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Abstract 

This paper deals with the fatigue behaviour of complex, three-dimensional, stress concentrations 

under multiaxial loadings. Starting from the stress field obtained by means of a linear elastic 

analysis and taking advantage of the so-called implicit gradient approach, a safety factor is 

calculated for high-cycle fatigue. In this first attempt, attention has been focused on the stress-

invariant based approaches in the high-cycle fatigue regime. The multiaxial damage evaluation is 

obtained by analysing the full loading path of the Crossland 5-dimensional invariant deviatoric 

stress in Euclidean space by means of the variance reference frame. Explicit analytical solutions of 

the proposed criterion are given in the case of biaxial sinusoidal loads. 

The method was validated by comparison with experimental data involving multiaxial in-phase and 

out-of-phase loading of specimens which contained three-dimensional stress concentrations. These 

types of stress concentrations are known to present problems for other predictive methods. 

 

Keywords: Implicit gradient, Fatigue, Stress gradient, Multiaxiality. 

 

 

1. Introduction 

 

Reliability design of real components with three-dimensional (3D) stress concentrations under 

fatigue loads is a subject of great practical interest to industrial engineers. 

3D solid modelling tools are largely used by design engineers for virtual prototyping of new 

products or structures. In order to reduce computational time, the designer should explore the 

strategies of modern commercial integrated systems between modelling and FE analysis. 

In this context, the structural problems are often complicated due to a multiaxial stress state or to 

the presence of sharp notches that have a local singular stress field. In order to avoid complicated 



  

 2

calculations, several methods to estimate the fatigue life of notched components under the 

hypothesis of uniaxial fatigue loading have been proposed over the last few decades. For instance, 

see Peterson’s point method [1] or Neuber’s  average stress method [2], recently re-considered by 

Taylor as two important critical distance approaches [3]. Furthermore, we can cite Sheppard’s 

average stress method [4], Lukas and Klesnil’s approach based on fracture mechanics [5], the 

strain-life method [6] and other more recent contributions. Unfortunately, for real structures 

subjected to complex multiaxial loading conditions, these methods cannot easily be applied directly 

to each point and the designer must address the procedures in some points where the local stress 

state appears critical. 

Recently, Tovo and Livieri have proposed a new “non-local” design procedure (derived from the 

implicit gradient approach) initially to predict static failure (see [7]) and subsequently to evaluate 

the stress gradient effect on the fatigue strength of steel welded joints [8]. These methods are called 

‘‘non-local” because the strength at a given ‘‘local” point is related to the stress condition of the 

surrounding material (‘‘non-local”) by averaging the stress field obtained. Starting from a stress 

field obtained from a linear elastic analysis, this method provides a finite reliable solution of a non-

local stress all over the investigated solid, as well as at the apex of sharp notches where the stress 

field is singular. Therefore, by means of the stress gradient approach it is possible to estimate the 

fatigue lifetime of components with stress raisers without introducing geometrical modifications 

and by considering a unique design procedure [9]. Note that, as reported in [10], the critical distance 

approaches can be obtained from the implicit gradient approach, provided that an appropriate 

weight function is taken into account. 

When the local mode I loading is dominant, for welded structures or notched components such 

as in references [8] and [4], the maximum principal stress was used in defining the failure criterion. 

However, when a multiaxial stress is present, in order to increase the fatigue lifetime accuracy, a 

multiaxial criterion should be introduced [11]. Generally speaking, many multiaxial criteria are 

present in the literature and the choice of a failure criterion should include one of the most common 

approaches, which are as folows: critical plane-approaches [12-16], energy based approaches [17-

19] or stress invariant approaches [20-22]. In this case, stress-invariant based approaches seem to be 

the most promising criteria in conjunction with the stress gradient problem. In this respect, 

Cristofori et al. [11] considered the multiaxial criterion proposed in reference [22], based on the use 

of the amplitude of the second invariant of the deviator aJ ,2  and the hydrostatic pressure  H. In 

that case, the range of the Crossland invariant stress is in agreement with the range of the von Mises 

stress because the in-phase proportional loading is considered. 

Previous work identified a class of stress concentrations whose fatigue behaviour proved 

difficult to analyse [23,24]. These features, which were termed “three dimensional stress 
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concentrations” are characterised by high stress gradients in two orthogonal directions, creating a 

maximum stress which occurs at a point, rather than along a line as happens in most conventional 

notched specimens. It was shown that the use of previously-successful methods such as the critical 

distance approaches [1-3] resulted in highly conservative predictions for this class of notches. 

