
978-1-4244-9229-9/10/$26.00 ©2010 IEEE

Opportunistic Detection of Relative Mobility in

Wireless Sensor Networks

Ricardo Simon Carbajo, Meriel Huggard, Ciarán Mc Goldrick

School of Computer Science and Statistics

Trinity College Dublin (Ireland)

Email: {carbajor, Meriel.Huggard, Ciaran.McGoldrick}@sccs.tcd.ie

Abstract—In highly mobile ad hoc networks the neighbour-
hood status evolves rapidly. Routing tables which are populated
with an “out of date” view of the neighbourhood produce an
overhead in the routing process which can affect the QoS of the
communication and the stability of the network interconnectivity.
To maintain correct network state information, periodic “Hello”
messages are often employed. In many scenarios these may be
expensive in terms of communication and energy. Providing a
node with an ability to estimate mobility has been proposed as a
mechanism for regulating the transmission of discovery “Hello”
messages and for prompt updates of its neighbourhood view.

In this paper, a mechanism for gauging the relative mobility
of a node with respect to its neighbourhood is presented for
mobile Wireless Sensor Networks. The algorithm employs a set
of Bloom filters to encapsulate opportunistically eavesdropped
data from neighbours. A set of mobility states is defined
using a model based on the number of neighbours recently
cached, a membership comparison of Bloom filters, and a
probabilistic expression. The mechanism detects changes in
the neighbourhood using only the available information. The
evaluation of the system has been performed (using a gradient-
based routing protocol) in the TinyOS simulator, Tossim.

Index Terms—Wireless Sensor Networks; Mobility; Neighbour-
hood Detection; Tossim; TinyOS; Bloom Filter.

I. INTRODUCTION

Dynamically changing ad hoc networks commonly employ

a proactive approach to neighbour discovery, where nodes

periodically send a “hello” message as an element in the timely

maintenance of neighbourhood connectivity information. Thus

the network can more rapidly establish routes for data trans-

missions.

In many scenarios, where wireless transmission ranges are

of the order of 50 to 100 meters, the status of the network does

not change particularly rapidly. Nodes move at different speeds

and some of them will only have local mobility. Moreover a

set of nodes, which may be defined as a cluster, may not

be moving with respect to each other - even though they are

physically changing position, i.e. a relative mobility scenario.

If we consider that many applications in ad hoc networks,

more specifically in wireless sensor networks, transmit data

intermittently then the volume of control traffic required

to maintain the network status information, using periodic

“hello” messages, is highly expensive in terms of message

and energy costs. Therefore in scenarios where the network

includes some transient nodes, and data communication will

be infrequent, energy may be conserved by opportunistically

updating only areas with activity, and avoiding the proactive

beacon approach.

In this paper, a memory efficient mechanism to detect if

a node has changed its relative position with respect to its

neighbourhood, i.e. relative mobility, is presented. The mech-

anism alerts the system of a possible change in neighbourhood

based on eavesdropped data. The approach builds a set of

temporal shift Bloom filters [1] to store historical overheard

information. A probabilistic technique is employed to assess

the mobility state of a node according to the information

cached in the set of Bloom filters. A recursive estimation

approach enhances the accuracy of the mobility assessment

by incorporating previous expressions of the likelihood of

mobility. The model accommodates most of the uncertainty

scenarios where wireless connectivity might be temporarily

disrupted and where the relative position of the node(s)

may or may not have changed. The mechanism has been

tested with a dynamic routing protocol designed for Peer-

to-Peer communication in Mobile Wireless Sensor Networks.

The routing protocol employs gradient-based techniques to

populate routing tables and implements effective local repair

and caching mechanisms for reliability. One of the goals is

to avoid proactive periodic beacon messages by assuming that

areas with no activity do not require recurrent updating, whilst

areas with activity opportunistically exploit communication to

update connectivity status.

In the following section, an overview of existing approaches

for assessing a nodes’s mobility are provided. Section III

explains the functioning of the mobility detection mechanism,

describes the Bloom filter, and presents the numerical basis for

the mobility detection model. An evaluation of the model in

the TOSSIM simulator, under different mobility scenarios, is

presented to validate the concept. The Conclusions and Future

Work section summarises our findings, system improvements

and planned practical deployments.

