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Abstract—While the polling or request/response paradigm 

adopted by many network and systems management approaches 

form the backbone of modern monitoring and management 

systems, the most important and interesting events, faults, alerts 

and log messages arrive at the management agent in a push-

based asynchronous manner. However, in the management 

infrastructure itself, at the point where events are initially 

processed and matched to subscribers, there have been few 

attempts to identify relationships or dependencies between 

events. This means that most of this burden is placed on the 

management application, or indeed the managers themselves. 

This research investigates enhancing the expressiveness of a 

knowledge-based networking middleware with the addition of 

three temporal operators to be used in subscriptions to select 

matching events. A prototype design is presented and a number 

of implementations are compared. The approach is also 

motivated using two scenarios for temporal correlation of 

warnings and faults in managed networks. The effect on the 

scalability of the extended knowledge-based network system is 

also evaluated. 

I. INTRODUCTION 

As network technology rapidly develops, and enterprises 

and network providers place ever increasing demands on their 

networks, current network scales and complexity are 

increasing dramatically. However, traditional event and fault 

management approaches involve inflexible and rigid 

hierarchical manager/agent formations, relying on significant 

human intervention and analysis, which become increasingly 

difficult as scale and complexity grows.  

Increased reliance on asynchronous event-based systems 

requires  more real-time, complex event processing to filter 

and analyze event streams to provide relevant information to 

managers. If performed at the application level, this event 

processing is expensive, both in terms of the computation 

required and the cost of existing commercial solutions (such 

as SMARTS InCharge [1] and HP OpenView [2]). New 

solutions are required to make complex event processing 

affordable and easy, while maintaining the expressiveness and 

scalability of other distributed, event-based systems. In the 

following sections we present an extension to a semantically 

enhanced event middleware to support complex event 

processing and temporal reasoning. We also evaluate the 

scalability of our approach, and explore real-world system 

management deployment scenario for the resulting system.  

II. BACKGROUND AND RELATED WORK 

The earliest distributed event distribution networks were 

usually channel-based, where messages published into a 

specific channel were delivered only to users who placed a 

subscription request for that channel, or subject- or topic-

based, whereby subscriptions were made based on a well-

known and structured set of subject attributes [3], as labelled 

in the message header information. These systems, although 

easily scalable and simple to use, require client applications to 

do most of their own event filtering.  

Later systems (e.g., Gryphon [4], Siena [5]) used a content-

based approach, where subscription filters could be specified 

over the entire contents of the event messages themselves, or 

type-based approach (Hermes [6]) where event messages are 

strongly-typed data objects. These approaches allowed more 

expressive filters, but also increased the complexity of 

message routing [3]. Recent research has focused on 

improving scalability in content-based publish/subscribe 

(CBPS) systems, improving particularly the routing and 

subscription matching algorithms used to filter and deliver 

messages [7][8][9]. Other work has improved the 

expressiveness and flexibility of the subscription mechanism 

so subscribers can have more fine-grained control when 

specifying the types and contents of the events they are 

interested in [10]. 

In particular, recent research projects have added support 

for semantic data filtering in the event matching and delivery 

middleware (e.g. [11][12][13][14]), where this approach is 

specifically termed knowledge-based networking [10]. This 

approach allows for very flexible subscriptions by additionally 

using rich, structured, semantic data drawn from application-

specific ontologies, while at the same time maintaining 

efficiencies developed for content-based systems [10].  

Knowledge-based networking approaches have been 

extensively applied to the fields of self-managing networks 

[13][14], autonomic communications [15], context distribution 

[13][14], semantic interoperability [14], and fault management 

[13][16]. However, with the exception of [16], this approach 

adopts a pure event-by-event approach, with no regard for 

relationships or dependencies between different events. The 

approach adopted in [16], which motivates parts of this work, 

provided some support for a strict sliding-window based 

correlation of events based on semantic causal relationships, 

however, much of the correlation was performed at the 

application level rather than in the middleware.  