The aim of work described in this paper was to develop a numerical tool in conjunction with 

three-dimensional modelling tools to be used by industrial engineers. In order to predict the 

multiaxial fatigue assessment of mechanical components affected by high stress concentrations and 

complex loading conditions, the implicit gradient approach and a multiaxial fatigue criterion based 

on the stress invariant approach were used. In order to test the approach under the most severe 

conditions we chose to use a specimen design which contained one of the above-mentioned three 

dimensional stress concentration features.  

 

2. Implicit gradient approach 

 

The early works on non-local theory were proposed in 1960 by Kröner [25] and subsequently by 

Eringen and Edelen [26]. Basically, the idea of a non-local continuum is to consider the stress to be 

a function of the mean of the strain from a suitable representative volume of the material centered at 

that point. According to the non-local theory, Pijaudier-Cabot and Bažant [27] introduced the non-

local damage concept in order to model strain-softening materials. In particular it was proposed to 

adopted as non local one scalar variable, e.g. the damage energy release rate, where the non local 

scalar ( )xζ  at the point ( )1 2 3x x ,x ,x=  in a body with volume V, can be obtained from the weighted 

average of local scalar ( )xζ  through the following expression: 

 

( ) ( ) ( ) ( )
Vr

1x x, y y dy
V x

ζ = α ⋅ζ∫  (1) 

 

In equation (1) ( )x,yα  indicates a scaling of the weight function that depends on the Euclidean 

distance x y−  between point x  and every point ( )1 2 3y y ,y ,y=  of V. 

Moreover, the reference volume ( )rV x  can be calculated by means of the condition of 

normalisation of the weight function on the domain V: 

 

( ) ( )r
V

V x x, y dy= α∫  (2) 
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( )rV x  is then the integral of the weight function ( )x,yα  extended to the entire volume of the body, 

so the factor ( )r1 V x  allows, for homogeneous states of stress, the local equivalent tension and the 

corresponding non-local stress match. 

A variant of non-local integral definitions, defined as “implicit gradient model” was initially 

proposed by Peerlings et al. [28]. In fact, starting from the definition in terms of the non-local 

model (1), a gradient expansion of the non local scalar could be developed [29]: 

 

( ) ( ) ( )2 2x x c xζ ≅ ζ + ∇ ζ  (3) 

 

where c is a characteristic length related to the weight function ( )x,yα  defined on the whole 

volume V. For engineering applications, c is assumed to only be related to relevant material 

properties [7]. In equation (3) the Laplacian operator is applied to the non-local equivalent stress, so 

that ( )xζ  can be obtained by solving an implicit type differential equation. Usually in this type of 

analysis only the Neumann-type boundary condition is taken into consideration, expressing the 

orthogonality of the gradient of the solution sought by the outgoing normal to the edge of the 

domain of integration:  

 

n 0∇ζ ⋅ =  (4) 

 

where n  is the normal to the surface of the body of volume V [28,30]. In order to obtain the non-

local equivalent stress ( )xζ  on a three-dimensional component we need only the material parameter 

c. In this way we avoid to estimate a finite volume based on the results of stress analysis that 

necessary depends on loading condition and the geometry [31-34]. So that, the non local scalar ( )xζ  

in each point of the volume V can be substituted by solving the differential equation (3) because it 

is much easier to solve numerically than eq. (1). Moreover, implicit gradient approach can be 

applied to a three-dimensional mechanical component, where the actual critical point cannot be 

previously assumed but has to be localized by means of numerical investigation. PDE Modes of 

COMSOL Multiphysics® has been used to solve eq. (3). Second order tetrahedral elements have 

been employed to mesh the three-dimensional models, as the Neumann-type boundary condition 

has been applied to all lateral surfaces of the models. 
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3. Fatigue strength prediction in multiaxial stress field 

 

In this paper, we consider non-proportional, in-phase and out-of-phase, constant amplitude 

loading. Since, the fatigue behaviour is related to stress variations, in order to correctly interpret 

stress fields, it must be considered that under non-proportional loading the principal stress 

directions are not constant. For this reason, it could be necessary to apply a multiaxial criterion 

together with the stress gradient approach under mixed-mode loadings, in order to correctly perform 

the high-cycle fatigue damage evaluation. In the following subsections a theoretical introduction to 

the models of calculation used for this purpose will be presented. 

