
 1

Abstract—While the polling or request/response paradigm

adopted by many network and systems management approaches

form the backbone of modern monitoring and management

systems, the most important and interesting events, faults, alerts

and log messages arrive at the management agent in a push-

based asynchronous manner. However, in the management

infrastructure itself, at the point where events are initially

processed and matched to subscribers, there have been few

attempts to identify relationships or dependencies between

events. This means that most of this burden is placed on the

management application, or indeed the managers themselves.

This research investigates enhancing the expressiveness of a

knowledge-based networking middleware with the addition of

three temporal operators to be used in subscriptions to select

matching events. A prototype design is presented and a number

of implementations are compared. The approach is also

motivated using two scenarios for temporal correlation of

warnings and faults in managed networks. The effect on the

scalability of the extended knowledge-based network system is

also evaluated.

I. INTRODUCTION

As network technology rapidly develops, and enterprises

and network providers place ever increasing demands on their

networks, current network scales and complexity are

increasing dramatically. However, traditional event and fault

management approaches involve inflexible and rigid

hierarchical manager/agent formations, relying on significant

human intervention and analysis, which become increasingly

difficult as scale and complexity grows.

Increased reliance on asynchronous event-based systems

requires more real-time, complex event processing to filter

and analyze event streams to provide relevant information to

managers. If performed at the application level, this event

processing is expensive, both in terms of the computation

required and the cost of existing commercial solutions (such

as SMARTS InCharge [1] and HP OpenView [2]). New

solutions are required to make complex event processing

affordable and easy, while maintaining the expressiveness and

scalability of other distributed, event-based systems. In the

following sections we present an extension to a semantically

enhanced event middleware to support complex event

processing and temporal reasoning. We also evaluate the

scalability of our approach, and explore real-world system

management deployment scenario for the resulting system.

II. BACKGROUND AND RELATED WORK

The earliest distributed event distribution networks were

usually channel-based, where messages published into a

specific channel were delivered only to users who placed a

subscription request for that channel, or subject- or topic-

based, whereby subscriptions were made based on a well-

known and structured set of subject attributes [3], as labelled

in the message header information. These systems, although

easily scalable and simple to use, require client applications to

do most of their own event filtering.

Later systems (e.g., Gryphon [4], Siena [5]) used a content-

based approach, where subscription filters could be specified

over the entire contents of the event messages themselves, or

type-based approach (Hermes [6]) where event messages are

strongly-typed data objects. These approaches allowed more

expressive filters, but also increased the complexity of

message routing [3]. Recent research has focused on

improving scalability in content-based publish/subscribe

(CBPS) systems, improving particularly the routing and

subscription matching algorithms used to filter and deliver

messages [7][8][9]. Other work has improved the

expressiveness and flexibility of the subscription mechanism

so subscribers can have more fine-grained control when

specifying the types and contents of the events they are

interested in [10].

In particular, recent research projects have added support

for semantic data filtering in the event matching and delivery

middleware (e.g. [11][12][13][14]), where this approach is

specifically termed knowledge-based networking [10]. This

approach allows for very flexible subscriptions by additionally

using rich, structured, semantic data drawn from application-

specific ontologies, while at the same time maintaining

efficiencies developed for content-based systems [10].

Knowledge-based networking approaches have been

extensively applied to the fields of self-managing networks

[13][14], autonomic communications [15], context distribution

[13][14], semantic interoperability [14], and fault management

[13][16]. However, with the exception of [16], this approach

adopts a pure event-by-event approach, with no regard for

relationships or dependencies between different events. The

approach adopted in [16], which motivates parts of this work,

provided some support for a strict sliding-window based

correlation of events based on semantic causal relationships,

however, much of the correlation was performed at the

application level rather than in the middleware.

The message filtering provided by a content- or knowledge-

based system could be adapted towards complex event

Extending a Knowledge-based Network to

support Temporal Event Reasoning

John Keeney, Clay Stevens, Declan O’Sullivan
Knowledge & Data Engineering Group & FAME,

School of Computer Science & Statistics, Trinity College Dublin, Dublin, Ireland.
{John.Keeney | Declan.OSullivan}@cs.tcd.ie, cstevens@tcd.ie

 2

processing (CEP). However, CEP systems filter a continuous

event stream and detect composite events, which are

composed out of simple (atomic) events based on the

relationships between those events, either logical or temporal.

The detected events are then correlated by the system to

determine causal or spatial relationships between the events

and to trigger certain responses from the client system. Within

CEP, specialized query languages called event processing

languages are used to filter events from the event stream.