II. MOBILITY ESTIMATION AND DETECTION

Mobility estimation and detection techniques have been

well studied for mobile ad hoc networks. These focus on the

prediction of the status of the neighbourhood and improve

routing efficiency (in terms of transmission) [2]. Some of

these approaches employ a collaborative approach between

nodes requiring the use of explicit data communication. These

mechanisms make use of distributed information to estimate

the level and the direction of mobility of a local node or

a neighbour. Many of these approaches exploit non-random

mobility patterns and are based on the processing of metrics

from the physical and MAC layer, such as RSSI, and the

analysis of explicit and implicit packet information received

from other nodes in the network. Some of these algorithms

depend on historical data for retro-analysis. Moreover, the

use of specialised or dedicated layers to estimate mobility

might require the use of special packets or the piggyback of

localization information to update other nodes.

Much of the work described above focused on estimating

the physical mobility of a node and the path being followed.

However, the study of the mobility of a node with respect to

its neighbourhood, i.e. relative mobility, has recently attracted

attention, e.g. [3], [4]. In [5] the problems experienced by

routing protocols when a neighbour node disappears and the

benefit of detecting that promptly are discussed. A lightweight

Bloom filter based mechanism is employed to replicate infor-

mation of the presence of nodes by using beacon messages. In

[3], the authors propose a dynamic timer adjustment to reduce

the overhead of “Hello” control packets when discovering

the neighbourhood. By measuring the link change rate with

respect to its neighbourhood, the mobility status of the node

can be estimated and the “Hello” timer tuned. In order

to make more accurate forwarding decisions, Xu et al. [6]

propose a neighbourhood tracking scheme. Whenever a node

needs to route a packet, the view of the neighbourhood is

constructed and updated using past location information. This

employs mobility prediction models to estimate the positions

of neighbourhood nodes at the time when the packet will be

forwarded.

In the area of Wireless Sensor Networks, algorithms need

to operate in networks with a mix of static and mobile low-

power nodes where no location information may be available.

Factors like the unpredictable and constantly changing wireless

medium behaviour and the effects of the mobility of the nodes,

can affect the neighbourhood connectivity status of a node

even if there are no relative position changes. Moreover, nodes

can travel in groups at constant or individual speeds. Taking

this into account, the authors in [4] propose an approach to

detect the mobility status of a node’s neighbourhood based

on calculations from messages received from neighbours.

Their proposed algorithm, the SDMS (Self Detection Mobility

Status), capitalizes on the definition of mobility states accord-

ing to the analysis of neighbourhood-related local indicators.

However, the algorithm requires neighbours to announce their

presence regularly and, the higher the rate of announcements,

the greater the accuracy of the algorithm.

Herein, the mobility of a node is assessed with respect

to its neighbourhood status through leveraging opportunistic

communication. Our approach avoids periodic “Hello” beacon

messages and serves as a mechanism to determine when the

node is changing its relative position within its neighbour-

hood. The algorithm, which defines a set of mobility states,

works independently and can be incorporated into any routing

protocol for mobility detection purposes.

III. RELATIVE MOBILITY DETECTION MODEL

A. Bloom Filter Functionality

A Bloom filter [1], is a probability-based compressing

structure which identifies whether a data item is a member

of the filter or not. In other words, it stores the presence of

the item in the filter structure, rather than storing the data

item itself. The Bloom filter structure is represented as an

array of bits. By switching bits from 0 to 1 in a set of

strategic positions, an element is declared as a member of the

filter. Every combination of positions represents a data item

stored. In order to calculate the combination of positions which

represent a particular data item, hash functions are employed.

Each hash function is applied to the data item producing an

integer number which is trimmed/scaled to the number of

bits in the Bloom filter - thereby generating a position in the

bitvector. Applying X hash functions to the same data item

produces Y positions in the bitvector. The collection of hash

functions applied over a data item will always produce the

same combination of positions for every data item. By the

same token, a data item can be hashed to check whether all

its positions in the Bloom filter are set to 1, i.e. to check

membership.

