PRL 105, 236805 (2010)

PHYSICAL REVIEW LETTERS

week ending
3 DECEMBER 2010

Critical Supercurrents and Self-Organization in Quantum Hall Bilayers

P.R. Eastham,1 N.R. Cooper,2 and D.K. K. Lee®
ISchool of Physics, Trinity College, Dublin 2, Ireland
*Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE, United Kingdom

3Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
(Received 26 March 2010; published 2 December 2010)

We present a theory of interlayer tunneling in a disordered quantum Hall bilayer at total filling factor
one, allowing for the effect of static vortices. In agreement with recent experiments [Phys. Rev. B 80,
165120 (2009); Phys. Rev. B 78, 075302 (2008)], we find that the critical current is proportional to the
sample area and is comparable in magnitude to observed values. This reflects the formation of a Bean
critical state as a result of current injection at the boundary. We predict a crossover to a critical current

proportional to the square-root of the area in smaller samples. We also predict a peak in the critical current
as the electron density varies at fixed layer separation.
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The quantum Hall bilayer at total Landau level filling
vy = 1 has been a strong contender [1-3] in the search for
Bose-Einstein condensation in excitons because electron-
hole binding can be stabilized by the quenching of kinetic
energy in a Landau level. Strong interlayer coherence has
indeed been observed [4]. A direct demonstration of super-
fluidity would be a form of the Josephson effect [5]—a
finite interlayer current / at negligible interlayer voltage V.
This was observed recently in four-terminal measurements
[6,7]. (In two-terminal geometries [8], this is seen as a
zero-bias peak in dI/dV.) This low-voltage regime termi-
nates and dissipation increases dramatically above a criti-
cal current /..

However, a key question has emerged over these results
as evidence for excitonic superfluidity. Experiments [7,9]
show that the critical current /. is proportional to the
sample area. Within the model of a homogeneous excitonic
superfluid, this scaling can only be explained if the tunnel
splitting is several orders of magnitude smaller than ex-
pected [10]. For realistic splittings, tunneling is estimated
to occur within a few microns of the contact [Eq. (5)] so
that I, should not depend on the sample length in the
direction of the current [10-12]. A similar puzzle arises
when counterflowing currents are injected into a bilayer
short circuited at one edge. These currents are expected to
be excitonic supercurrents that decay within a few microns
but they traverse the samples in experiments [13,14].

In this Letter, we present a theory which produces a
critical current [Eq. (8)] that is proportional to the area of
the sample and of the correct order of magnitude, given
reasonable estimates for the parameters. A disorder-
induced lengthscale, L,, emerges in our theory [Eq. (6)];
this scale has no counterpart in the clean system [10]. Our
results are also consistent with the observed dependence
of I, on the magnetic length / and on an in-plane magnetic
field. A key test of our theory is the prediction that /.
should scale with the square-root of the sample size for
samples smaller than L.
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The essential feature of our work is that we allow for
static vortices in the exciton superfluid, which will be
nucleated by strong charge disorder [15—-18]. Such vortices
play a crucial role for the critical current. They pin any
injected supercurrents and sustain dissipationless states, in
much the same way that disorder pins magnetic flux in
superconductors [19,20], or charge in charge-density
waves [21]. However, there is a significant difference in
the bilayer. The depinning force comes from the injected
charge current which cannot penetrate the bulk of the
quantum Hall state. So, the depinning force is applied
only at the sample boundary. Given this geometry, it is a
surprising feature of our results that the critical current /..
can scale with the sample area.

We will first present numerical results showing that, in
one dimension, currents injected at the boundary decay
linearly in space in the disordered state (Fig. 1), analogous
to the Bean critical state in a superconductor. We argue that
these special critical states are generated by current injec-
tion from the boundary, and hence are selected in the
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FIG. 1. Profile of counterflow current / (lines) and interlayer

voltage (V « d), vertical bars, nonzero in top curve only) from
(4) on a one-dimensional lattice with current injection at both
ends, at a time =~ 10*/\ after the current is switched on. The
injected counterflow currents at each boundary are 3, 6, 9, 121,
for the four curves (I, = ep,/h&). The interlayer voltages vanish
below a critical current I,.. Here, 9 < I./I, < 12. té*/p, = 0.4,
results averaged over 50 realizations.
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bilayer. Based on our numerics, we then present a theory
for the critical current, which we generalize to two dimen-
sions and compare with experiments.