These languages are generally quite capable of quickly

filtering extremely large quantities of events very quickly

(over 50,000 events/sec in the case of SASE [17]) using query

languages over the event stream that operate in a similar

manner to SQL (by means of selecting events that match

certain constraints). However, the predicates available are

limited to such operations as can be easily expressed in an

SQL-like query language.

Composite events are compositions of simple or atomic

events joined by logical or temporal operators which generally

express conjunction, disjunction, sequence, or repetition.

These systems can be divided between two main groups:

active databases (e.g., SAMOS [18], Ode [19]) and

middleware systems (e.g., PADRES [20], READY [21]).

Those divisions can each be further sub-divided between

systems which use a tree- or graph-based detection algorithm

and those which use finite-state automata. Active database

systems generally employ event-condition-action rules by

which they respond to data manipulation events (such as

INSERT and UPDATE queries) which meet certain

conditions by executing specified actions to further

manipulate the data in the database. However, this limits the

active databases to responding to data manipulations rather

than arbitrary events. Middleware systems get around this

limitation by responding to any events that get published to

them, but either sort of matching algorithm (graph- or

automaton-based) requires the implementing system to

continually be engaged in a form of forward matching which

consumes resources by forcing the brokers to preserve the

portion of each composite subscription which has been

matches as state at the broker.

Our work validates a new approach to composite event

detection in complex event processing: that of detecting

composite events through predicate matching over historical

event data. This work exploits the functionality provided by

semantically-enhanced publish/subscribe systems while

supporting the requirements of complex event processing.

This means that we are not limited to an active database

system (and thus rely on the operations allowed by the Event-

Condition-Action (ECA) rules), nor do we sacrifice the

computational resources necessary to save state for forward

matching (as in existing middleware systems).

III. TEMPORAL REASONING

The majority of time-based reasoning in event processing

systems to date is based on the work by James F. Allen in the

early 1980s [22]. Allen introduces the concept of representing

temporal intervals, as opposed to earlier work which used only

point-based representations of events. Using these intervals,

Allen identifies a total of thirteen unique relations which can

exist between two intervals, X and Y , consisting of seven

base relations and their inverses, as represented in figure 1

below.

These interval relations can also be described based on a

comparison of their start and end points represented

numerically. The interval relations as translated into numeric

expressions, also listed in figure 1 below (XS represents the

beginning of interval X, and XE represents its end).

Figure 1: Allen’s interval relations as time point operations

We consider Allen's interval relations as they relate to

comparing a single time stamp (either the start or end time of

one interval) to another interval. Using this view, each of

Allen's seven intervals can be represented using three

operators representing the relationship of a point P (either a

start or an end) to an interval X: AFTER, WITH, and

DURING, also shown in figure 1. These three operators will

be discussed in more detail in the later sections.

One of the main criticisms of such a point-based algebra is

that it sometimes does not correspond exactly to real-world

events, which can sometimes have uncertain beginnings and

endings rather than explicitly-declared and well-defined end

points. While some approaches utilize fuzzy temporal

relations, Allen's original description of the relations is still

very intuitive and serves as the ultimate basis for the temporal

relations used in most event-based systems.

IV. DESIGN

To support composite event detection in a knowledge-based

system, we add a persistent data store component to store

historical event data, and a set of temporal operators for

matching subscription filters against the historical events in

the data store using Allen's interval relations.

This approach differs from existing systems which use

active databases instead of distributed publish/subscribe

systems or else detect events using tree- or automaton-based

forward matching. We chose to extend our knowledge-based

publish/subscribe mechanism for three reasons: The active

database systems reviewed are too restrictive on the types of

events used in the ECA-rules; Using a tree-algorithm or a

finite state machine for forward pattern matching requires the

 Interval Relation Representation Operator

 X before Y YS AFTER X

 X equals Y YS WITH X, YE WITH X

 X meets Y YS DURING X

 X overlaps Y YS DURING X, YE AFTER X

 X during Y XS DURING Y, XE DURING Y

 X starts Y YS WITH X, YE AFTER X

 X finishes Y XS DURING Y, XE WITH Y

X
Y

X
Y

X
Y

X
Y

Y
X

Y
X

Y
X

 3

system to save the state of each partial match for each

composite subscription at each broker which greatly increases

the complexity of the matching algorithms the broker must

invoke for each publication; and finally, the semantic

capabilities of knowledge-based systems (which are lacking in

other approaches) are more expressive to the sorts of events

which could be detected in complex event processing.

