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Vortex states of a disordered quantum Hall bilayer
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We present and solve a model for the vortex configuration of a disordered quantum Hall bilayer in the limit

of strong and smooth disorder. We argue that there is a characteristic disorder strength below which vortices
will be rare and above which they proliferate. We predict that this can be observed tuning the electron density
in a given sample. The ground state in the strong-disorder regime can be understood as an emulsion of
vortex-antivortex crystals. Its signatures include a suppression of the spatial decay of counterflow currents. We
find an increase of at least an order of magnitude in the length scale for this decay compared to a clean system.
This provides a possible explanation of the apparent absence of leakage of counterflow currents through

interlayer tunneling, even in experiments performed deep in the coherent phase where enhanced interlayer

tunneling is observed.
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I. INTRODUCTION

There has been much recent progress in the search for
quantum-condensed phases of quasiparticles in solids such as
Bose-Einstein condensates of excitons, polaritons, and mag-
nons. A very interesting example'= occurs for electron bilay-
ers in the quantum Hall regime. When the two layers are
close and have individual filling factors »=1/2, the Coulomb
interactions produce a ground state in which electrons in one
layer are correlated with holes in the other. The wave func-
tion of this state is that of a Bose-Einstein condensate of
interlayer excitons, and it exhibits behaviors reminiscent of
superfluidity and the Josephson effects: a small counterflow
resistivity,*> which can be understood as excitonic superflu-
idity, and a zero-bias tunneling anomaly,®’ which can be
interpreted as a Josephson effect. However, the analogy is
incomplete because neither the counterflow resistivity nor
the width of the tunneling anomaly® appears to vanish at
finite temperatures.

Many theoretical works have suggested that these devia-
tions from conventional superfluid behaviors are connected
to the presence of vortices. In a quantum Hall system physi-
cal and topological charges are related so that random elec-
tric fields, created by the dopants, could induce vortices. The
hypothesis that this leads to a disordered vortex state has
been used®!! to explain features such as the width of the
tunneling anomaly and the region of negative differential
conductance. More recently, Fertig and collaborators have
developed a strong-disorder model, in which the dissipation
reflects the dynamics of a vortex liquid.'>!® Despite these
potential consequences, however, there have been few at-
tempts to predict the vortex configuration in a bilayer. For
weak layer-antisymmetric disorder the appropriate model is a
gauge glass,'>!* suggesting vortex liquids, glasses, or con-
ventional superfluid states are possibilities.!!>14-16 This is
supported by exact diagonalization!” of small systems with
white-noise disorder.

The aim of this paper is to predict the vortex configuration
of a quantum Hall bilayer, for the case of strong long-range
disorder, as is experimentally relevant for high-mobility
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modulation-doped samples. We argue that for a fixed disor-
der potential there is a characteristic value of the magnetic
length, above which vortices proliferate. We find that this
proliferation corresponds to the formation of an emulsion of
vortex-antivortex crystals. Our theory should be testable
since we estimate that the proliferation occurs in an experi-
mentally accessible regime. Furthermore, we argue that the
proliferation causes a dramatic suppression of the decay of
counterflow currents. We find a length scale for this decay
which is one to two orders of magnitude larger than the
corresponding length scale in the clean system. This provides
a possible explanation of a long-standing puzzle of the per-
sistence of counterflow currents® across an entire sample, in
a regime where enhanced interlayer tunneling conductance is
observed. Such behavior is quantitatively confirmed in recent
experiments which show an area scaling for tunneling
currents'® up to the scale of 100 um. More generally, our
work suggests that the quantum Hall bilayer could be used to
study a disordered form of the “supersolid”'?2? that has pre-
viously attracted attention in superfluids, superconductors,
and a clean bilayer model.”!

The remainder of this paper is structured as follows. In
Sec. II we develop a model for the vortex configuration of
the bilayer and identify the parameters which control the
vortex density. In Sec. III we present numerical results for
the ground state of the model and compare these with a
mean-field theory of an emulsion. In Sec. IV we analyze the
decay of counterflow currents in the ground state, suggest
some further consequences of the emulsion, and discuss the
role of antisymmetric disorder. Finally, Sec. V summarizes
our conclusions.