The message filtering provided by a content- or knowledge-

based system could be adapted towards complex event 
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processing (CEP). However, CEP systems filter a continuous 

event stream and detect composite events, which are 

composed out of simple (atomic) events based on the 

relationships between those events, either logical or temporal. 

The detected events are then correlated by the system to 

determine causal or spatial relationships between the events 

and to trigger certain responses from the client system. Within 

CEP, specialized query languages called event processing 

languages are used to filter events from the event stream. 

These languages are generally quite capable of quickly 

filtering extremely large quantities of events very quickly 

(over 50,000 events/sec in the case of SASE [17]) using query 

languages over the event stream that operate in a similar 

manner to SQL (by means of selecting events that match 

certain constraints). However, the predicates available are 

limited to such operations as can be easily expressed in an 

SQL-like query language. 

Composite events are compositions of simple or atomic 

events joined by logical or temporal operators which generally 

express conjunction, disjunction, sequence, or repetition. 

These systems can be divided between two main groups: 

active databases (e.g., SAMOS [18], Ode [19]) and 

middleware systems (e.g., PADRES [20], READY [21]). 

Those divisions can each be further sub-divided between 

systems which use a tree- or graph-based detection algorithm 

and those which use finite-state automata. Active database 

systems generally employ event-condition-action rules by 

which they respond to data manipulation events (such as 

INSERT and UPDATE queries) which meet certain 

conditions by executing specified actions to further 

manipulate the data in the database. However, this limits the 

active databases to responding to data manipulations rather 

than arbitrary events. Middleware systems get around this 

limitation by responding to any events that get published to 

them, but either sort of matching algorithm (graph- or 

automaton-based) requires the implementing system to 

continually be engaged in a form of forward matching which 

consumes resources by forcing the brokers to preserve the 

portion of each composite subscription which has been 

matches as state at the broker. 

Our work validates a new approach to composite event 

detection in complex event processing: that of detecting 

composite events through predicate matching over historical 

event data. This work exploits the functionality provided by 

semantically-enhanced publish/subscribe systems while 

supporting the requirements of complex event processing. 

This means that we are not limited to an active database 

system (and thus rely on the operations allowed by the Event-

Condition-Action (ECA) rules), nor do we sacrifice the 

computational resources necessary to save state for forward 

matching (as in existing middleware systems).  

III. TEMPORAL REASONING 

The majority of time-based reasoning in event processing 

systems to date is based on the work by James F. Allen in the 

early 1980s [22]. Allen introduces the concept of representing 

temporal intervals, as opposed to earlier work which used only 

point-based representations of events. Using these intervals, 

Allen identifies a total of thirteen unique relations which can 

exist between two intervals, X and Y , consisting of seven 

base relations and their inverses, as represented in figure 1 

below. 

These interval relations can also be described based on a 

comparison of their start and end points represented 

numerically. The interval relations as translated into numeric 

expressions, also listed in figure 1 below (XS represents the 

beginning of interval X, and XE represents its end).  

Figure 1: Allen’s interval relations as time point operations 

We consider Allen's interval relations as they relate to 

comparing a single time stamp (either the start or end time of 

one interval) to another interval. Using this view, each of 

Allen's seven intervals can be represented using three 

operators representing the relationship of a point P (either a 

start or an end) to an interval X: AFTER, WITH, and 

DURING, also shown in figure 1. These three operators will 

be discussed in more detail in the later sections.  

One of the main criticisms of such a point-based algebra is 

that it sometimes does not correspond exactly to real-world 

events, which can sometimes have uncertain beginnings and 

endings rather than explicitly-declared and well-defined end 

points. While some approaches utilize fuzzy temporal 

relations, Allen's original description of the relations is still 

very intuitive and serves as the ultimate basis for the temporal 

relations used in most event-based systems.  

IV. DESIGN  

To support composite event detection in a knowledge-based 

system, we add a persistent data store component to store 

historical event data, and a set of temporal operators for 

matching subscription filters against the historical events in 

the data store using Allen's interval relations. 