A. Data store design

In order to store historical events for future comparison

using the proposed temporal operators, we add a data store

component to each broker of the original knowledge-based

system. This component allows each broker to store, retrieve,

and analyze publications as they pass through the brokers. In

particular, the data store performs three major functions:

Storing (or updating) uniquely-identifiable event publications

in some persistent data store; Retrieving specific event

publications for inspection by the system; and Checking to see

if the data store contains information about any events which

match a particular semantic- or content-based subscription

filter containing other arbitrary constraints (such as checking

the value of certain attributes).

B. New temporal subscription operators

As shown in figure 1 above, each of Allen's temporal

intervals can be represented using three operators AFTER,

WITH, and DURING. The three operators all operate by

comparing a reference time XR, either the start or end of one

interval X, to a target time YT from the second interval Y. For

the AFTER operator, the reference time varies between XS

(start of X) and XE (end of X), but the reference time is always

the end of Y (YE). The DURING operator actually compares

XR to both the start and end of Y, giving it two target times.

Finally, the WITH operator compares XR to the corresponding

field of Y, such that R=T (i.e. XE with YE, or XS with YS).

In order to use the three operators listed above, we first

need to represent them as predicates taking a reference

attribute (taken from the event publication – start or end time)

as the reference time and a target filter (which selects events

from the data store) which returns events corresponding to the

target interval. For DURING and AFTER, we use a direct

translation of the reference times into attributes, using the

attributes XS and XE to represent the start and end time of a

publication X respectively, and a filter F as the target. An

operator applies if there exists a stored publication, Y, such

that the relation defined by the operator in the filter holds

between the reference attribute and the start and end time of

the event represented by Y. For performance tuning, the

AFTER operator accepts an additional time limit, L, which

defines the size of the sliding window between the end time of

the compared event and the reference time.

The WITH operator checks if the start or end time attribute

in one publication is equal to the corresponding attribute in

another. The WITH operator, however, can be made more

general when applied to content-based publication (event)

attributes. It can compare the value of an arbitrary attribute

(not just start or end time) of a publication X to the value of

the same attribute in any matching stored publication, Y. By

generalizing the equivalence test from WITH into an arbitrary

operator, we represent the WITH operator described above

with a general FILTER operator that can compare any

arbitrary attributes using an arbitrary operator. The FILTER

operator also accepts a configurable limit number of historical

events to check when looking for a match.

The three operators added are summarized in Table 1 below

(where F(Y) means that the publication Y matches the filter F,

and XR represents the reference attribute).

 Operator Condition

 XR DURING F ∃Y : F(Y) Λ (YS ≤ XR) Λ (YE ≥ XR)

 XR AFTER(L) F ∃Y : F(Y) Λ (YE < XR) Λ (YE ≥ (XR – L))

 XR FILTER(OP, L) F ∃Y : F(Y) Λ (XR OP YR)
Table 1: Temporal Operator Summary

Together the AFTER, DURING and FILTER operators not

only represent all seven of Allen's interval relations, but by

virtue of the generality of the FILTER operator (as a

generalization of the WITH operator), allows for even more

applications of the operator than the temporal operators

considered here.

Performance wise, the data store must iterate over all of the

events which initially match the time constraints provided by

the temporal operators. This means that the time taken to

process each operator should grow as more event publications

are retrieved from the data store to check stored historical

events against the currently processed event (up to the limit L

configured in the operators themselves). It is feasible to

implement this design in such a way that the processing time

grows no worse than linearly with the number of events

returned from the data store.

As a further benefit, this design could also be employed on

any publish/subscribe system, not just a knowledge-based

networking system, as long as the system can pass a filter as

the target of the new operators. The actual time values used by

the system do not matter (as long as they are fully-ordered and

defined for each publication), while the design of the data

store component is simple enough to be implemented any

number of ways, either with a relational database system or

even using flat log file storage.

V. IMPLEMENTATION

Our implementation is based on a Java-language

implementation of a knowledge-based networking system

(“KBN”) described in [10] which itself was implemented on

top of the hierarchical Java version of Siena [5]. All

extensions previously added (up to the KBN version in [10],

and this extension) were designed to appear very similar to

and backwards compatible with the Siena Java API [5].

The implementation relies on a number of assumptions

about the use of the system, specifically relating to the

timestamps: Event start and end timestamps are totally-

ordered and defined by some external source; Event

timestamps are to be delivered as content-based publication

 4

attributes; The end time of a particular event will always be

greater than or equal to the start time of that event; and Any

publication marked to represent the end of an event will be

preceded by a publication marked to represent the start of that

same event (excluding instantaneous events).