 

3.1. Definition of the equivalent amplitude of the deviatoric component 

 

From a theoretical point of view, many multiaxial criteria could be used in the implicit gradient 

approach, namely critical plane approaches, stress-invariant based approaches and integral 

approaches. In fact, such criteria make use of scalar quantities that can be introduced as equivalent 

stress in eq. (3). 

In this study, multiaxial fatigue damage calculation is performed by means of a stress-invariant 

based criterion (PbP approach) proposed by Cristofori et al. [22,35]. It makes use of the deviatoric 

component ( )d tσ  and hydrostatic component ( )H tσ  to evaluate the damage due to generic fatigue 

loading. The method frame is fully formalised in [22] and hereafter briefly summarised. In order to 

introduce stress quantities, let us consider a generic time variable stress tensor at a given point: 

 

x xy xz

yx y yz

zx zy z

(t) (t) (t)
(t) (t) (t) (t)

(t) (t) (t)

⎡ ⎤σ τ τ
⎢ ⎥σ = τ σ τ⎢ ⎥
⎢ ⎥τ τ σ⎣ ⎦

 (5) 

 

The stress tensor (t)σ  can be split into its deviatoric and spherical parts in the usual way: 

 

d H(t) (t) (t) Iσ = σ + σ ⋅  (6) 

 

where I is the second order unit tensor. The hydrostatic stress ( )H tσ  is a scalar function and its 

maximal value 
H,maxσ  over time T can be simply calculated as: 
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( )H,max Hmax t⎡ ⎤σ = σ⎣ ⎦T
 (7) 

 

According to the notation used for the Crossland invariant criterion [21], the deviatoric tensor 

( )d tσ  can be concisely represented as a 5- element vector defined as follows: 

 

( )

( )
( )
( )
( )
( )

( ) ( ) ( )( )

( ) ( )( )
( )
( )
( )

x y z
1

2
y z

3

xy4

xz5

yz

3 2 t t ts t 6
s t 1 t t

2s t s t
ts t
ts t
t

⎡ ⎤
σ − σ − σ⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ σ − σ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ τ⎢ ⎥⎢ ⎥ ⎢ ⎥τ⎢ ⎥⎣ ⎦ ⎢ ⎥

τ⎢ ⎥⎣ ⎦

 (8) 

 

As an external load is applied the tip of the vector, ( )s t  describes a curve Γ , the deviatoric stress 

component loading path, as shown in Fig. 1. There are several ways of defining the range of the 

deviatoric vector so identified in [36] and [37]. The starting point of the PbP approach is the 

hypothesis that the damage related to a generic loading path Γ  can be estimated by considering the 

single contributions ,p iΓ  calculated by projecting the loading path itself along the axes of a frame of 

reference chosen as a base of the Euclidean space. 

In order to propose a procedure suitable for addressing the above problem, the principal axes of 

path Γ  can be attempted to be used in order to define a unique frame of reference, which is suitable 

when considering the presence of non-zero out-of-phase angles. For this purpose, to correctly 

calculate the directions of the above principal axes, path Γ  can be treated as a continuum, so that, 

its centroid can be determined as follows[38]: 

 

( )m,i i
1s s t dt= ∫

TT
  i 1,.....,5=  (9) 

 

where T is the period. Moreover, using a definition similar to the one adopted to define a 

continuous moment of inertia, the rectangular moments of inertia of path Γ  can be represented with 

respect to its centroid, by using the following symmetric square matrix of order five: 

 

( )( ) ( )( )ij i m,i j m, j
1C s t s s t s dt= − ⋅ −∫

TT
  i, j 1,.....,5=  (10) 
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This matrix has five eigenvalues and five orthogonal eigenvectors. The eigenvalues are the 

principal moments of inertia, whereas the eigenvectors are the principal directions of the tensor 

path, calculated with respect to the centroid itself. Finally, the loading path Γ  can be projected 

along each frame axis (suffix i) so that, the equivalent deviatoric stress amplitude, d,aσ , can be 

calculated, in accordance with the PbP approach, as follows: 

 

( )2
d,a d,a i

i
σ = σ∑  (11) 

 

where ( )d,a iσ  is the amplitude of the projection along ith axis. 