This approach differs from existing systems which use 

active databases instead of distributed publish/subscribe 

systems or else detect events using tree- or automaton-based 

forward matching. We chose to extend our knowledge-based 

publish/subscribe mechanism for three reasons: The active 

database systems reviewed are too restrictive on the types of 

events used in the ECA-rules; Using  a tree-algorithm or a 

finite state machine for forward pattern matching requires the 

 Interval Relation Representation Operator 
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system to save the state of each partial match for each 

composite subscription at each broker which greatly increases 

the complexity of the matching algorithms the broker must 

invoke for each publication; and finally, the semantic 

capabilities of knowledge-based systems (which are lacking in 

other approaches) are more expressive to the sorts of events 

which could be detected in complex event processing. 

A. Data store design 

In order to store historical events for future comparison 

using the proposed temporal operators, we add a data store 

component to each broker of the original knowledge-based 

system. This component allows each broker to store, retrieve, 

and analyze publications as they pass through the brokers. In 

particular, the data store performs three major functions: 

Storing (or updating) uniquely-identifiable event publications 

in some persistent data store; Retrieving specific event 

publications for inspection by the system; and Checking to see 

if the data store contains information about any events which 

match a particular semantic- or content-based subscription 

filter containing other arbitrary constraints (such as checking 

the value of certain attributes).  

B. New temporal subscription operators 

As shown in figure 1 above, each of Allen's temporal 

intervals can be represented using three operators AFTER, 

WITH, and DURING. The three operators all operate by 

comparing a reference time XR, either the start or end of one 

interval X, to a target time YT from the second interval Y. For 

the AFTER operator, the reference time varies between XS 

(start of X) and XE (end of X), but the reference time is always 

the end of Y (YE). The DURING operator actually compares 

XR to both the start and end of Y, giving it two target times. 

Finally, the WITH operator compares XR to the corresponding 

field of Y, such that R=T (i.e. XE with YE, or XS with YS). 

In order to use the three operators listed above, we first 

need to represent them as predicates taking a reference 

attribute (taken from the event publication – start or end time) 

as the reference time and a target filter (which selects events 

from the data store) which returns events corresponding to the 

target interval. For DURING and AFTER, we use a direct 

translation of the reference times into attributes, using the 

attributes XS and XE to represent the start and end time of a 

publication X respectively, and a filter F as the target. An 

operator applies if there exists a stored publication, Y, such 

that the relation defined by the operator in the filter holds 

between the reference attribute and the start and end time of 

the event represented by Y. For performance tuning, the 

AFTER operator accepts an additional time limit, L, which 

defines the size of the sliding window between the end time of 

the compared event and the reference time.  

The WITH operator checks if the start or end time attribute 

in one publication is equal to the corresponding attribute in 

another. The WITH operator, however, can be made more 

general when applied to content-based publication (event) 

attributes. It can compare the value of an arbitrary attribute 

(not just start or end time) of a publication X to the value of 

the same attribute in any matching stored publication, Y. By 

generalizing the equivalence test from WITH into an arbitrary 

operator, we represent the WITH operator described above 

with a general FILTER operator that can compare any 

arbitrary attributes using an arbitrary operator. The FILTER 

operator also accepts a configurable limit number of historical 

events to check when looking for a match.  

The three operators added are summarized in Table 1 below 

(where F(Y) means that the publication Y matches the filter F, 

and XR represents the reference attribute). 

 Operator Condition 

  XR DURING F  ∃Y : F(Y) Λ (YS ≤ XR) Λ (YE ≥ XR) 

  XR AFTER(L) F  ∃Y : F(Y) Λ (YE < XR) Λ (YE ≥ (XR – L)) 

  XR FILTER(OP, L) F  ∃Y : F(Y) Λ (XR OP YR)  
Table 1: Temporal Operator Summary 

Together the AFTER, DURING and FILTER operators not 

only represent all seven of Allen's interval relations, but by 

virtue of the generality of the FILTER operator (as a 

generalization of the WITH operator), allows for even more 

applications of the operator than the temporal operators 

considered here. 