Our starting point is the energy functional

Ha = [| %007 tcosto + o) o, 1)

for the low-energy modes of a bilayer containing pinned
vortices. This form follows from the clean model [2] when
the phase field of the pinned vortices #° is subtracted out
of the superfluid phase 0: ¢ = 6 — 6°. The first term in
Eq. (1) is the superfluid stiffness while the second describes
the interlayer tunneling. The counterflow supercurrent den-
sity above the ground state, jcg, and the interlayer tunneling
current density, j,, are related to the phase by:
, ep;
Jcr 7 Vo,
Owing to the strong charge disorder, we expect the
incompressible quantum Hall phase to occupy a small
fraction of the sample, with the remainder occupied by
puddles of compressible electron liquid [15,16]. We sup-
pose that the incompressible phase forms a percolating
network of channels of size / separating puddles of size
d, the distance to the dopants. Equation (1) is the effective
theory for the channels, whose parameters differ from the
bulk values by the area fraction of superfluid

1~ (1/d P ps ~ (1/dg)p?. 3)

We assume that the vortex field penetrating the channels 6,
is disordered, with a correlation length of the order the
puddle size, ¢ = d; = 200 nm [15].

A time-varying superfluid phase ¢(¢) gives rise to an
interlayer voltage difference V via the Josephson relation
V = he/e. Therefore, a state with a finite interlayer current
at zero interlayer voltage is time independent, correspond-
ing to a local minimum of the energy (1). To investigate this
possibility, we consider the dissipative model

A= OHesr _
o¢

whose stationary solutions ¢» = V = 0 are the local minima
of Eq. (1). The stationary equation is the continuity equation
stating that the loss of counterflow current (first term) is
accounted for by interlayer tunneling (second term). The
dissipative dynamics of Eq. (4) is physically a resistive
shunt due to interlayer quasiparticle tunneling. Additional
dynamical terms are necessary in the finite voltage regime
[11,17,18,22]. However, it is the dissipation that determines
the long-time limit at low voltages, so that here we may use
Eq. (4).

The boundary conditions for Eq. (1) come from the
current flows through the sample [10]. For definiteness,
we consider a tunneling geometry in which a current /; is
injected into the top layer at one corner and removed from
the bottom layer at the opposite corner. These current flows
may be written as superpositions of layer-symmetric and
layer-antisymmetric currents,

jo=sing 4 00, @

—p, V2 + tsin(¢p + 6%, (4

1
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where the components refer to the two layers. Thus, the
tunneling experiment corresponds to a flow of layer-
symmetric current, with equal counterflow currents I =
1,/2 injected by both the electron source and drain. In the
low-voltage regime, these counterflow currents will be the
supercurrents jcog in Eq. (2). Since the symmetric compo-
nent cannot penetrate deep into the bulk, we can focus on
the injection of supercurrents. As we shall see, the injection
profile along the boundary is unimportant.

The mechanisms leading to an extensive critical current
for the bilayer can be seen most clearly from a one-
dimensional model. In Fig. 1, we show current and voltage
profiles obtained for the one-dimensional version of Eq. (4)
on a lattice of L = 200 sites. These results are averaged
over realizations of the disorder 0?, which is taken inde-
pendently on different lattice sites. Thus we take the cor-
relation length £ as the lattice spacing. The natural unit of
current is then I, = ep,/hé. For this illustration, we take
the tunneling strength 1£%/p, = 0.4. In each realization,
we start from an initial state in which the ¢; are random
and independent, and equilibrate by integrating forwards in
time with the boundary conditions 9, ¢|, = d,¢|; = 0. To
model the current injection in a tunneling experiment, we
then slowly increase the boundary conditions to the final
values £9,¢|;, = —&0,.¢|, = I/1,. For the lowest three
values of I used, the dynamics reach a time-independent
solution, corresponding to the Josephson regime with van-
ishing interlayer voltages. For too large /, these time-
independent solutions break down and the phase winds
continuously at late times. This corresponds to the break-
down of the dc Josephson regime and the appearance of a
state with finite interlayer voltages. For the counterflow
geometry [13,14], this picture suggests that a counterflow
current can traverse the sample only for large currents.