 

3.2. Evaluations of non local stress fields 

 

The above procedure allows the assessment of the equivalent deviatoric stress amplitude to be 

performed. By means of eq. (3), non local stress quantities, linked to fatigue life, can be defined 

assuming that d,aσ =ζ  and assuming that the local scalar field is the equivalent deviatoric stress 

amplitude resulting from an isotropic linear elastic solution d,aσ =ζ . Eqs. (3) and (4) become: 

 

2 2d,a d,ad,a cσ ≅ σ + ∇ σ  (12) 

( )d,a n 0∇ σ ⋅ =  (13) 

 

As mentioned above, the stress invariant based multiaxial criterion, also uses the hydrostatic 

component ( )H tσ  to perform the fatigue life estimation so that, the non local scalar stress field of the 

hydrostatic component in the whole volume V has to be evaluated; in this case eqs. (3) and (4) give: 

 

2 2H,max H,maxH,max cσ ≅ σ + ∇ σ  (14) 

( )H,max n 0∇ σ ⋅ =  (15) 

 

3.3. Multiaxial high-cycle fatigue criteria 

 

Fatigue limit calculation is performed by a biparametric method, similar to the one proposed by 

Lazzarin and Susmel [39], formulated in terms of stress tension invariants. According to this 
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approach, fatigue behaviour is related to the multiaxial stress ratio, FLρ , between the non local 

values of the hydrostatic component, H,maxσ  and the deviatoric stress component, d,aσ  [22,35]: 

 

H,max
FL

d,a
3 σρ = ⋅

σ
 (16) 

 

For a given loading condition, the estimated fatigue limit value, 
FL

d,A ρ
σ , can be calculated by 

assuming a linear variation of 
FL

d,A ρ
σ  in respect of FLρ . Generally, the uniaxial fatigue limit, 

FL
d,A 1ρ =

σ  

and the torsional fatigue limit 
FL

d,A 0ρ =
σ  are used to calibrate the criterion: 

 

( )
FL FL FL FL

d,A d,A FL d,A d,A0 0 1ρ ρ = ρ = ρ =
σ =σ +ρ ⋅ σ −σ  (17) 

 

Finally, the general form for this criterion can be written by comparing the non local value of the 

deviatoric stress component and the estimated fatigue limit value: 

 

FL
d,a d,A ρ

σ ≤ σ  (18) 

 

 

4. General procedure of calculation 

 

To clarify this procedure it is important to highlight the fundamental steps that we need to obtain 

a multiaxial fatigue damage evaluation by means of the aforementioned non local approach in 

conjunction with the PbP criterion. Basically, seven fundamental steps are required to perform the 

calculation: 

 

1) Linear elastic stress analysis has to be carried out for any external loading applied. 

 

2) Maximum variance reference frame is calculated for any nodal point. 

 

3) Local values of the equivalent deviatoric stress amplitude, d,aσ , and hydrostatic component, 

H,maxσ , are evaluated for any nodal point. 
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4) Non local values of d,aσ  and H,maxσ  are calculated by means equations 12, 13, 14 and 15 of 

the implicit gradient approach. 

 

5) Multiaxial stress ratio, FLρ , between the non local values of the hydrostatic and deviatoric 

stress components is evaluated. 

 

6) Fatigue limit value, 
FL

d,A ρ
σ , for a given loading condition is calculated by means of eq. (17). 

 

7) Fatigue strength estimation is finally performed at each nodal point by means of eq. (18). 

 

 

5. Analytical formulas under two sinusoidal loading components 

 

In order to be able to fully implement the above procedure of calculation efficiently, some 

fundamental quantities have to be expressed by an explicit analytical relationship for high cycle 

fatigue estimations. In fact in the references [22,35] general definitions are given and the explicit 

solution is proposed for plane stress loadings. 

The aim of this paper is to propose the analytical formulas that will allow us take into account the 

full stress tensor in the case of a specimen or component loaded by complex conditions. In 

particular we consider two synchronous sinusoidal loads at most, including a phase angle between 

the two components. In the following section, the superscripts “′” and “″” refer, respectively, to the 

stress quantities related to the first and second external loading applied condition. 