Performance wise, the data store must iterate over all of the 

events which initially match the time constraints provided by 

the temporal operators. This means that the time taken to 

process each operator should grow as more event publications 

are retrieved from the data store to check stored historical 

events against the currently processed event (up to the limit L 

configured in the operators themselves). It is feasible to 

implement this design in such a way that the processing time 

grows no worse than linearly with the number of events 

returned from the data store.  

As a further benefit, this design could also be employed on 

any publish/subscribe system, not just a knowledge-based 

networking system, as long as the system can pass a filter as 

the target of the new operators. The actual time values used by 

the system do not matter (as long as they are fully-ordered and 

defined for each publication), while the design of the data 

store component is simple enough to be implemented any 

number of ways, either with a relational database system or 

even using flat log file storage. 

V. IMPLEMENTATION 

Our implementation is based on a Java-language 

implementation of a knowledge-based networking system 

(“KBN”) described in [10] which itself was implemented on 

top of the hierarchical Java version of Siena [5]. All 

extensions previously added (up to the KBN version in [10], 

and this extension) were designed to appear very similar to 

and backwards compatible with the Siena Java API [5].  

The implementation relies on a number of assumptions 

about the use of the system, specifically relating to the 

timestamps: Event start and end timestamps are totally-

ordered and defined by some external source; Event 

timestamps are to be delivered as content-based publication 
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attributes; The end time of a particular event will always be 

greater than or equal to the start time of that event; and Any 

publication marked to represent the end of an event will be 

preceded by a publication marked to represent the start of that 

same event (excluding instantaneous events). 

Furthermore, as a general maxim in content-based systems 

is to minimize the amount of meta-data attached to each 

publication, and instead carry such data in the open payload, 

we have implemented our design using a number of 

conventions which allow it to utilize the existing Siena 

framework in a consistent manner. In particular, our 

implementation uses four specific message attributes, as 

shown in table 2 below, to represent the start and end times of 

our events, as well as the unique identifiers for the events, and 

some additional flags to denote whether a publication 

represents the start or end of an event (or an instantaneous 

event, in which the start and end time are equal).  

 Attribute Name Attribute Type Description 

  PUB_ID  String  Event UUID 
  KBN_PUB_TYPE  Bag  Publication Type 
  KBN_START_TIME  Long  Event start timestamp 
  KBN_END_TIME  Long  Event end timestamp 

Table 2: Special temporal attributes 

PUB_ID is a string representation of a universal unique 

identifier used to tie start and end publications together. 

KBN_PUB_TYPE denotes which time marker the event 

represents, the start or end time, or if the event is 

instantaneous, using one of three values: START, END, or 

INSTANT. KBN_START_TIME and KBN_END_TIME 

store the timestamps for the start and end of an event, 

respectively. These two attributes are used as the reference 

attributes for the AFTER and DURING operators. 

A. Data store implementation 

For our implementation, we decided to implement the data 

store component in three different ways using two commonly-

used relational database systems, Oracle and MySQL. These 

were chosen because of their widespread use, their efficiency 

in storing linked data (such as attributes linked to a 

publication), and to explore some of the more advanced 

features (including some semantic functions) in Oracle 11g. 

As described, the data store is used to store historical event 

publications and used by the event broker to compare newly 

received events to stored events, subject to both a content-

/semantic-based subscription filter (applied to each candidate 

publication) and a temporal operator to compare matching 

publications. 

For each publication the database driven data store stores 

the PUB_ID, KBN_START_TIME, KBN_END_TIME in one 

table, with each additional named and typed data attribute 

contained in the publication stored in another related table.  

In addition to methods to store and retrieve individual 

publications, each data store implementation has a 

hasMatchingPublication() method. In its simplest form this 

method takes a (non-temporal content-/semantic-based) 

subscription Filter as an argument and requires the data store 

implementation to check the passed Filter against the stored 

publications in order to determine whether the Filter matches 

any stored historical publications. This operation can be 

implemented in a number of ways depending on the 

capabilities of the underlying data store, and so could 

potentially benefit from optimizations in the implementation. 