Furthermore, as a general maxim in content-based systems

is to minimize the amount of meta-data attached to each

publication, and instead carry such data in the open payload,

we have implemented our design using a number of

conventions which allow it to utilize the existing Siena

framework in a consistent manner. In particular, our

implementation uses four specific message attributes, as

shown in table 2 below, to represent the start and end times of

our events, as well as the unique identifiers for the events, and

some additional flags to denote whether a publication

represents the start or end of an event (or an instantaneous

event, in which the start and end time are equal).

 Attribute Name Attribute Type Description

 PUB_ID String Event UUID
 KBN_PUB_TYPE Bag Publication Type
 KBN_START_TIME Long Event start timestamp
 KBN_END_TIME Long Event end timestamp

Table 2: Special temporal attributes

PUB_ID is a string representation of a universal unique

identifier used to tie start and end publications together.

KBN_PUB_TYPE denotes which time marker the event

represents, the start or end time, or if the event is

instantaneous, using one of three values: START, END, or

INSTANT. KBN_START_TIME and KBN_END_TIME

store the timestamps for the start and end of an event,

respectively. These two attributes are used as the reference

attributes for the AFTER and DURING operators.

A. Data store implementation

For our implementation, we decided to implement the data

store component in three different ways using two commonly-

used relational database systems, Oracle and MySQL. These

were chosen because of their widespread use, their efficiency

in storing linked data (such as attributes linked to a

publication), and to explore some of the more advanced

features (including some semantic functions) in Oracle 11g.

As described, the data store is used to store historical event

publications and used by the event broker to compare newly

received events to stored events, subject to both a content-

/semantic-based subscription filter (applied to each candidate

publication) and a temporal operator to compare matching

publications.

For each publication the database driven data store stores

the PUB_ID, KBN_START_TIME, KBN_END_TIME in one

table, with each additional named and typed data attribute

contained in the publication stored in another related table.

In addition to methods to store and retrieve individual

publications, each data store implementation has a

hasMatchingPublication() method. In its simplest form this

method takes a (non-temporal content-/semantic-based)

subscription Filter as an argument and requires the data store

implementation to check the passed Filter against the stored

publications in order to determine whether the Filter matches

any stored historical publications. This operation can be

implemented in a number of ways depending on the

capabilities of the underlying data store, and so could

potentially benefit from optimizations in the implementation.

1) MySQL data store

This implementation takes a very naive approach to finding

matching events from the database, using simple SQL queries

to find any/all events which match the temporal constraints

imposed by the operators, returning them into the KBN

broker’s process, and looping through them in code to test

against the passed-in filter using the standard publication

matching functionality available with the KBN codebase. All

connections to the database were implemented using pooled

localhost JDBC connections. As such, the MySQL

implementation is expected to scale linearly with the size of

the result set. In addition to the content-based publication

matching performed by the KBN codebase, semantic-based

publication matching is in the KBN handled using the Jena

[23] framework.

2) Simple Oracle data store

The simple Oracle data store implementation was

implemented exactly as per the MySQL data store. It uses just

the standard RDBMS features of Oracle 11g. It was intended

as a comparison to the following Advanced Oracle data store.

3) Advanced Oracle data store

The Advanced Oracle data store was implemented to test

some of the advanced features of the Oracle 11g database

system. These features include ontology-extended relational

queries introduced as part of Oracle's Semantic Technologies

[24] and the ability to invoke static Java methods as stored

procedures from the Oracle 11g instance [25].

In order to perform the matching of stored events using the

hasMatchingPublication() method the advanced Oracle data

store invokes an internal stored procedure MATCH(). This

stored procedure is actually a static Java function (based on

code in the KBN codebase) which parses the filter passed into

hasMatchingPublication() to perform the (non-temporal) filter

matching inside the database. Any publication which matches

the filter is then included in the result set and returned from

the database to be compared using the temporal operators. As

this greatly reduces the size of the result set returned from the

database and there is no external looping required to analyze

these results, we expect that this implementation would

perform rather better than the simpler MySQL and Oracle

implementations, perhaps scaling against the number of

publications at a better than linear rate.

Performing the filter operations passed into the

hasMatchingPublication() method of the data store

implementation within the database makes the logic of the

data store much simpler, as the query only returns rows which

are already checked against the filter, but it adds some other

technical complications. The Oracle Java VM is run in a

different process than the rest of the KBN broker, so none of

the objects or configuration of the KBN broker process can be

 5

accessed directly by the matching class. In order to perform

the content-/semantic-based matching internally a large

proportion of the KBN codebase must be loaded by the

database when the MATCH function is invoked.