The Bloom filter structure has a drawback. The higher the

number of data items to be stored in the Bloom filter, the

higher the probability of obtaining false positives. A false

positive occurs when a data item has not been stored in the

Bloom filter, but the positions which correspond to the data

item are set to 1 by the other data items stored. The selection of

the number of hash functions, together with the number of bits

of the Bloom filter and the number of elements inserted in the

Bloom filter, establish the probability of getting false positives.

On the other hand, the Bloom filter guarantees that there will

be no false negatives, i.e. if there is not a combination of

positions set to 1 which satisfies the hashed data item, then it

is guaranteed that the data item was not inserted in the Bloom

filter. Bloom filters can easily be compared with a “XOR”

bitwise operation and merged with an “OR” bitwise operation.

The probability for a false positive error can be calculated

with the next equation:

Efp =
(

1 − (1 − 1/m)
kn

)k

(1)

being “m” the number of bits in the Bloom filter, “n” the

number of elements inserted and “k” the number of hash

functions [7]. The error Efp can be minimized for the number

of hash functions according to the next equation [7]:

k = (m/n) ln 2 (2)

For instance, for a bit array 10 times larger than the number

of entries, the probability of a false positive is 1.2% for k=4

hash functions, and 0.9% for the optimum case of k=5 hash

functions. If the data set is known “a priori” then the Bloom

filter can be designed to avoid false positives.

B. Recursive Mobility Estimation with Temporal-Shift Bloom

Filters

The creation of a historical record of eavesdropped neigh-

bour addresses is key to evaluating a node’s relative mobility,

i.e. changing neighbourhood. The core neighbourhood of a

node is formed by a group of static (in relative terms)

neighbours. Over time, other nodes can come and go including

those which (by being at the edge of the communication range)

may have local mobility. Nodes seen for a short period of time

can distort this representation. To accommodate this, overheard

information is split into a number of consecutive chronological

intervals. The time window for overhearing packets, prior to

launching the mobility evaluation process, is defined from the

average speed and the mean of the transmission range of the

nodes. This provides an indication of the time that a moving

node would take to leave its neighbourhood area radius. This

“Evaluation Time” represents the average time that the node

takes to leave the neighbourhood. The mobility evaluation

interval is given by the equation:

Evaluation Time(s) =
Transmission Range(m)

Speed(m/s)
(3)

In the interval prior to launching the mobility evaluation

process, a “split factor” is established to distribute the over-

heard neighbours into a set of Bloom filters which act as

independent consecutive memory structures. The “split factor”

is a configuration parameter in the protocol which defines

how many “Active” Bloom filters (BF) are employed. Initially,

an independent Bloom filter, the “PrimaryBF” (PriBF), will

contain the neighbourhood. The initial neighbourhood can be

established by explicitly requesting the neighbours to reply or

eavesdropping for an initial period of time. The source of an

overheard packet is hashed into the Bloom filter. Once the

“PrimaryBF” (#PriBF) is populated, every overheard packet

will be stored in the “Active” Bloom filters (#BF). Provided

the current “Active” Bloom filter is not empty, the time to

shift to start storing information in the next filter is calculated

using:

Shift BF =
Evaluation Time(s)

Split Factor
(4)

If no data communication activity occurs, the evaluation

mechanism will not be launched as the “ActiveBF” will be

empty. A maximum time is preset such that, if no mobility

evaluation process takes place, a “Hello” message discovery

process starts. Each ActiveBF and PrimaryBF keeps a counter

of the number of different neighbour addresses which have

been stored. When the last “ActiveBF” is populated, the

evaluation process starts by comparing each of the individual

“ActiveBF” with the “PrimaryBF”. This comparison calculates

the similarity of the “PrimaryBF” and the “Active” Bloom

filter as:

The “Similarity” in Equation 5 represents the percentage of

neighbours seen by an “ActiveBF” which are core neighbours,

i.e. neighbours also stored in the “PrimaryBF”. “ActiveBF”

(BF) is intended to represent nodes that are mobile or ap-

pear within the neighbourhood subsequent to the formation

of “PrimaryBF”. Then the Similarity seeks to capture an

indication of the relative proportion of these nodes within the

neighbourhood.