1) MySQL data store 

This implementation takes a very naive approach to finding 

matching events from the database, using simple SQL queries 

to find any/all events which match the temporal constraints 

imposed by the operators, returning them into the KBN 

broker’s process, and looping through them in code to test 

against the passed-in filter using the standard publication 

matching functionality available with the KBN codebase. All 

connections to the database were implemented using pooled 

localhost JDBC connections. As such, the MySQL 

implementation is expected to scale linearly with the size of 

the result set. In addition to the content-based publication 

matching performed by the KBN codebase, semantic-based 

publication matching is in the KBN handled using the Jena 

[23] framework. 

2) Simple Oracle data store 

The simple Oracle data store implementation was 

implemented exactly as per the MySQL data store. It uses just 

the standard RDBMS features of Oracle 11g. It was intended 

as a comparison to the following Advanced Oracle data store. 

3) Advanced Oracle data store 

The Advanced Oracle data store was implemented to test 

some of the advanced features of the Oracle 11g database 

system. These features include ontology-extended relational 

queries introduced as part of Oracle's Semantic Technologies 

[24] and the ability to invoke static Java methods as stored 

procedures from the Oracle 11g instance [25]. 

In order to perform the matching of stored events using the 

hasMatchingPublication() method the advanced Oracle data 

store invokes an internal stored procedure MATCH(). This 

stored procedure is actually a static Java function (based on 

code in the KBN codebase) which parses the filter passed into 

hasMatchingPublication() to perform the (non-temporal) filter 

matching inside the database. Any publication which matches 

the filter is then included in the result set and returned from 

the database to be compared using the temporal operators. As 

this greatly reduces the size of the result set returned from the 

database and there is no external looping required to analyze 

these results, we expect that this implementation would 

perform rather better than the simpler MySQL and Oracle 

implementations, perhaps scaling against the number of 

publications at a better than linear rate.  

Performing the filter operations passed into the 

hasMatchingPublication() method of the data store 

implementation within the database makes the logic of the 

data store much simpler, as the query only returns rows which 

are already checked against the filter, but it adds some other 

technical complications. The Oracle Java VM is run in a 

different process than the rest of the KBN broker, so none of 

the objects or configuration of the KBN broker process can be 
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accessed directly by the matching class. In order to perform 

the content-/semantic-based matching internally a large 

proportion of the KBN codebase must be loaded by the 

database when the MATCH function is invoked.  

As mentioned Oracle 11g also includes support for 

semantically-enhanced database queries (as an extension to 

standard relational DB queries) by comparing against a loaded 

and reasoned ontology stored in the database. This means that 

the ontological operations required to support semantic-based 

subscription filters in the KBN implementation can be handled 

by the database rather than using the Jena framework as 

before. This means that the incorporation of an Oracle-based 

data store actually simplifies the implementation of the non-

temporal semantic operations of the KBN as all 

semantic/ontological queries can be handled by the data store. 

In order for the stored MATCH procedure invoked in the 

database to match nested temporal or filter operators (or 

ontological operators), the matching procedure must itself 

sometimes invoke the data store to find matching publications 

or perform other queries. Restrictions placed on stored 

procedures in the Oracle VM do not allow standard JDBC 

connections, however, a special direct internal JDBC driver 

can be used from within the database when a database 

connection is needed from the internal Java stored procedure. 

B. Implementing the new Operators 

When a new publication arrives at a broker it is compared 

to the set of subscriptions stored in the broker to check if it 

should be forwarded to a subscriber. Standard non-temporal 

subscriptions contain a filter, which is made up of a set of 

operator/value pairs to be applied to named attributes. If the 

newly arrived publication contains attributes with the same 

names, and the values compare successfully with the value 

given in the subscription filter according to the given operator, 

then that subscription is matched. Temporal subscriptions 

extend standard subscriptions. They can contain the set of 

standard-operator/value pairs to be applied to named 

attributes, but, they also contain at least one temporal-

operator/inner-filter pair. Here, the passed inner-filter is used 

to retrieve from the data store a set of historical publications 

that match the inner-filter. (The passed inner-filter can itself 

be a temporal filter, which then must contain its own inner-

inner-filter). Given the set of historical publications returned, 

the time-based characteristics of those older publications are 

then compared to the newly arrived publication in a way that 

is appropriate for the temporal operator. 