As mentioned Oracle 11g also includes support for

semantically-enhanced database queries (as an extension to

standard relational DB queries) by comparing against a loaded

and reasoned ontology stored in the database. This means that

the ontological operations required to support semantic-based

subscription filters in the KBN implementation can be handled

by the database rather than using the Jena framework as

before. This means that the incorporation of an Oracle-based

data store actually simplifies the implementation of the non-

temporal semantic operations of the KBN as all

semantic/ontological queries can be handled by the data store.

In order for the stored MATCH procedure invoked in the

database to match nested temporal or filter operators (or

ontological operators), the matching procedure must itself

sometimes invoke the data store to find matching publications

or perform other queries. Restrictions placed on stored

procedures in the Oracle VM do not allow standard JDBC

connections, however, a special direct internal JDBC driver

can be used from within the database when a database

connection is needed from the internal Java stored procedure.

B. Implementing the new Operators

When a new publication arrives at a broker it is compared

to the set of subscriptions stored in the broker to check if it

should be forwarded to a subscriber. Standard non-temporal

subscriptions contain a filter, which is made up of a set of

operator/value pairs to be applied to named attributes. If the

newly arrived publication contains attributes with the same

names, and the values compare successfully with the value

given in the subscription filter according to the given operator,

then that subscription is matched. Temporal subscriptions

extend standard subscriptions. They can contain the set of

standard-operator/value pairs to be applied to named

attributes, but, they also contain at least one temporal-

operator/inner-filter pair. Here, the passed inner-filter is used

to retrieve from the data store a set of historical publications

that match the inner-filter. (The passed inner-filter can itself

be a temporal filter, which then must contain its own inner-

inner-filter). Given the set of historical publications returned,

the time-based characteristics of those older publications are

then compared to the newly arrived publication in a way that

is appropriate for the temporal operator.

Each of the three new operators were individually designed

and implemented with a method called apply() which

performs the operation. The apply() method first selects the

appropriate data store and invokes hasMatchingPublication()

to retrieve the set of historical publications that have matched

the standard content-/semantic-based filter (inner-filter). A

limit can also be specified for the AFTER and FILTER

operators to limit the size of the historical time window within

which the data store should search for past publications. The

retrieved publications are then compared to the newly arrived

publication. It should be noted that the size of the temporal

window can be set on a filter-by-filter basis, even with

different window sizes in different filters in the same

subscription. This fine-grained and flexible approach ensures

that the subscriber can specify detailed subscriptions for only

the events of interest.

Two conditions must hold for the AFTER operator to

match. The end time, YE, of the stored event Y must be less

than the value of the reference attribute XR, (i.e., YE < XR),

and, the end time must be greater than or equal to the value of

the reference attribute less the limit, L (i.e., YE ≥ (XR − L)).

For the DURING operator, two different conditions must

hold. The start time, YS, of the stored event must be less than

or equal to the value of the reference attribute (i.e., YS ≤ XR),

and, the end time of the stored event must either be greater

than or equal to the value of the reference attribute or it must

be null (i.e., YE ≥ XR V YE is null).

The FILTER operator, described earlier, is somewhat

different. It can be used to compare the value of an arbitrary

named attribute (not just start or end time) of the stored

publication to the value of the same name specified in a newly

arrived publication, using an arbitrary content-/semantic-based

operator. Therefore, the FILTER operator requires the name

of the attribute to be used and the operator to use in the

comparison.

In order for our implementation to correctly and efficiently

function within the Siena/KBN framework, we need to define

when a filter can be aggregated by a more general filter. This

subscription aggregation relationship, called covering in

Siena, defines how subscriptions can be efficiently stored and

searched in an individual broker, and defines which

subscriptions are passed around the network to neighbouring

brokers. (Only the most general subscriptions are distributed

to neighbouring brokers, as these will suffice to capture the

requirements of all of a broker’s subscriptions). For the

operators in our extension, the covering relationships depend

heavily on the internal target filters used in the operators, and

cannot be determined otherwise. If two filtering constraints

contain the same temporal operator, and the internal target

filter of the operator in the first covers that of the second

operator, then the first filtering constraint covers the second.

VI. MOTIVATING SCENARIOS

A. First Deployment Scenario

Many managed systems rely heavily on logging, whether of

alerts, warnings or errors, where log messages are based on

the system's current state and context. To be useful, they must

be very fine grained, but this challenges the system

administrator who must monitor and search the logs to find

the messages that are useful to detect and fix errors and

warnings. Most systems filter log messages, based on their

logging level (e.g., level 5 = ERROR, level 1 = TRACE),

where important messages are kept and occurrences of log

message with lower importance are ignored.

