order to distinguish the processes in Eqs.~2!. The
first process we describe as cross-polarization param
scattering, where a pair of pump polaritons of opposite
larization scatter into signal and idler modes, also of oppo
polarization. These terms are written with a coefficientgc .
The second process we describe as a polarization flip, w
a pump and signal, or idler, polariton exchange polarizatio
This flip process is given a strengthgs . A similar flip process
can also occur between signal and idler polaritons, but
possibility is neglected here, making the assumption that
signal and idler amplitudes are small compared with tha
the pump.

With these polarization-coupling terms, the equations
the spin-up fields are
4-2
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2
i

uXpu2 S d

dt
1gpD p↑12ks↑i ↑p↑* 1gc~s↓i ↑1s↑i ↓!p↓*

1gs~s↑s↓* 1 i ↑i ↓* !p↓5
Cp

Xp
f ↑exp~2 idpt !, ~2a!

2
i

uXsu2 S d

dt
1gsD s↑1kp↑

2i ↑* 1gcp↑p↓i ↓* 1gsp↑p↓* s↓50,

~2b!

2
i

uXi u2
S d

dt
1g i D i ↑1kp↑

2s↑* 1gcp↑p↓s↓* 1gsp↑p↓* i ↓50.

~2c!

The equations obeyed by the spin-down fields are given
flipping the spin labels in Eqs.~2!.

In what follows we will not be concerned with the abs
lute intensities of the fields or external pumps. This allows
to eliminate the normal couplingk by scaling all the fields
and the pumps according to (Cp /Xp) f ↑→(Cp /Xp) f ↑Ak
5F↑ , and p↑→p↑ /Ak, etc. After this rescaling, the cou
pling strengths in Eqs.~2! are replaced by their ratios t
k:gc→gc /k5g, etc.

III. PARAMETRIC OSCILLATION

For particular amplitudes of the pump fields, Eqs.~2b!
and~2c! admit harmonic solutions with finite amplitudes fo
the signal and idler fields. To find these steady states, we
p↑(t)5p↑exp(2idpt), etc. When the detunings obey

2dp5ds1d i , ~3!

the equations for the signal and idler amplitudes beco
time independent; defining complex rescaled detuningsDp

52(dp81 igp8)52(dp1 igp)/uXpu2, etc., they read

Dss↑1p↑
2i ↑* 1gp↑p↓i ↓* 1gp↑p↓* s↓50, ~4!

D i* i ↑* 1p↑*
2s↑1gp↑* p↓* s↓1gp↑* p↓i ↓* 50. ~5!

Along with their spin-flipped counterparts, Eqs.~4! and ~5!
form a set of linear homogeneous equations, parametrize
the pump amplitudes, for the signal and idler amplitudes

MS s↑
i ↑*

s↓
i ↓*
D 50. ~6!

The matrix of coefficientsM, combined with the condition
~3!, determines the pump amplitudes and detunings
which steady-state operation is possible, and the signal
idler fields in these steady states, as functions
gs ,g i ,dp ,g, and the Hopfield coefficients.
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A. Allowed pump fields and detunings

To determine the pump amplitudes and detunings
which steady-state operation is possible, we note that s
Eq. ~6! is homogeneous, solutions with a finite signal a
idler are only possible ifM has a zero eigenvalue. In terms
the pump polariton intensitiesI ↑5up↑u2, I ↓5up↓u2, this oc-
curs when

~DsD i* 2I ↑
2!~DsD i* 2I ↓

2!5g2I ↑I ↓~2I ↑2Ds2D i* !

3~2I ↓2Ds2D i* !, ~7!

which directly determinesI ↑ as a function ofI ↓ and the
detunings. Since the determinedI ↑ should be real it also
gives an equation, parametrized byI ↓ , among the detunings
which combines with Eq.~3! to determineds and d i as a
function of I ↓ .

In Fig. 1, we illustrate the pump fields and signal detu
ings giving steady-state operation, for a resonant pump w
gs50.25 meV,g i51 meV, g50.2, and the Hopfield coef
ficientsuXsu250.5 anduXi u250.97. We have estimated thes
damping rates and Hopfield coefficients to be those of
experiment reported in Ref. 11. The curves describing
allowed pump fields look very similar to those for the u
coupled device, shown as dashed lines, except that the
generacy, where both polarizations are on threshold, has
split. The signal detuning shows small deviations from t
uncoupled case, where it would be zero with this reson
pump. These shifts of the signal detuning from its uncoup
value are due to the spin-flip processes and the imbalanc
the damping of the signal and idler; without spin flips or f
gs85g i8 the condition for the intensities to be real
ImDsD i* 50, as in the uncoupled device.