Each of the three new operators were individually designed 

and implemented with a method called apply() which 

performs the operation. The apply() method first selects the 

appropriate data store and invokes hasMatchingPublication() 

to retrieve the set of historical publications that have matched 

the standard content-/semantic-based filter (inner-filter). A 

limit can also be specified for the AFTER and FILTER 

operators to limit the size of the historical time window within 

which the data store should search for past publications. The 

retrieved publications are then compared to the newly arrived 

publication. It should be noted that the size of the temporal 

window can be set on a filter-by-filter basis, even with 

different window sizes in different filters in the same 

subscription. This fine-grained and flexible approach ensures 

that the subscriber can specify detailed subscriptions for only 

the events of interest. 

Two conditions must hold for the AFTER operator to 

match. The end time, YE, of the stored event Y must be less 

than the value of the reference attribute XR, (i.e., YE < XR), 

and, the end time must be greater than or equal to the value of 

the reference attribute less the limit, L (i.e., YE ≥ (XR − L)). 

For the DURING operator, two different conditions must 

hold. The start time, YS, of the stored event must be less than 

or equal to the value of the reference attribute (i.e., YS ≤ XR), 

and, the end time of the stored event must either be greater 

than or equal to the value of the reference attribute or it must 

be null (i.e., YE ≥ XR V YE is null). 

The FILTER operator, described earlier, is somewhat 

different. It can be used to compare the value of an arbitrary 

named attribute (not just start or end time) of the stored 

publication to the value of the same name specified in a newly 

arrived publication, using an arbitrary content-/semantic-based 

operator. Therefore, the FILTER operator requires the name 

of the attribute to be used and the operator to use in the 

comparison.   

In order for our implementation to correctly and efficiently 

function within the Siena/KBN framework, we need to define 

when a filter can be aggregated by a more general filter. This 

subscription aggregation relationship, called covering in 

Siena, defines how subscriptions can be efficiently stored and 

searched in an individual broker, and defines which 

subscriptions are passed around the network to neighbouring 

brokers. (Only the most general subscriptions are distributed 

to neighbouring brokers, as these will suffice to capture the 

requirements of all of a broker’s subscriptions). For the 

operators in our extension, the covering relationships depend 

heavily on the internal target filters used in the operators, and 

cannot be determined otherwise. If two filtering constraints 

contain the same temporal operator, and the internal target 

filter of the operator in the first covers that of the second 

operator, then the first filtering constraint covers the second. 

VI. MOTIVATING SCENARIOS 

A. First Deployment Scenario  

Many managed systems rely heavily on logging, whether of 

alerts, warnings or errors, where log messages are based on 

the system's current state and context. To be useful, they must 

be very fine grained, but this challenges the system 

administrator who must monitor and search the logs to find 

the messages that are useful to detect and fix errors and 

warnings. Most systems filter log messages, based on their 

logging level (e.g., level 5 = ERROR, level 1 = TRACE), 

where important messages are kept and occurrences of log 

message with lower importance are ignored.  

Consider a case where only highest level messages are 
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displayed to an administrator, while others are ignored ( < 

WARNING). However, if there may be a fault in the near 

future or if there is some other particular pattern of messages 

that may require more attention (such as a potential intrusion 

pattern), the administrator may want to lower his logging filter 

match. For example, if three WARNING messages, each 

containing a value "login failed", are detected less than two 

seconds AFTER each other, then the logging level should be 

immediately dropped to INFO for a short time so that more 

information, such as the location of the warning can be 

logged.  