Consider a case where only highest level messages are

 6

displayed to an administrator, while others are ignored (<

WARNING). However, if there may be a fault in the near

future or if there is some other particular pattern of messages

that may require more attention (such as a potential intrusion

pattern), the administrator may want to lower his logging filter

match. For example, if three WARNING messages, each

containing a value "login failed", are detected less than two

seconds AFTER each other, then the logging level should be

immediately dropped to INFO for a short time so that more

information, such as the location of the warning can be

logged.

B. Second Deployment Scenario

While numerous works describe the benefits of using

semantic mark-up in the area of network fault management

(e.g. [14]), and so are suited to the knowledge-based

networking approach, there has been little previous progress

in providing infrastructure support to capture causal and

temporal dependencies between events. Aspects of the causal

relationship between types of events can be easily captured in

a causal ontology, and thereby subscribed for using the

generic ONTPROP operator (see [10]), however, without

temporal relationships it does not check if any fault/warning

which could have caused a matched fault actually happened.

For example, consider a scenario where an end-to-end

virtual private network (VPN) connection is supported by a

two logical switched paths using a core routing protocol (e.g.

Border Gateway Protocol (BGP)) and a data

carrying/switching protocol (e.g. Multiprotocol Label

Switching (MPLS)). An Simple Network Management

Protocol (SNMP) “ifdown” trap can signal that a device

interface has failed, thereby causing a “linkdown” trap, which

in turn indirectly causes “mplsTunnelDown” and

“mplsLdpSessionDown” events, which themselves later cause

the VPN connection to fail. The individual device/port which

caused this failure can be easily detected by subscribing to any

low level fault known to indirectly cause “mplsTunnelDown”

faults, anytime in the 10 seconds BEFORE notification that

the VPN connection has failed.

VII. EVALUATION

The first series of tests attempt to establish how the

processing time for the extension grows with respect to the

number of stored publications, starting with an empty data

store. For this test, we connected an example publisher and an

example subscriber to a single temporally-extended KBN

broker. The example subscribing client generated fifty

subscriber entities, where each subscribed with one of the

subscriptions shown in Table 3, randomly-selected with a

uniform description (a filter used as a target value is denoted

by FX where X is the filter name). Note, filter B in Table 3

uses the W3C Wine Ontology [26]. The filter constraint (“B”

ONTPROP<wine:hasColor> <wine:red>) will successfully match a

publication that has an attribute called “B” containing an

ontological individual that uses the object property

“wine:hasColor” with the value of “wine:red”.

 Filter Attribute Operator Target

 A A < 8

 B B ONTPROP<wine:hasColor> <wine:Red>

 C A FILTER<(200) FB

 D End DURING FA

 E Start AFTER(500) FA

 F Start AFTER(125) FA

 X
a
 C > 10

 G A FILTER<(200) FX

a
This filter is only used as the internal filter for the following filter operator.

Table 3: Special temporal attributes

The publisher published 250 events, one beginning every

10 seconds and ending between three and eight seconds later

(to test varying event durations). The publications contained

two attributes, A and B, each of which were assigned a

random value. A was set to an integer between one and ten,

inclusive, while B was set to the identifier URL of one of ten

wines from the Wine Ontology, five red and five white.

These tests were run for each of the three data store

implementation described above, (MySQL, Simple Oracle,

and Advanced Oracle). Based on the algorithms employed, we

predicted that the processing time would scale at most linearly

with the number of events stored in the data store. The results

of the tests using the simple Oracle and MySQL data stores

implementations are shown in Figure 2. As the graph

indicates, the average processing time for each publication

does appear to increase linearly with the number of events

stored in the data store, at least for the MySQL results which

match a linear regression with a high degree of confidence

(R=0:989). The simple Oracle JDBC implementation strongly

fits a linear regression (R=0:854), but is also a strong fit for a

logarithmic regression based on the test data (R=0:819),

showing that the processing time for the Simple-Oracle store

may grow with the log of the stored events rather than

growing linearly.

Figure 2: Comparing the MySQL and Simple Oracle data stores

The more advanced Oracle store class also displayed a

linear increase with the number of stored events (R=0:999),

but the increase was dramatically greater than the simpler

 7

Oracle store, which did not utilize the Java stored procedure

invocations used by the more complex version. Figure 3

compares the two Oracle data stores directly based on their

results from Test 1. As shown, the advanced Oracle store

grows linearly, but for only 250 stored events the processing

time for each publication takes an average of nearly seven

seconds. This unacceptably long delay is likely due to the

overhead of invoking the Java stored procedure repeatedly,

especially since the code base size and complexity of the

procedure is quite large, as discussed in section IV:A:3 above.