II. MODEL

We begin by developing a model for the vortex configu-
ration, which we solve both numerically and in a mean-field
approximation. Our starting point is the ‘“coherence-
network” picture'? in which the bilayer consists of compress-
ible puddles of electron liquid, separated by channels of the
incompressible counterflow superfluid (see Fig. 1). This is
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FIG. 1. Schematic of a disordered quantum Hall bilayer with
compressible puddles of electron liquid (dark-shaded areas) of size
d,, surrounded by channels of incompressible excitonic superfluid of
size [.. For smooth disorder d,~I.~d, and the depicted length
scales are larger than the magnetic length /y. In the limit of very
strong disorder, /. can become small and comparable to /.

appropriate for the strong smooth disorder produced by dop-
ants, which destroys the superfluid over a significant fraction
of the sample.???*> We initially consider only layer-symmetric
disorder since the distance to the dopants is much larger than
the interlayer separation. We focus on the simplest case of a
balanced bilayer, where the filling fraction in each layer is
v=1/2, and initially also neglect the small interlayer tunnel-
ing.
This picture leads us to postulate the Hamiltonian

1 1
H= EE (Qi-GEHQ;-q) + EE v,Giv;. (1)
ij

i#j

The first term is the electrostatic energy of an inhomoge-
neous charge distribution, written in terms of the charge Q;
on the ith compressible puddle, and the inverse capacitance
matrix of the puddles E; j=Ci_jl. The potential due to the dop-
ants is contained in the continuous-valued shifts g; which
would be the optimum charges on the puddles in classical
electrostatics. This Coulomb term was not considered by pre-
vious work on the coherence network. We will see that it is
the competition between Coulomb energy and superfluid
stiffness that controls the proliferation of vortices in the sys-
tem.

The second term in Eq. (1) models the energy of the chan-
nels. The condensate is characterized by a local phase 6(r),
describing the interlayer phase coherence. Since this phase
can wind by integer multiples of 27 around each puddle, we
associate vorticities v; with the puddles. The superfluid en-
ergy in the channels is Hgy=[(p,/2)|V(r)]*d°r, with
stiffness®*5 p,~I;'. As usual, Hy leads to a vortex-vortex
interaction G;;~—log r; and a constraint >,v,=0.

The topological defects of the condensate are merons,
which are vortices whose core corresponds to an unpaired
electron in one layer. The meron charge is g=(e/2)ov, where
v is the vorticity and o= % 1 denotes the layer index of the
core. Because of this relationship the two terms in Eq. (1) are
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coupled and the charge disorder can drive vorticity in the
channels. For those puddles with |g/e—[g/e]|>1/4 the elec-
trostatics favors a half-electron charge, which is allowed if
the vorticity around the puddle v is odd. This costs a super-
fluid energy proportional to v. Therefore, a puddle will have
[v|=1 if this incurs a superfluid-energy cost smaller than the
electrostatic-energy gain.

These considerations allow us to identify the parameter
controlling the vortex density in the percolating channels.
For a wide range of parameters both the channel width /. and
puddle size d, will be on the order of the distance to the
dopant layers, d,~200 nm.?® (See Fig. 1 for illustration of
these length scales.) The largest contribution to the electro-
static energy is the Coulomb interactions within each puddle.
Thus we estimate the electrostatic-energy gain of a vortex as
Egp~(1/2)(e/2)*/C, where C~d,~d; is the self-
capacitance of the puddle. We estimate the superfluid-energy
cost as the prefactor of the vortex energy, which is generally
E~2mp;~1, !, Thus the vortex density is controlled by the
ratio

Fop o, @

Es dd
Since d, is fixed by the sample, we expect the vortex density
to vary with the magnetic length.