 

5.1 Definition of the stress quantities 

 

Let us consider a generic discretisation of the domain V, where k is the index of the node and n the 

total number of nodes. By means of a linear stress analysis, the stress tensor ( )t,′σ k  and ( )t,′′σ k  can 

be obtained in the node k for both loading conditions. Neglecting the dependence on k index, the 

stress tensors components can be expressed as follows: 

 

( ) ( )ij ij,m ij,at sin t′ ′ ′σ = σ + σ ω   with  i, j x, y, z=  (19) 

 

( ) ( )ij ij,m ij,at sin t′′ ′′ ′′σ = σ + σ ω − ϕ   with  i, j x, y, z=  (20) 
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where the subscripts m and a identify the mean value and the amplitude of the stress component ij 

respectively. Finally, φ is the phase angle between load components.  

Using Crossland’s notation to represent the deviatoric component, the deviatoric vector ( )s t  can be 

split into vectors ( )s t′  and ( )s t′′ , which represent the deviatoric component for the first and second 

external loading condition respectively: 

 

( ) ( ) ( )s t s t s t′ ′′= +  (21) 

 

According to the properties of Euclidean space, the vectors ( )s t′  and ( )s t′′  can be expressed by the 

mean values and the amplitudes so that we obtain the following vectors: 

 

( ) ( )m as t s s sin t′ ′ ′= + ⋅ ω  (22) 

( ) ( )m as t s s sin t′′ ′′ ′′= + ⋅ ω − ϕ  (23) 

( ) ( ) ( ) ( ) ( )m a m as t s t s t s s sin t s s sin t′ ′′ ′ ′ ′′ ′′= + = + ⋅ ω + + ⋅ ω − ϕ  (24) 

 

Finally the vectors ms′ , as′ , ms′′  and as′′ , by means of stress components, result as follows: 

 

x,m y,m z,m y,m z,m
m xy,m xz,m yz,m

2
s

22 3

′ ′ ′ ′ ′σ −σ −σ σ −σ⎡ ⎤′ ′ ′ ′= τ τ τ⎢ ⎥
⎣ ⎦

 (25) 

x,a y,a z,a y,a z,a
a xy,a xz,a yz,a

2
s

22 3

′ ′ ′ ′ ′σ −σ −σ σ −σ⎡ ⎤′ ′ ′ ′= τ τ τ⎢ ⎥
⎣ ⎦

 (26) 

x,m y,m z,m y,m z,m
m xy,m xz,m yz,m

2
s

22 3

′′ ′′ ′′ ′′ ′′σ −σ −σ σ −σ⎡ ⎤′′ ′′ ′′ ′′= τ τ τ⎢ ⎥
⎣ ⎦

 (27) 

x,a y,a z,a y,a z,a
a xy,a xz,a yz,a

2
s

22 3

′′ ′′ ′′ ′′ ′′σ −σ −σ σ −σ⎡ ⎤′′ ′′ ′′ ′′= τ τ τ⎢ ⎥
⎣ ⎦

 (28) 

 

5.2 Evaluation of the maximum variance reference frame 

 

As mentioned above, the principal directions of the loading path Γ  can be used as a reference frame 

in the deviatoric space in order to perform the calculation of deviatoric component. It should be 

noted that, the principal directions of path Γ  are also the principal directions of the covariance 

tensor for the same path, so that, the principal axis of the tensor path are coincident with the 
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directions of maximum variance. To find the direction of maximum variance, the covariance matrix 

C  can be diagonalised according to an eigenvalue/eigenvector problem. It is important to highlight 

that the above procedure has to be applied to each node k so that the covariance matrix becomes: 

 

11, 1j,

i1, ij,

C C
C

C C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

…k k

k

k k

    
i, j 1,...,5

1,..., n
=
=k

 (29) 

 

where the terms ij,kC  are calculated by eq. (10). 

The eigenvalue of kC , say 1 2λ ≥λ , represents variance terms and defines a diagonal matrix kλ , while 

the eigenvectors *in  are collected as columns of a matrix kN , and the following relation holds: 

 
1

k k kC N N
−

= ⋅λ ⋅k  (30) 

 

where the matrices kλ  and kN  are: 

 

1

2
k

5

0 0
0

0
0 0

λ⎡ ⎤
⎢ ⎥λ⎢ ⎥λ =
⎢ ⎥
⎢ ⎥λ⎣ ⎦

 (31) 

 

* *k 1 5N n n⎡ ⎤= ⎣ ⎦  (32) 

 

In other words, diagonalisation of matrix kC  allows an orthonormal basis { }* * * * *1 2 3 4 5n ,n ,n ,n ,n k  to be defined 

at each nodal point k of the Euclidean space on which the loading path Γ  can be projected as shown 

in Fig. 2. 