This behaviour was not affected by subsequent changes in the

configurable variables of the test (e.g., delay between

publications, number of publications). It is likely that the

matching function invoked by the stored procedure is more

complex than this feature was intended to perform.

Figure 3: Comparing the Simple and Advanced Oracle data stores

A second test utilized much the same set-up as the first,

involving a single temporally-extended KBN broker, a simple

subscriber, and a simple publisher. However, the second set of

tests operated on a pre-filled database containing 50,000

randomly-generated events (using the same publication

attributes as the first test) and focused specifically on the time

taken to process the FILTER operator, which we determined

takes the most time due to its unconstrained nature (the

temporal operators took an average of around 10ms to 63ms to

process). The fifty subscribers for the second test used one of

two filters, randomly selected from those described in Table 4.

The publisher used for the second test is the same as the

publisher used for the first test, but with a three second delay.

Filter Attribute Operator Target

 X
a
 B ONTPROP<wine:hasColor> <wine:Red>

 A A FILTER<(α)
 b

 FX

 Y
a
 C > 10

 G A FILTER<(α)
 b

 FX

a
This filter is only used as the internal filter for the following filter operator.

b
The limit on the filter operators used in these subscriptions is one of the

variables manipulated in this test.

Table 4: Subscriptions for Test 2

The second set of tests were each run with varying values

for the filter operator limit (200, 500, 1000, 2000, and 5000

results), all using the Simple Oracle implementation. We

expected that the average processing time would remain

nearly constant, due to the limit imposed on the filter operator

result set size. As expected, the average publication

processing time for the second test (with a filter operator limit

of 200 results) using the simple Oracle store hovered around

200 milliseconds, as shown in Figure 4.

Figure 4: Average publication processing time for the pre-filled Simple Oracle

data store, using the FILTER operator with a filter limit of 200.

These results show that the processing time scales linearly

not in the number of total events stored in the database, but

rather that the processing time is a function of the size of the

result set returned for each query. We expected that the

publication processing time will increase approximately

linearly as the limit on the result set increases. In order to test

this prediction, we ran the second test ten times each with

filter operator limits of 200, 500, 1000, 2000, and 5000

results. The average publication processing time for each limit

(along with standard error) are shown in Figure 5. As shown,

the publication processing time scales almost linearly, with a

small (super-linear) increase in processing time as resources

become scarce with larger filter operator limits.

Figure 5: Average publication processing time based on the FILTER

operator’s filter limit.

VIII. DISCUSSION AND FURTHER WORK

This paper presents a design, implementation, evaluation

and two motivating deployment scenarios to demonstrate a

new CEP approach for composite event detection − that of

detecting composite events using predicate matching using

historical event data. Our results demonstrate that this

approach can be implemented in a scalable manner and our

scenarios motivate the more expressive subscriptions

supported. It is particularly envisioned that the collection,

 8

aggregation and correlation of network faults and events will

be made easier, further enhancing the usefulness of

Knowledge-based Networking in this domain [13][16].

While this work has increased the expressiveness of the

subscriptions in the underlying KBN without sacrificing

scalability, the temporal operators model only a subset of

Allen's interval algebra, and do not yet allow for uncertain

time intervals. Further work will also introduce logical

composition extensions to the new temporal reasoning

support, e.g. conjunction (where two or more events must be

detected in any order) and disjunction (where any one of two

or more events can be detected). These additional operators

could easily achieved using the same predicate-matching

approach used here.

ACKNOWLEDGEMENT

This work was partially funded by the Irish Government as

part of the SFI Strategic Research Cluster (“FAME”). Grant

No 08/SRC/I1403

BIBLIOGRAPHY

[1] Network Systems Architects, Inc. “SMARTS InCharge

Application Services Manager.” Retr. Sept 2009 at:

http://www.nsai.net/products/incharge-asm.shtml.

[2] Hewlett-Packard Development Company. “Looking for HP

OpenView?” Retr. Sept 2009 at: http://openview.hp.com

[3] P.T. Eugster, P.A. Felber, R. Guerraoui, A-M. Kermarrec. “The

many faces of publish/subscribe.” ACM Computing Surveys,

35(2), June 2003.

[4] International Business Machines (IBM). “The Gryphon

project.” Retr. Sept 2009 at:

http://www.research.ibm.com/distributedmessaging/gryphon.ht

ml.

[5] A. Carzaniga, D.S. Rosenblum, A.L. Wolf. “Design and

evaluation of a wide-area event notification service.” ACM

Trans. Comput. Syst., 19(3), 2001.