In the limit of very strong disorder'? /. becomes of the
order of the magnetic length /;~20 nm while d,, remains of
the order of d;. The vortex energy in this regime is E|
~2ap,(l./d,), with the factor ./d, accounting for the frac-
tion of the area occupied by the superfluid (up to numerical
factors depending on the shapes of the puddles). Thus in the
strong-disorder limit the vortex density becomes independent
of ly, Ecyp/ E;~1. We estimate this numerical parameter by
modeling the puddles as disks of radius d;~200 nm and
taking p, from the mean-field theory? at zero interlayer
separation. This gives E.,,~E;~1 K.

Since our estimates of E.,, and E; in the strong-disorder
limit are comparable, it may be possible to vary the density
of vortices in experiments. Decreasing [, should take the
system further from the (not unrealistic'>?>?3) strong-
disorder limit and so could lead to a reduction in the vortex
density. More generally, reducing the vortex density requires
a decrease in the capacitative energies, perhaps by placing
gates on both sides of the sample as close as possible to the
wells, or increasing the superfluid energy, perhaps in samples
with smaller interlayer separation and larger tunneling.

To predict the vortex density and configuration of the bi-
layer, we now derive and solve a Hamiltonian for the vortic-
ity. For simplicity we consider E;;=26;E., The off-
diagonal terms will not qualitatively affect the results
because the off-site Coulomb interactions have a much
shorter range than the vortex interactions G;;. The diagonal
elements are approximately constant because they are con-
trolled mainly by the characteristic puddle size. The main
source of randomness is in the offset charges g;.

Taking e/2 as our unit of charge, we write the total charge
on each puddle as Qi:qﬁw+0',-v,-, where o==*1, v=0, =1,
and qf»w is the meron-free charge. In the ground state qf” is the
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FIG. 2. Top panel: average ground-state vorticity |v| as a func-
tion of disorder energy scale E,,, obtained by simulated annealing
on systems of linear size L, with § Monte Carlo sweeps per tem-
perature step (see text). Each point is an average over 25 disorder
realizations. g; is taken from a uniform distribution of width 2E,,.
Bottom panel: corresponding ground-state energies (crosses and
hollow symbols) and interaction energy for L=18, S=1 (solid tri-
angles). Solid curves show the corresponding results of the mean-
field theory.

nearest even integer to ¢;. Thus the electrostatic energy of a
vortex v; on site i is

2 M =
E;= Ecap[vi +200(q; - q)]. (3)

This is the only energy contribution which depends on the
layer index of the core o}, and E; can be minimized by set-
ting o;=—sgn[v;(¢"-g;)]. The distribution of 7 is broad on
the scale of the charge quantization because the puddles con-
tain many electrons so that qﬁ" —g; is a uniformly distributed
random variable between * 1. Thus, we see that the electro-
static energy takes the form H :E,-siviz, where ¢g; varies ran-
domly from site to site, with distribution P(g;). In the ap-
proximation that E,, is the same for all puddles, g; is
uniformly distributed between *FE,, Note that in reality
there will be some variation in E.,, from puddle to puddle
and the sharp edges in P(g;) at *E,, will be smoothed out.

Combining the electrostatic and superfluid energies, we
thus have an effective Hamiltonian for the vorticity

H=Esiv,-2+lz viGijvj' (4)
i 25z
We note that the random field is coupled to the presence of
vortices, independent of their sign. This differs from gauge-
glass models, where the random field couples directly to the
vorticity.

III. GROUND STATES

Numerical results for the ground states of Eq. (4) are
shown in Figs. 2 and 3. We adopt a lattice model (as in Ref.
12) where the channels are the edges of a square lattice of
side L. We take the prefactor of the vortex energy E, to be
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FIG. 3. Ground states for a typical realization of the disorder at
strengths E,,=0.8 (left) and 1.1 (right). Black/white are vorticities
*1 and gray is 0. L=18 and S=1000.

our unit of energy. Thus G;;=V(r;;)—V(0) is the lattice solu-
tion to V?V(r)=—2m75(0), with the singularity removed."’
Ground states were obtained by simulated annealing, with
standard nearest-neighbor Monte Carlo moves. Each ground
state is obtained by recording the lowest energy state ob-
tained during an anneal, from a temperature of 0.5 to a tem-
perature of 0.01, in steps of 0.01. At each temperature we
perform S sweeps of 4L?> moves. As can be seen in Fig. 2,
increasing S by a factor of 10° does not significantly change
the results so we are obtaining good approximations to the
ground states. The results in Fig. 2 are quenched averages of
Monte Carlo data obtained for different disorder realizations.