Similarity(BF, PriBF, #BF, #PriBF)(%) =















bits in “BF” matching “PriBF” 1’s
bits in “PriBF” set to 1

if #BF ≥ #PriBF,

bits in “BF” matching “PriBF” 1’s
bits in “BF” set to 1

if #BF < #PriBF.

(5)

In addition, the Plausible Similarity (Pl. Sim.) in Equation

6 indicates the minimum level of “Similarity” that must be

achieved for a nodes neighbourhood to remain unchanged.

Plausible Similarities are precalculated according to Equation

6 creating a predetermined table model to be queried. A

predetermined table model (generated for a maximum of 10

neighbours) with their associated percentages of plausible

similarity and thresholds for the cardinality of neighbours in

the “ActiveBF” and the “PrimaryBF” has been created (see

Figure 1).

Plausible Similarity(#BF, #PriBF, #Tolerance) =

{

100 − (#Tolerance
#BF

× 100) if #BF ≥ #PriBF,

100 − (#Tolerance
#PriBF

× 100) if #BF < #PriBF.
(6)

In Equation 6, the #Tolerance parameter is used to estab-

lish the level of allowable (“plausible”) change within the

Similarity expression. The Plausible Similarity depends on

the relationship between #BF and #PriBF, giving rise to two

different formulations of the expression.

Equation 7 establishes criteria which map the numeric

Similarity and Bloom Filter measures into Mobility States.

• MOBILITY, mobility is estimated.

• STATIC, node has seen sufficient core neighbours to

estimate that there is not mobility.

• UNCERTAIN, there is not enough information to evaluate

whether the node is moving.

Mobility Evaluation State(Sim., #BF, #PriBF, Pl.Sim.) =



































































MOBILITY if #BF ≫ #PriBF,

MOBILITY if (#BF ≫ #PriBF) && (Sim. < 100%),

UNCERTAIN if (#BF ≫ #PriBF) && (Sim. = 100%),

STATIC if (#BF ≥ #PriBF) && (Sim. ≥ Pl.Sim),

MOBILITY if (#BF ≥ #PriBF) && (Sim. < Pl.Sim),

STATIC if (#BF < #PriBF) && (Sim. ≥ Pl.Sim),

MOBILITY if (#BF < #PriBF) && (Sim. < Pl.Sim),

UNCERTAIN if (#BF ≪ #PriBF) && (Sim. & Pl.Sim),

MOBILITY if (#BF ≪ #PriBF) && (Sim. < Pl.Sim).

(7)

5 7 5 100% 8 5 9 5 10 5

#BF #PriBF Pl. Sim. #BF #PriBF Pl. Sim. #BF #PriBF Pl. Sim. #BF #PriBF Pl. Sim. #BF #PriBF Pl. Sim. #BF #PriBF Pl. Sim. #BF #PriBF Pl. Sim. #BF #PriBF Pl. Sim. #BF #PriBF Pl. Sim. #BF #PriBF Pl. Sim.

1 1 0% 2 1 100% 3 1 100% 4 1 5 1 6 1 7 1 8 1 9 1 10 1

1 2 0% 2 2 1/2 3 2 1/2 4 2 100% 5 2 6 2 7 2 8 2 9 2 10 2

1 3 0% 2 3 1/2 3 3 1/3 4 3 1/4 5 3 6 3 7 3 8 3 9 3 10 3

1 4 0% 2 4 1/2 3 4 1/3 4 4 1/4 5 4 1/4 6 4 100% 7 4 8 4 9 4 10 4

11 55 0%0% 22 55 1/21/2 33 55 1/31/3 44 55 1/41/4 55 55 1/51/5 66 55 1/51/ 7 5 100% 8 5 9 5 10 5

1 6 0% 2 6 1/2 3 6 1/3 4 6 1/4 5 6 1/5 6 6 2/6 7 6 2/6 8 6 100% 9 6 100% 10 6

1 7 0% 2 7 1/2 3 7 1/3 4 7 1/4 5 7 1/5 6 7 2/6 7 7 2/7 8 7 2/7 9 7 100% 10 7 100%