B. Second Deployment Scenario  

While numerous works describe the benefits of using 

semantic mark-up in the area of network fault management 

(e.g. [14]), and so are suited to the knowledge-based 

networking approach, there has been little previous progress 

in providing infrastructure support to capture causal and 

temporal dependencies between events. Aspects of the causal 

relationship between types of events can be easily captured in 

a causal ontology, and thereby subscribed for using the 

generic ONTPROP operator (see [10]), however, without 

temporal relationships it does not check if any fault/warning 

which could have caused a matched fault actually happened. 

For example, consider a scenario where an end-to-end 

virtual private network (VPN) connection is supported by a 

two logical switched paths using a core routing protocol (e.g. 

Border Gateway Protocol (BGP)) and a data 

carrying/switching protocol (e.g. Multiprotocol Label 

Switching (MPLS)). An Simple Network Management 

Protocol (SNMP) “ifdown” trap can signal that a device 

interface has failed, thereby causing a “linkdown” trap, which 

in turn indirectly causes “mplsTunnelDown” and 

“mplsLdpSessionDown” events, which themselves later cause 

the VPN connection to fail. The individual device/port which 

caused this failure can be easily detected by subscribing to any 

low level fault known to indirectly cause “mplsTunnelDown” 

faults, anytime in the 10 seconds BEFORE notification that 

the VPN connection has failed.  

VII. EVALUATION 

The first series of tests attempt to establish how the 

processing time for the extension grows with respect to the 

number of stored publications, starting with an empty data 

store. For this test, we connected an example publisher and an 

example subscriber to a single temporally-extended KBN 

broker. The example subscribing client generated fifty 

subscriber entities, where each subscribed with one of the 

subscriptions shown in Table 3, randomly-selected with a 

uniform description (a filter used as a target value is denoted 

by FX where X is the filter name). Note, filter B in Table 3 

uses the W3C Wine Ontology [26]. The filter constraint (“B” 

ONTPROP<wine:hasColor> <wine:red>) will successfully match a 

publication that has an attribute called “B” containing an 

ontological individual that uses the object property 

“wine:hasColor” with the  value of “wine:red”. 

 Filter Attribute Operator Target 

  A A <  8 

  B B ONTPROP<wine:hasColor>  <wine:Red> 

  C A FILTER<(200)  FB 

  D End DURING  FA 

  E Start AFTER(500)  FA 

  F Start AFTER(125)  FA 

  X
a
 C >  10 

  G A FILTER<(200)  FX 

a 
This filter is only used as the internal filter for the following filter operator. 

Table 3: Special temporal attributes 

The publisher published 250 events, one beginning every 

10 seconds and ending between three and eight seconds later 

(to test varying event durations). The publications contained 

two attributes, A and B, each of which were assigned a 

random value. A was set to an integer between one and ten, 

inclusive, while B was set to the identifier URL of one of ten 

wines from the Wine Ontology, five red and five white.  

These tests were run for each of the three data store 

implementation described above, (MySQL, Simple Oracle, 

and Advanced Oracle). Based on the algorithms employed, we 

predicted that the processing time would scale at most linearly 

with the number of events stored in the data store. The results 

of the tests using the simple Oracle and MySQL data stores 

implementations are shown in Figure 2. As the graph 

indicates, the average processing time for each publication 

does appear to increase linearly with the number of events 

stored in the data store, at least for the MySQL results which 

match a linear regression with a high degree of confidence 

(R=0:989). The simple Oracle JDBC implementation strongly 

fits a linear regression (R=0:854), but is also a strong fit for a 

logarithmic regression based on the test data (R=0:819), 

showing that the processing time for the Simple-Oracle store 

may grow with the log of the stored events rather than 

growing linearly.  