The static states in Fig. 1 differ qualitatively from those
of the clean model [11,23], 6° = 0. In that case, there is a
penetration depth for the injected current of

Ay~ Alps/t. (&)

Since the phase angle is periodic this implies a maximum
injected current density of d,¢ ~ 7/A;. In the disordered
case shown, however, the injected current decays linearly
close to the contacts, with a slope which is independent of
the injected current. Thus, an increase in the injected
current is accommodated by an increased current penetra-
tion into the sample. As can be seen in Fig. 1, this process
continues until the currents fill the entire sample. Beyond
this point, further increases in current cannot be accom-
modated by coherent tunneling and an interlayer voltage
develops. Since the current decays linearly with a constant
slope, the resulting /. in the one-dimensional model scales
with the sample length.

In the clean model, the breakdown of the stationary
solutions can be understood in terms of the injection of
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phase solitons at the boundary [11,24], which propagate
through the sample. Thus, the phase at any point varies in
time, and the system develops an interlayer voltage by the
a.c. Josephson effect. However, the solitons may be pinned
in a disordered system. We now develop a theory of such
pinning, which agrees with our numerical work.

We begin by recalling [21,25] the form of the ground
states of the random field XY model, Eq. (1), in the regime
¢ < Aj relevant for the bilayer. In this regime, the ground
state consists of weakly pinned ferromagnetic domains
with polarized phase. The key idea is that it is energetically
costly to have phase twists at scales shorter than the size,
L,, of these domains. The energy cost for a phase twist that
varies over the scale L, is p,L2?~? in D dimensions. The
typical tunneling energy of a polarized domain is obtained
by summing random energies in the range *t&P for its
(L,/€)P correlation areas, giving t£P(L,/&)P/2. Thus, for
d <4, the phase stiffness wins at short scales, and the
domains reach a finite size where the two energies balance.
This gives the Imry-Ma scale:

ps \@/@=D) ¢ A% \2/4-D)
L"N(th/z) _<§D/2) - ©

In this ground state of polarized domains, the average
coarse-grained phase over a domain is chosen such that
the tunneling energy H, of each domain is minimized.
Since 6H,/8¢(r) is the tunneling current at position r,
the total tunneling current over the domain vanishes.

We now consider the presence of an injected
current. The injected counterflow will cause the phase to
twist away from its equilibrium value, leading to finite
tunneling currents. We assume that the configuration re-
mains smooth on the scale L,, and hence average Eq. (4)
over each domain. The tunneling term becomes
(tEPLDY(Ly/ E)P/? f(d), where ¢ is the deviation of the
coarse-grained phase from its equilibrium value, and the
range of f(¢) is typically [—1, 1]. For a dissipationless
state (¢ = 0), the coarse-grained ¢ should obey:

—L2V%¢ + f(¢) = 0. (7)

The source term in Eq. (7) describes the loss of injected
current due to tunneling in a domain. As discussed above,
current injection induces counterflow currents and hence
phase twists. Since it is energetically costly to introduce
phase twists in a domain, the domain at the boundary will
respond by rotating uniformly, increasing its tunneling
current, thereby reducing the counterflow current. This
process continues until the tunneling in the domain satu-
rates, so that |f| ~ 1. The residual counterflow currents
will be transmitted further into the sample, causing the
domains there to rotate in a similar way. Thus, we argue
that forcing at a boundary leads to a self-organized critical
state, in which the driven part of the system sits at the
threshold |f| ~ 1.

In one dimension, this argument means that Eq. (7)
would give an average counterflow current p V¢ that

decreases linearly from the boundary. It predicts a
linear I/I, in the saturated regions, with a slope
— &7 (t£2/p,)¥/3. This is qualitatively consistent with the
numerical results (Fig. 1). Note that, in one dimension,
Eq. (7) describes a harmonic chain with random static
friction [26]. The process above is simply the transmission
of forces when the chain is pushed at its ends.