1 8 0% 2 8 1/2 3 8 1/3 4 8 1/4 5 8 1/5 6 8 2/6 7 8 2/7 8 8 3/8 9 8 2/8 10 8 100%

1 9 0% 2 9 1/2 3 9 1/3 4 9 1/4 5 9 1/5 6 9 2/6 7 9 2/7 8 9 3/8 9 9 3/9 10 9 2/9

1 10 0% 2 10 1/2 3 10 1/3 4 10 1/4 5 10 1/5 6 10 2/6 7 10 2/7 8 10 3/8 9 10 3/9 10 10 3/10

Fig. 1. Predefined Model of the Plausible Similarity for each combination of cardinality of neighbours in the “ActiveBF” and “PrimaryBF”. The Plausible
Similarity value can be given as a percentage (%) or as the fraction #Tolerance / #BF (see Equation 6). Shadowed combinations indicate a state of uncertainty
(UNCERTAIN) (see Equation 7).

Each relevant “Mobility Evaluation State” (see Equation 7)

is established for consecutive temporal states of “ActiveBF”

and “PrimaryBF” and is associated with the interval of time in

which the state was assessed. In order to improve the reliability

of the estimation, the number of temporal Bloom filters (“Ac-

tiveBF”) determined by Equation 4 represent temporal states

which are recursively estimated. Thus a state incorporates a

cumulative incremental encapsulation of previous states.

A correlated combination of states increases confidence in

the estimation of the Mobility Evaluation State. For instance,

if the “MOBILITY” state appears correlated in an evalua-

tion time window then mobility is assumed; a change from

“STATIC” state to a set of correlated “UNCERTAIN” statesl

indicates the lack of definitive information. In the latter case,

mobility could be assumed when the difference between #BF

and #PriBF exceeds a threshold value. The combination of

the number of states, and the order and correlation required,

is defined within the model.

When mobility is detected, a neighbourhood discovery

process is launched to update the set of core neighbours in

the “PrimaryBF” for future estimations. Based on the result,

the distance in number of hops to reach all the nodes in the old

neighbourhood can be estimated from preestablished values.

IV. EVALUATION

The algorithm has been implemented in TinyOS version

2.1.1 [8] and evaluated in its embedded simulator TOSSIM [9],

[10] where TOSSIM has been extended to support mobility

[11]. The mechanism has been designed to operate as a

separate component and, for the evaluation, it is integrated

in a gradient-based routing protocol. The “Split Factor” (see

Equation 4), which determines the number of “Active” Bloom

filters, has been set to 5. The size of the Bloom filter has been

set to 64 bits. This helps to reduce the number of false positives

through establishing that the maximum number of elements in

the filter can be 12, i.e. 12 different neighbours. According to

Equation 1, the probability of getting a false positive error

in the Bloom filter with a size of 64 bits, for 12 data items

inserted, and 4 hash functions, is 0.07915. The number of hash

functions chosen is close to the optimal number for minimizing

the error, which according to Equation 2 is 3.69.

Two square grid experiments have been formulated to

evaluate the mechanism in a controlled situation. A scenario

with 16 nodes, where node 0 moves from position (6,0) to

(80,74) at different speeds and a topology with 64 nodes,

Fig. 2. Topologies with 16 and 64 nodes. Node 0 moves from position (6,0)
to (80,74) in the 16 nodes topology and from position (6,0) to (180,174) in
the 64 nodes topology.

where node 0 moves from position (6,0) to (180,174), see

Figure 2.

The results for the experiments conducted are presented in

Tables I and II. Node 0 moves at a Speed (Speed) for a time

(Sim.T) with a transmitted packets per second rate (Pck/Sec)

and a per node Transmission Range (Range(m)). Packets are

routed from source to destination on a point to point basis

(P2P). Different Evaluation Times (Eval.T(s)) were required

depending on the Speed. The delivery ratio (Deliv.Rat) of sent

to received Packets has been calculated for each P2P route.