Figure 2: Comparing the MySQL and Simple Oracle data stores 

The more advanced Oracle store class also displayed a 

linear increase with the number of stored events (R=0:999), 

but the increase was dramatically greater than the simpler 
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Oracle store, which did not utilize the Java stored procedure 

invocations used by the more complex version. Figure 3 

compares the two Oracle data stores directly based on their 

results from Test 1. As shown, the advanced Oracle store 

grows linearly, but for only 250 stored events the processing 

time for each publication takes an average of nearly seven 

seconds. This unacceptably long delay is likely due to the 

overhead of invoking the Java stored procedure repeatedly, 

especially since the code base size and complexity of the 

procedure is quite large, as discussed in section IV:A:3 above. 

This behaviour was not affected by subsequent changes in the 

configurable variables of the test (e.g., delay between 

publications, number of publications). It is likely that the 

matching function invoked by the stored procedure is more 

complex than this feature was intended to perform. 

Figure 3: Comparing the Simple and Advanced Oracle data stores 

A second test utilized much the same set-up as the first, 

involving a single temporally-extended KBN broker, a simple 

subscriber, and a simple publisher. However, the second set of 

tests operated on a pre-filled database containing 50,000 

randomly-generated events (using the same publication 

attributes as the first test) and focused specifically on the time 

taken to process the FILTER operator, which we determined 

takes the most time due to its unconstrained nature (the 

temporal operators took an average of around 10ms to 63ms to 

process). The fifty subscribers for the second test used one of 

two filters, randomly selected from those described in Table 4. 

The publisher used for the second test is the same as the 

publisher used for the first test, but with a three second delay. 

Filter Attribute Operator Target 

  X
a
 B ONTPROP<wine:hasColor>  <wine:Red> 

  A A FILTER<(α)
 b

  FX 

  Y
a
 C >   10 

  G A FILTER<(α)
 b

  FX 

a 
This filter is only used as the internal filter for the following filter operator. 

b 
The limit on the filter operators used in these subscriptions is one of the 

variables manipulated in this test. 

Table 4: Subscriptions for Test 2 

The second set of tests were each run with varying values 

for the filter operator limit (200, 500, 1000, 2000, and 5000 

results), all using the Simple Oracle implementation. We 

expected that the average processing time would remain 

nearly constant, due to the limit imposed on the filter operator 

result set size. As expected, the average publication 

processing time for the second test (with a filter operator limit 

of 200 results) using the simple Oracle store hovered around 

200 milliseconds, as shown in Figure 4.  

Figure 4: Average publication processing time for the pre-filled Simple Oracle 

data store, using the FILTER operator with a filter limit of 200. 

These results show that the processing time scales linearly 

not in the number of total events stored in the database, but 

rather that the processing time is a function of the size of the 

result set returned for each query. We expected that the 

publication processing time will increase approximately 

linearly as the limit on the result set increases. In order to test 

this prediction, we ran the second test ten times each with 

filter operator limits of 200, 500, 1000, 2000, and 5000 

results. The average publication processing time for each limit 

(along with standard error) are shown in Figure 5. As shown, 

the publication processing time scales almost linearly, with a 

small (super-linear) increase in processing time as resources 

become scarce with larger filter operator limits.  

Figure 5: Average publication processing time based on the FILTER 

operator’s filter limit. 

VIII. DISCUSSION AND FURTHER WORK 

This paper presents a design, implementation, evaluation 

and two motivating deployment scenarios to demonstrate a 

new CEP approach for composite event detection − that of 

detecting composite events using predicate matching using 

historical event data. Our results demonstrate that this 

approach can be implemented in a scalable manner and our 

scenarios motivate the more expressive subscriptions 

supported. It is particularly envisioned that the collection, 
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aggregation and correlation of network faults and events will 

be made easier, further enhancing the usefulness of 

Knowledge-based Networking in this domain [13][16]. 

While this work has increased the expressiveness of the 

subscriptions in the underlying KBN without sacrificing 

scalability, the temporal operators model only a subset of 

Allen's interval algebra, and do not yet allow for uncertain 

time intervals. Further work will also introduce logical 

composition extensions to the new temporal reasoning 

support, e.g. conjunction (where two or more events must be 

detected in any order) and disjunction (where any one of two 

or more events can be detected). These additional operators 

could easily achieved using the same predicate-matching 

approach used here.  
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