FIG. 1. Left panel: allowed intensities of the pump fields givin
steady-state operation withg50.2 ~solid lines!, andg50 ~dashed
lines!. The sloping line and dots are for comparison with Fig. 4. T
sloping line is a circularity ofs50.1 for the pump fields, corre
sponding to the circularity of the drive used for Fig. 4. The do
mark the pump fields at the thresholds of Fig. 4. Right panel: c
responding signal detuning forg50.2. For both plots gs

50.25 meV, g i51.0 meV, uXsu250.5, uXi u250.97, and dp50.
The intensities of the pump fields are given relative to that
steady-state operation with a single polarization,I 0.
4-3
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We can determine whether the form shown in Fig. 1
general for smallg by using perturbation theory to calcula
how the degeneracy is split by the coupling. We expand
left-hand side of Eq.~7! to first order in the deviation of the
pump intensities from the degeneracy and the change in
detunings compared to the uncoupled case, and take
right-hand side to be unchanged to leading order. Elimina
the detunings such that the fields remain real, we find that
shifts in the pump intensities obey a real quartic form. Ow
to its complexity, we have not studied this quartic in gene
However, for the special case of a resonant pump it beco

4I 0
2~a824I 0

2dI ↑!~dI ↑1dI ↓!21a92
50, ~8!

wherea5a81 ia9 is the right-hand side of Eq.~7! evaluated
on the degeneracy. Equation~8! always has the form see
near the degeneracy in Fig. 1, so the structure of that figu
general for resonant pumping and smallg.

We can also use perturbation theory away from the deg
eracy, to study the shift in the allowed pump fields produc
by a smallg. Again for a resonant pump, the leading dev
tion in I ↑ from an uncoupled solution in whichI ↑5I 0 is on
threshold whileI ↓ is well away from it obeys

dI ↑52
g2I ↓

2~gs8g i82I ↓
2!

@4I ↓Ags8g i82~gs82g i8!2#.

Thus for a small value of one polarization, turning on t
cross-polarization coupling increases the threshold for
other polarization. There is therefore a region ofI ↓ , just
above the uncoupled threshold, in whichI ↑(I ↓) is multival-
ued, although this is not visible on the scale of Fig. 1. Su
behavior is possible because in the uncoupled device
signal and idler fields of the below-threshold polarization
zero, and hence there is no loss through these channels.
a finite coupling however, these fields become finite, prov
ing another loss channel. The modes do not always mix
this way however; for general pump detunings the init
shift can be to higher or lower thresholds.

In the strong-coupling limitg→`, the solutions to Eq.~7!
for gs8Þg i8 have eitherI ↑ or I ↓50. The approach to this
limit is illustrated in Fig. 2, where we plot the allowed pum
fields for increasing values ofg. The lower branch simply
collapses towards the origin. The upper branch disappe
then reappears as two disjoint branches with asymptoteI ↑
50 and I ↓50. These branches then merge, before fina
collapsing into the origin.

B. Signal and idler fields

We now consider the signal and idler fields in the stea
states. These fields are determined, up to an overall com
scale factorz, by the eigenvector ofM corresponding to the
zero eigenvalue.

The eigenvectors ofM, unlike the eigenvalues, depend o
the phases of the pump fields,f↑ andf↓ . This dependence
can be extracted by noting thatM can be written in the form
S†MS, where S is a diagonal matrix with entries
e2 if↑,eif↑,e2 if↓,eif↓. Thus the phases of the pump field
simply shift the arguments of the steady-state signal and i
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fields: supposingeW5(s↑ ,i ↑* ,s↓ ,i ↓* ) is an eigenvector ofM

when f↑5f↓50, then e8W5(s↑eif↑,i ↑* e2 if↑,s↓eif↓,
i ↓* e2 if↓) is the corresponding eigenvector for finite phas
The phases of the pump fields have such a simple ef
because there is no phase dependence in the form of
interaction energy we have chosen. A nonlinearity such
(Ref)4, rather thanufu4, might lead to a more complicate
effect of the pump phases.

In Fig. 3, we plot the components of the eigenvector
zero eigenvalue for the pump fields shown in Fig. 1. We ha
normalized the eigenvector so that the total intensity is 1
the phase of the signal up field is zero, and taken the pu
fields to be real and positive. The idler fields are alwa
smaller than the corresponding signal fields due to the st
ger damping of the idlers. The crossings of the signal cur
occur when the intensities in the two pump components

FIG. 2. Allowed pump-up intensity as a function of pump-dow
intensity for g50.2 ~thin solid lines!, 1.0 ~thin dashed line!, 2.0
~thin dotted line!, 5.0 ~thick solid lines!, 7.0 ~thick dashed lines!,
10.0 ~thick dotted lines!. The remaining parameters are as used
Fig. 1.