The number of times mobility has been detected (Mob.Detec)

and the time at which it was detected (Time.Detec) through the

node 0 trajectory are used in the assessment of the performance

of the algorithm. In addition, the number of false positive

detections (False Pos), e.g static nodes which have been

detected as mobile, have been presented such that the first

parameter is the number of different nodes and the next one

is the total number of detections (4/5).

The experimental results in Tables I and II allow the

evaluation of the degree of sensitivity of the mobility detection

mechanism. The data presented is the result of multiple

simulation runs.

A. Interpretation of Results

When calculating the Plausible Similarity, a threshold value

of 10% was introduced in UNCERTAINTY cases and a value

TABLE I
RESULTS FOR TOPOLOGY WITH 16 NODES

Speed P2P Pck/sec Range Sim.T Eval.T Deliv.Rat Mob.Detec Time.Detec False Pos

0.8 0→15 1 56 125 5 126/126 1 57s 4/5

0.8 0→15 1 37 125 5 126/126 1 48s 3/3

0.8 0→15 1/2 37 125 5 63/63 1 60s 4/4

0.8 0→15 1/4 37 125 5 32/32 1 47s 4/7

2.8 0→15 1 37 37.5 5 36/36 1 27s 2/2

2.8 0→15 1/2 37 37.5 5 18/18 1 27s 1/1

7 0→15 1 37 15 2 14/14 1 13s 1/1

7 0→15 1/2 37 15 2 7/6 1 13s 1/1

2.8 15→0 1/2 37 37.5 5 19/19 1 23s 3/3

2.8 0→12 1/2 37 37.5 5 18/18 0 Null 0/0

2.8 3→13 1/2 37 37.5 5 18/17 0-1 24-34 0/0

2.8 3→13,1→9 1/2 37 37.5 5 18/17,19/18 0-1 12 0/0

TABLE II
RESULTS FOR TOPOLOGY WITH 64 NODES

Speed P2P Pck/sec Range Sim.T Eval.T Deliv.Rat Mob.Detec Time.Detec False Pos

0.8 0→63 1 56 291 5 290/290 5 61,68,153,164,206s 16/17

0.8 0→63 1 37 291 5 286/286 4-5 56,124,156,203,253s 11/12

0.8 0→63 1/2 37 291 5 148/148 4-5 41,71, 112,144,182,285s 6/6

0.8 0→63 1/4 37 291 5 74/74 4 95,130,214,270s 3/3

2.8 0→63 1 37 87.5 5 86/86 3 24,42,71s 4/4

2.8 0→63 1/2 37 87.5 5 44/44 3 28,50,78s 3/3

7 0→63 1 37 35 5 34/34 2 12,23s 1/1

7 0→63 1/2 37 35 5 17/15 1-2 13,28s 1/1

2.8 63→0 1/2 37 87.5 5 45/45 2 35,66s 1/2

2.8 0→56 1/2 37 87.5 5 44/44 2 56,87s 2/2

2.8 56→0 1/2 37 87.5 5 44/43 1-2 38,83s 1/1

2.8 5→58,3→39 1/2 37 87.5 5 44/44,44/44 1 34s 1/1

of 5% was used in MOBILITY cases (see Equation 6). The

parameters provide regulation of the level of tolerance of

the mobility mechanism under the differing scenarios. The

reliability of the gradient-based routing protocol is evidenced

by the high delivery ratio which is close to 100%. The number

of packets send is proportional to the simulation time (Sim.T)

and the Pck/Sec rate. It can be seen that mobility detection

(Mob.Detec) is highly dependent on the amount of network

traffic (P2P) in the vicinity of the node. This is expected as

the mechanism operates by analysing opportunistic commu-

nication. We can see in Table I that mobility is not always

detected when the communication occurs in routes at the

edges/perimeter which do not send traffic towards route 0→15.

The time at which mobility is detected is generally towards

the middle-range of the simulation time (Sim.T) (see Table

I). This is expected as the transmission range (Range) can

extend to roughly half of the network in the 16 nodes scenario.