[6] P. Pietzuch, J. Bacon. “Hermes: A distributed event-based

middleware architecture”. Proc. of the International Conference

on Distributed Computing Systems (ICDCSW '02),

Washington, DC, USA, 2002.

[7] A. Carzaniga, A.L. Wolf. “Forwarding in a content-based

network.” Proc. of the conference on Applications,

technologies, architectures, and protocols for computer

communications (SIGCOMM '03), New York, NY, USA,

2003.

[8] R. Baldoni, R. Beraldi, L. Querzoni, A. Virgillito. “Efficient

publish/subscribe through a self-organizing broker overlay and

its application to SIENA.” The Computer Journal, 50(4), 2007

[9] Z. Jerzak, C. Fetzer. “Bloom Filter based routing for content-

based publish/subscribe”. Proc. of the international conference

on Distributed event-based systems (DEBS '08), Rome, Italy,

2008.

[10] J. Keeney, D. Roblek, D. Jones, D. Lewis, D. O'Sullivan.

“Extending Siena to support more expressive and flexible

subscriptions.” Proc. of the international conference on

Distributed event-based systems (DEBS '08), Rome, Italy,

2008.

[11] M. Cilia, C. Bornhvd, A. P. Buchmann. “Cream: An

infrastructure for distributed, heterogeneous event-based

applications.” Proc. of the International Conference on

Cooperative Information Systems (COOPIS ’03), Catania,

Sicily, Italy, 2003.

[12] J. Wang, B. Jin, J. Li. “An ontology-based publish / subscribe

system.” Proc. of the international conference on Middleware

(Middleware '04), New York, NY, USA, 2004.

[13] J. Keeney, D. Lewis, D. O'Sullivan. “Ontological semantics for

distributing contextual knowledge in highly distributed

autonomic systems.” J. Netw. Syst. Manage., 15(1), 2007.

[14] J, Keeney, D. Lewis, D. O'Sullivan, A. Roelens, A. Boran, R.

Richardson. "Runtime Semantic Interoperability for Gathering

Ontology-based Network Context." Proc of the Network

Operations and Management Symposium (NOMS ‘06),

Vancouver, Canada, 2006.

[15] D. Lewis, J. Keeney, D. O'Sullivan, S. Guo. "Towards a

Managed Extensible Control Plane for Knowledge-Based

Networking", Proc. of the International Workshop on

Distributed Systems: Operations and Management (DSOM

2006), at Manweek 2006, Dublin, Ireland, 2006.

[16] T. Wei, D. O'Sullivan, J. Keeney. "Distributed Fault

Correlation Scheme using a Semantic Publish/Subscribe

system." Proc. of Network Operations and Management

Symposium (NOMS 2008), Salvador, Bahia, Brazil, 2008.

[17] E. Wu, Y. Diao, S. Rizvi. “High-performance complex event

processing over streams.” Proc. of the SIGMOD international

conference on management of data New York, NY, USA,

2006.

[18] S. Gatziu and K.R. Dittrich. “Detecting composite events in

active database systems using petri nets”. Proc. Of the

International Workshop on Research Issues in Data

Engineering: Active Database Systems, Houston, Texas, 1994.

[19] N.H. Gehani, H.V. Jagadish. “Ode as an active database:

Constraints and triggers.” Proc of the International Conference

on Very Large Data Bases (VLDB '91), San Francisco, CA,

USA, 1991.

[20] Middleware Systems Research Group. “PADRES: A reliable

publish/subscribe middleware.” Retr. Sept 2009 at:

http://research.msrg.utoronto.ca/Padres.

[21] R.E. Gruber, B. Krishnamurthy, E. Panagos. “The architecture

of the ready event notification service.” Proc. Of the Workshop

on Electronic Commerce and Web-Based Applications, at

ICDCS ’99, Austin, TX, USA, 1999.

[22] J.F. Allen. “Towards a general theory of action and time.”

Artificial Intelligence, 23(2), 1984.

[23] Hewlett-Packard Development Company. “Jena - A semantic

web framework for Java”. Retr. Sept 2009 at:

http://jena.sourceforge.net.

[24] C. Murray. “Oracle Database Semantic Technologies

Developer's Guide, 11g Release 1 (11.1) (B28397-05), July

2009.

[25] T. Das, S. Maring, R.Sapir, M. Wiesenberg. “Oracle Database

Java Developer's Guide”, 11g Release 1 (11.1) (B31225-03),

September 2007.

[26] World Wide Web Consortium (W3C). “Wine ontology”. Retr.

Sept 2009 at: http://www.w3.org/TR/owl-guide/wine.rdf.