From the top panel of Fig. 2 we see that the ground state
is a uniform superfluid for small E,, while vortices prolifer-
ate above a threshold EY, . The threshold behavior in [v] as a
function of E,, is sharp due to the discontinuity in the on-
site energy distribution P(g;) and would in reality be rounded
due to the variations in E,, between puddles.

Figure 3 shows ground states obtained for a typical disor-
der realization at two different strengths. These results show
that the vortex ground states are not completely disordered
and are strongly suggestive of an emulsion of vortex-
antivortex crystals. This structure appears because the field
in Eq. (4) does not dictate the sign of the vorticity. On the
square lattice there is a minimum in the interaction G4
=m/8=p,. at wave vector q=(,7) so for a uniform field
g;<-u, the ground state is a vortex-antivortex crystal.!’
Whereas a random-field coupling to v; (as in a gauge-glass
model'>'%) competes with this ordering, the random-field
coupling to vi2 does not. It can therefore straightforwardly
induce regions of the crystalline phase.

The vortex density in Fig. 2 appears to be consistent with
a mean-field theory of an emulsion. To develop such a
theory, let us consider a mixture of two phases occupying
fractions x and (1—X) of the system, with energy densities .,
and 0, respectively. Without a random field the mean-field
energy of such a mixture is?’

E=ui+ki(1-7), (5)

where « is an interaction parameter, which corrects for the
use of bulk energy densities in the first term. It will be the
only fitting parameter in the theory.

To incorporate the random g;, we interpret Eq. (5) as a
mean-field approximation for the microscopic effective
Hamiltonian
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H=> hx; + > 2J;x:x;, (6)
i (ij)

where x;=0 denotes a site in the vortex-free phase and x;
=1 denotes one in the vortex-crystal phase. The mean-field
approximation is obtained by writing x;=x+ (x;—x) and dis-
carding terms quadratic in the fluctuations. Demanding that
the resulting energy agree with Eq. (5) allows us to relate &,
and the average J;; to u, and «x. We then incorporate the
random-field term from Eq. (4), 2,e;x;, to obtain

Hype=kN + 2 (u, + &+ Kk — 2KD)x;. (7)

L

The mean-field equation is X=(x;), where ( ) denotes an av-
erage in the ground state of Eq. (7). For the uniform distri-
bution of width 2E.,, for g; we find that, when wu .+«

<E
__ 1 e
x"2<1 E ) ®

cap»
cap — K
and x=0 otherwise. We can also compute the energy,

E
2KX 2Ecap

1 0
]7]<Hmf> =K+ f dE. 9)

Mt K=Ecyp—

The solid lines in Fig. 2 show the mean-field predictions of
Eqgs. (5), (8), and (9), with k=0.4 chosen to give the thresh-
old E,, obtained numerically. As can be seen, this theory,
with a single fitting parameter, gives a good account of the
numerical results. Thus the ground-state vorticity of Eq. (4)
can indeed be understood in terms of the formation of an
emulsion of vortex crystals.

IV. DISCUSSION

The presence of the vortex-crystal emulsion would affect
counterflow and tunneling experiments. Let us consider, in
particular, the decay of a dc counterflow current due to tun-
neling. Without the vortices, the superfluid phase 6 is ob-
tained by minimizing the energy

H:f [%|V€|2—An cos(0)]d2r, (10)

where A is the tunneling strength and n=1/(27l) is the
electron density. A small static perturbation to the solution
6=0, such as a small counterflow current injected at one
edge, decays on the scale set by the Josephson length,

[ Ps
N~y X, (11)

estimated’ as ~5 wum. This means we should not expect
counterflow currents to persist over more than a few microns
due to leakage by interlayer tunneling (in other words, by the
recombination of the interlayer excitons). This appears in-
consistent with the experimental observation'® of an area
scaling for the tunneling anomaly, up to length scales of
100 pm.