FIG. 3. Signal fields~solid lines! and conjugate of the idler
fields ~dashed lines! corresponding to the steady states shown
Fig. 1, scaled such that the total intensity is 1 and the phase o
signal up component is zero.
4-4
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equal. In the regionI ↓ /I 0,1, the polarization with the larg
est pump fields also has the largest signal and idler fields
that ordering is reversed in the regionI ↓ /I 0.1. For I ↓ /I 0
,1, the phase differences between corresponding com
nents in the two polarizations lie near to zero, while f
I ↓ /I 0.1 they lie near top.

The two circular components of the signal field can
combined to form, in general, an elliptically polarized sta
The phase differences between the two components of
signal that can be seen in Fig. 3 correspond to rotation
the ellipse describing the signal polarization compared w
that describing the pump polarization. Such polarization
tations are absent in our model if there are no spin-flip p
cesses.

C. Dependence on the driving fields

The steady state reached in the device is selected from
possibilities shown in Fig. 1 by the external driving field
according to the steady-state version of the pump equa
~2a!,

Dpp↑12s↑i ↑p↑* 1g~s↓i ↑1s↑i ↓!p↓* 1g~s↑s↓* 1 i ↑i ↓* !p↓5F↑ ,
~9!

and its spin-flipped counterpart. The first term on the le
hand side of Eq.~9! describes the bare response of the pu
field, while the remaining ‘‘pump depletion’’ terms describ
the effect on the pump fields of the nonlinear proces
which generate the signal and idler. The pump equations~9!
determine the remaining four real unknowns:I ↓ , the argu-
ments of the pump fields, and the total intensity of the out
fields,uzu2. The pump equations are independent of the ov
all phase of the zero eigenvector, argz, corresponding to a
single free phase among the output fields.

To solve the pump equations~9!, we first extract the de-
pendence of the phases of the signal and idler on the ph
of the pump, as discussed in Sec. III B. This gives

ei argp↑uL↑u5uF↑uei argF↑, ~10!

where L↑ is the left-hand side of Eq.~9! evaluated for
arg p↑50. Taking the modulus of Eq.~10! we have the
general form

ua1uzu2bu5uF↑u, ~11!

wherea andb are functions of the intensities of the pum
fields. We solve Eq.~11! to determine the output intensitie
that are consistent with the strength of the pump-up drivi
as functions of the intensities of the pump fieldsI ↑(I ↓) and
I ↓ . We then solve the spin-flipped version of Eq.~11! to
determine the output intensities consistent with the stren
of the pump-down driving. Equating these two intensit
gives a nonlinear equation which we solve to determineI ↓ as
a function of the external pumps.

Figure 4 illustrates the solution to the pump equations~9!.
The damping and Hopfield coefficients for the signal a
idler are as in Fig. 1. For the pump we have usedgp
50.1 meV anduXpu250.8, which we again estimate to b
appropriate to the system studied in Ref. 11. We have ta
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an external drive of fixed circularity,s50.1, and varying
intensity. The top panel shows the intensities of the pu
fields, and the bottom panel shows the output intensity.
creasing the driving intensity from zero we first find tw
continuous thresholds, where steady states appear sta
with zero output intensity. The pump fields at these thre
olds are marked as filled dots in Fig. 1. At these points,
pump intensities match, up to a common factor, with t
driving intensities:I ↑↓5uF↑↓u2/uDpu2. For this small value of
g, they are approximately the thresholds for each polariza
of the uncoupled device. With increasing driving, the outp
intensity in each of these steady states increases and, in
strast to the uncoupled device, the pump fields change.
creasing the driving intensity still further, we find a thir
threshold at which a new steady state appears, and then s
into two states. This third threshold is discontinuous, i.e.,
solution appears with a finite output intensity. It correspon
to the pump fields marked with the open dot in Fig. 1.

IV. DISCUSSION

In Ref. 10, the intensity and circularity of the signal ou
put were measured under continuous driving of the pu
field. The driving circularity was varied from circular to lin
ear and the total pump intensity was of the same orde
magnitude as the threshold for a circularly polarized pum
As the pump circularitys was decreased from 1, the sign
intensity increased by a factor of 5 to a maximum ats
'0.4, and then decreased again. The circularity of the sig
was approximately constant, except near to linear pump
where it dropped to zero.