As we now describe, the generalization of this argument
to two dimensions will account for the critical current of
the bilayer, as measured by Tiemann et al. [7]. (We see
similar behavior in 2D simulations, albeit with large dis-
order fluctuations.) In our scenario of saturated domains,
the static state only breaks down when the final domain in
the sample exceeds threshold. Therefore, we may deter-
mine the critical current by setting f = 1 everywhere in
Eq. (7). Integrating over space, we see that the critical
current, defined as the total injected current at threshold,
effectively counts the number of domains in the sample,
and is independent of the precise geometry. We find, for its
order of magnitude,

__eps S

Ic 2 S (8)
n L2

where S is the sample area in two dimensions and length in
one dimension. Note that this is a natural form for an
extensive critical current, composed of the system size,
the characteristic length L,, and the microscopic current
scale ep,/h. The same form can be seen in Eq. (13) of
Ref. [18]. However, it is not clear whether the result there
applies to a bilayer driven at its boundary.

For Eq. (8) to apply, the sample should comprise many
domains. If a dimension L, is smaller than the domain size
L, then the second term in Eq. (7) should be multiplied by

+/L,/L,, because the total tunneling current of the domain
is cut off at the sample width L. This gives

1~eps &5
“ n\L,L,

Similarly, for a sample containing only a single domain,

(quasi-IDL, < L, < Ly). (9)

I ~ e; ; Lzlgy (for Ly, L, < Ly). (10)
d
To compare Eq. (8) with the experiments, we start from
the microscopic theory [27] for the zero-temperature val-
ues of the stiffness, p_?, and order parameter, m, = (cos¢),
for a homogeneous bilayer. The latter renormalizes the
tunneling strength © so that * = Agm, /27> where A,
is the single-particle tunnel splitting. This theory of
Gaussian fluctuations around a Hartree-Fock state should
be reasonable for a large range of layer separation d except
close to the critical layer separation for the loss of inter-
layer coherence. Using Eq. (3) we estimate p; = 20 mK at
layer separation d = [, and the microscopic current scale
ep,/h = 0.5 nA.
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FIG. 2. Predicted critical current (solid, left axis) and domain
size (dotted, right axis), for area S = 0.1 mm?, d = 28 nm,
é(=dy) =200 nm, and bare tunneling A, = 150 uK. The
stiffness and tunneling renormalization are taken from theory
[27], and scaled by the network geometrical factor (see text).

Figure 2 shows our estimates for the domain size L,
and the critical current /., as functions of the ratio of
interlayer separation to magnetic length, d/I. We see that
the domains (Lﬁ =< 0.01 mm?) are indeed not larger than
the samples’ areas of (0.01-1) mm? so that the results are
consistent with area scaling for /.. Moreover, /. has the
correct order of magnitude compared to the observed
values [7] of 0.1-10 nA.

Interestingly, I, has a peak as a function of d/I which is
also suggested in the experimental data [7]. This feature
appears robust: it arises from the increase in L, as d/I is
reduced, caused by the increase in p,. However, the peak
position depends on the precise variation of model parame-
ters with d/I. For example, the variation in p, may cause
some variation in vortex density [15] and hence &, pushing
the peak to smaller values of d/I.

Finally, we consider the effect of an in-plane magnetic
field B). This introduces a length scale [ = hc/eB”d, the
length of a loop enclosing a flux quantum in the cross-
section of a bilayer. Within our theory, the system should
be insensitive to B unless /; < £. At such fields, circulat-
ing tunneling currents are set up between the two layers,
reducing the net tunneling current in a domain. There-
fore, coherent tunneling should be suppressed for B >
he/edé ~ 0.7 T, consistent with experiments [8] where
enhanced tunneling decreases above 0.5 T.

In conclusion, we have presented a theory of the critical
interlayer currents in a disordered quantum Hall bilayer
with static pinned vortices. We find that, because the
current is injected at the boundary, coherent tunneling
saturates in the current-carrying region, leading to a Bean
critical state. This results in an extensive critical current for
sufficiently large samples (in contrast to the clean limit
[10] where area scaling holds for small samples). The
magnitude of the critical current is consistent with experi-
ments. We predict that area scaling does not hold when the
samples become smaller than the phase-pinned domains,
and also that the critical current peaks in the interlayer
coherent phase.
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