With pinned vortices, we should instead consider the en-
ergy associated with the vorticity-free part of the
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supercurrents.’ If we write the phase field of the vortices as
6y, we can separate out the vorticity-free phase field ¢=46
—6,. For a fixed vortex field 6,, the ground state of the sys-
tem is determined by a random-field XY model for the
vorticity-free part of the system:

H¢=I{%|V¢|2—An cos(p+ 6y) |d°r. (12)

This may be treated using standard techniques.’®?° In the
emulsion, the pinning phase 6, is disordered. We see that, in
the limit of a vanishing correlation length for 6,, the tunnel-
ing field has no effect because it averages to zero. In our
case, the vortex phase field has a correlation length &é~d,
< \j, corresponding to the weak-disorder regime of the
random-field model. In this regime, the ground state ¢ con-
sists of domains of linear size Ly, aligned with the average
random field across the domain. The typical tunneling energy
in the random field is given by the sum of random energies in
the range +Ané for (Lyyy,/£)” correlation areas. This gives a
typical energy of A(&/15)*V(Laom/ €)*. The cost in phase stiff-
ness in the domain is on the order of py(Ly,,)° in two dimen-
sions. Balancing these two energies, we find the domain size

Ldom~)\1(ﬂ>' (13)
3

We estimate that the Josephson length \;~5 um while the
correlation length £~ 100 nm. Therefore, this domain size
Lgom 1s an emergent length scale associated with the emul-
sion that could be one to two orders of magnitude larger than
N\, in the clean system. Moreover, we see that static pertur-
bations to this disordered ground state (¢p— ¢+ 5¢), such as
an injected counterflow current, decay over the length scale
Lyom- Allowing for the considerable uncertainty in A\, this
decay length (~0.3 mm) predicted by our model is consis-
tent  with the apparent experimental  bound'd
(>0.1 mm). This should be contrasted with the vortex-free
state which, as mentioned above, gives \;~5 um as the
decay length.

The vortices in the emulsion will not be completely
pinned and hence their presence will affect the counterflow
superfluidity. Even if the vortices remain pinned to the
puddles, they can move a distance d,, across them, leading to
a reduction in the stiffness.?’ Thermally activated hopping of
vortices between the puddles may lead to dissipation, as in
previous work on the coherence network,'>!3 so that the
emulsion may formally be a vortex liquid at finite tempera-
tures. However, the distribution of &; in our model suggests a
distribution of activation energies, in contrast to previous
work.

Direct tests of our theory may be possible in imaging
experiments.’® For example, our model predicts that charging
lines corresponding to half-electron charges are common
only when E.=E,. More generally, the identity of physical
and topological charges implies that the vortex configuration
affects the charging spectra.

Finally, let us revisit the role of layer-antisymmetric dis-
order. It will give additional terms in Eq. (3) which are pro-
portional to o;, leading to terms linear in v; in the Coulomb
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gas [Eq. (4)]. Provided the compressible puddles are effec-
tive at screening the antisymmetric disorder, the energy of
the charge imbalance o; will be approximately e?/C,,, where
C M~d12,/lo is the mutual capacitance of two puddles in op-
posite layers. This energy is a factor of /y/d,, <1 smaller than
E,, and the terms in v; are small compared with those in vl-z.
Thus while layer-antisymmetric disorder could affect corre-
lations on very long scales, it will not affect the physical
consequences described above, which are controlled by the
scale d,,.

V. CONCLUSIONS

In conclusion, we have developed a model of a disordered
quantum Hall bilayer, in the experimentally relevant limit of
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strong smooth disorder. We have argued that the ground state
of this model can be understood as an emulsion of vortex-
antivortex crystals. Our theory suggests that the density of
the emulsion could vary significantly with magnetic length,
and between samples, allowing its effects to be isolated ex-
perimentally. An important physical consequence of the pres-
ence of such an emulsion (or other disordered vortex state) is
a suppression of the decay of counterflow currents, poten-
tially explaining the area scaling of the tunneling anomaly.'®
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