Considering the pair process underlying the parame
oscillator, one might expect that without polarization co
pling the output would monotonically reduce as the pum
circularity is reduced: scattering only occurs within each p
larization, and moving away from circularity reduces t
population of each polarization.11 However, such an interpre
tation overlooks the effects of pump depletion and coh
ence. Because of these effects, the steady-state output
single polarization pumped with intensityI 1 is actually pro-
portional toAI 12AI thresh~Ref. 7!. For total driving intensi-
ties greater than twice the single-polarization threshold, th
is a critical pump circularity below which both polarization
are above threshold. Below this critical circularity, the to
output increases as the pump circularity is reduced, wit
local maximum for a linear pump. Thus an increase in
output as the pump circularity is reduced does not in gen
imply the existence of polarization coupling. However, wit
out such a coupling it is difficult to explain the dependen
of output on pump circularity reported in Ref. 10: the e
hancement away from circularity is too strong, and the o
put peaks for elliptical, rather than circular or linear, pum
ing.

The lower branches shown in Fig. 2 have no structure
suggest that they would give a maximum output for an ell
tically polarized pump. However, the upper branches illu
trated for g55 and g57 do have such structure. As th
pump circularity is reduced from 1, we would first go u
through the threshold for these solutions, then move b
4-5
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towards it, and for some parameters go below it again as
approach linear pumping. The circularity of the turnin
points illustrated forg57 is s50.47. While this is roughly
consistent with the experimental results, a detailed fit to
experiment is beyond the scope of the present paper. It w
involve a large number of parameters, and we expect
results to be sensitive to details left out of the present mo
such as the blue shifts.

It is only stable steady states which are relevant to c
tinuously pumped experiments. We have analyzed the sta
ity of some of the steady-state solutions to our model fo
special case in which all the effective damping rates
equal,gp85gs85g i8 . Forg50.1, there are two solutions wit
continuous thresholds and two with discontinuous thre
olds, as there are in Fig. 4. We find that only the solut
with the lowest threshold is stable. Forg52.0, we find only
one solution with a continuous threshold, as well as two w
discontinuous thresholds. In that case, both the continu
solution and one of the discontinuous solutions are sta
Thus it is possible for our model to have stable solutio
other than that with the lowest threshold, and to have m
than one stable solution.

The pulsed experiments of Ref. 11 have recently b
addressed by Kavokinet al.12 Their theory reproduces th
experimentally observed rotations of the linear polarizat
without scattering between polarizations. In their theory,
rotation of the linear polarization comes from the differe
blue shifts of the two circular polarization states. The pres
work does not include this effect, because we have taken
detunings of the two polarization states to be the same.
expect that if the blue shifts are small compared with
interactions between polarizations then the steady states

FIG. 4. Steady states, for the parameters of Fig. 1, with
external drive of circularitys50.1 and varying intensity. The in
tensity of the drive is expressed relative to that of the lowest thre
old in the uncoupled device with the same parameters.
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only contain a single frequency for the pump, signal, a
idler, and the treatment given here will be qualitatively co
rect. However, a splitting of the two circular polarizatio
states might be an alternative explanation for the steady-s
results of Ref. 10.

The agreement between the polarization rotations see
the pulsed experiments11 and the theory of Ref. 12 sugges
that a polarization coupling term is not required to expla
these results. However, this does not imply that
polarization-coupling is always irrelevant. The polarizati
rotations produced by a coupling could be small compa
with those produced by the blue shifts, allowing a good fit
this aspect of the data without a coupling. Note also that
pulsed experiments are done at much higher excitation p
ers, typically around a 100 times greater, than the stea
state experiments. The polarization coupling could also
pend on sample parameters such as the energy differ
between the pump polaritons and the biexciton.10

V. CONCLUSIONS

We have studied the steady states of a model of microc
ity parametric oscillation with coupled polarizations. F
small values of the coupling, we find two steady states c
responding to those of the uncoupled device. However,
to the increased scope for arranging the pump deplet
there are also two steady states which appear discon
ously, i.e., with a finite value of the output intensity, as t
driving intensity is increased. For general values of the c
pling Fig. 2 suggests that there will be either one or tw
continuous solutions, depending on the coupling and pu
circularity. There may also be discontinuous solutions. F
some parameters more than one steady state can be stab
which case it should be possible to observe switching
tween the states induced either by noise or by exte
probes.

The coupling between polarizations introduces two typ
of mixing term into the equations of motion for the fields. A
well as the straightforward analog of the process conside
in the uncoupled model, there are processes which excha
the spins of two fields. Such spin-flip processes lead t
rotation of the output polarization with respect to the pum
They also produce shifts in the output frequencies with va
ing pump intensity or circularity, even in the absence of t
shifts associated with the mean-field exciton-exciton inter
tion.
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