On the other hand, mobility is detected at different points

in the larger 64 nodes topology (see Table II). However, the

time when the detection occurs also depends on the speed,

evaluation time, and the amount of traffic in the vicinity. The

mechanism presumes detection of the majority of the core

neighbours when populating the “Primary” Bloom filter. This

is achieved by launching two staggered neighbour discovery

process to reduce the effects of contention and short-term

wireless disruptions. Mobility will be detected if the neigh-

bourhood core is not well formed, serving as an indicator of

the freshness and completeness of the routing table. In Tables

I and II, we can see the number of nodes detecting mobility

as a consequence of a bad neighbourhood formation (False

Pos). This is verified by the high number of UNCERTAINTY

states for these nodes as compared to the set of consecutive

MOBILITY states for the moving node 0. The number of false

positives is inversely related to the speed which, in turn, is due

to the simulation time and the number of evaluation processes

(i.e. 1 every Eval.T). For instance, when the speed is 7ms, the

evaluation time must be reduced to detect mobility since the

simulation time was too low.

V. CONCLUSION AND FUTURE WORK

A mechanism to detect the relative mobility of a node

within a neighbourhood has been designed and validated.

The algorithm caches eavesdropped routing information in

a compressed manner using temporal shift Bloom filters.

Numeric filter evaluations are used to identify relative node

mobility from within filter sets.

Both 16 and 64 node topologies have been used to evaluate

the scheme using a TinyOS implementation. From this we

concluded that the algorithm can gauge the relative mobility

of a node, subject to eavesdropping neighbourhood traffic. The

algorithm can assess the quality of connectivity of the neigh-

bourhood table and is independent of any routing protocol.

Work is ongoing on evaluating the system using larger, more

comprehensive and more realistic deployment scenarios in our

live testbed. Future activities will see robustness testing and

the incorporation of the scheme in other WSN protocols.

VI. ACKNOWLEDGMENTS

This publication has emanated from research conducted

with the financial support of Science Foundation Ireland.

REFERENCES

[1] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] W. Su, S. Lee, and M. Gerla, “Mobility prediction and routing in ad
hoc wireless networks,” International Journal of Network Management,
vol. 11, no. 1, pp. 3–30, 2001.

[3] N. Hernandez-Cons, S. Kasahara, and Y. Takahashi, “Dynamic
Hello/Timeout timer adjustment in routing protocols for reducing over-
head in MANETs,” Computer Communications, 2010.

[4] R. J. Anthony and M. Ghassemian, “Mobility status as dynamic context
for behaviour optimisation in self-organised networks,” Complex, Intel-

ligent and Software Intensive Systems, International Conference, vol. 0,
pp. 878–885, 2009.

[5] T. Tran, B. Scheuermann, and M. Mauve, “Lightweight detection of node
presence in MANETs,” Ad Hoc Networks, vol. 7, no. 7, pp. 1386–1399,
2009.

[6] H. Xu and J. Garcia-Luna-Aceves, “Neighborhood tracking for mobile
ad hoc networks,” Computer Networks, vol. 53, no. 10, pp. 1683–1696,
2009.

[7] S. Cohen and Y. Matias, “Spectral bloom filters,” in Proceedings of the

2003 ACM SIGMOD international conference on Management of data.
ACM, 2003, p. 252.

[8] UC Berkeley, “TinyOS version 2.x,” July 2010. [Online]. Available:
http://www.tinyos.net/tinyos-2.x/

[9] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and
scalable simulation of entire tinyos applications,” in Proceedings of the

1st international Conference on Embedded Networked Sensor Systems,
2003.

[10] H. Lee, A. Cerpa, and P. Levis, “Improving wireless simulation through
noise modeling,” in IPSN ’07: Proceedings of the 6th international

conference on Information processing in sensor networks, 2007.
[11] C. Stevens, C. Lyons, R. Hendrych, R. Simon Carbajo, M. Huggard,

and C. Mc Goldrick, “Simulating mobility in wsns: Bridging the gap
between ns-2 and tossim 2.x,” in DS-RT ’09: Proceedings of the 2009

13th IEEE/ACM International Symposium on Distributed Simulation and

Real Time Applications. IEEE Computer Society, 2009.