 

5.3 Calculation of the equivalent deviatoric stress amplitude 

 

Using equation 24 for the deviatoric vector ( )s t , its projections ( ) *
ins t  on the maximum variance 

reference frame result simply by the scalar projection of ( )s t  onto the five directions *in , see Fig. 3: 
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( )
( )

*
i

*
i

*
in * *

i i
i 1,...,5

s t , n
s t n

n , n
=

⎛ ⎞
⎜ ⎟= ⋅
⎜ ⎟
⎝ ⎠

 (33) 

 

Note that the norm of the versor *in  is equal to one so that the above equation becomes: 

 

( ) ( ) ( )( )*
i

* * * *
m i a i m i a in i 1,....,5

s t s ,n s ,n sin t s ,n s ,n sin t
=

′ ′ ′′ ′′= + ⋅ ω + + ⋅ ω −ϕ  (34) 

 

The resulting equation is a compound function in terms of elementary function ( )sin tω . It has two 

stationary points i.e. relatively extreme over the interval one period T, which can be found by 

setting the first derivate of eq. (34) to zero: 

 

( )( )*
in

i 1,...,5

d s t
0

dt
=

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎝ ⎠

 (35) 

 

When eq. (35) is solved, we obtain two solutions *
in

α , *
in

β  for each eigenvector *in : 

 

*
i

*
a i

n *
a i

i 1,...,5

s , n 1 1arctan
sin tans , n

=

⎛ ⎞⎛ ⎞′
⎜ ⎟⎜ ⎟α = − ⋅ +
⎜ ⎟⎜ ϕ ϕ ⎟′′⎝ ⎠⎝ ⎠

 (36) 

( )* *
i in n i 1,...,5=

β = α + π  (37) 

 

In case of phase angle φ or scalar product *
a is , n′′  equal to zero, the solutions of eq. (35) are given 

by angles *
in 2α = −π  and *

in 2β = π . The two angle solutions make it possible to calculate the 

amplitude of the projection along ith axis by simple relationship: 

 

( ) ( ) ( )* ** i ii

* *
a i a in nn i 1,....,5a

s s , n sin s , n sin
=

⎡ ⎤′ ′′= ⋅ α + ⋅ α − ϕ⎣ ⎦  (38) 

 

Finally, the equivalent deviatoric stress amplitude can be calculated by means eq. (11) where the 

single projections are given by previous equation: 
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( ) ( )*
i

25 52

d,a d,a i n ai 1 i 1

s
= =

⎛ ⎞σ = σ = ⎜ ⎟
⎝ ⎠

∑ ∑  (39) 

 

5.4 Simplifications and shortcuts 

 

It is interesting to observe here that some simplifications can be done if we consider the variance 

properties of a sinusoidal signal. In fact, it is easy to notice that the eigenvalues iλ  of the matrix kλ , 

represent variance terms of the projections ( )
*
in

s t : 

 

( )( )*
i

i n
V s tλ =  (40) 

 

Moreover, in the case of sinusoidal loading, the variance is proportional to the amplitude of the 

signal so that the amplitude of the projection along ith axis is given by the following identity: 

 

( ) ( )( )* *
i i

in na
s 2 V s t 2= ⋅ = ⋅λ  (41) 

 

This expression gives an interesting shortcut in order to evaluate the equivalent deviatoric stress 

amplitude; let us substitute the previous result in eq. (39), the amplitude of the deviatoric 

component is given by the following simple relationship: 

 

( )*
i

25 5

d,a in ai 1 i 1

s 2
= =

⎛ ⎞σ = = λ⎜ ⎟
⎝ ⎠
∑ ∑  (42) 

 

Finally, let us consider the invariant properties of a tensor, the equivalent deviatoric stress 

amplitude turns out to be: 

 

( ) ( )d,a 2tr 2tr Cσ = λ =k k  (43) 

 

5.5 Calculation of the multiaxial stress ratio 
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In order to calculate the multiaxial stress ratio using a computational method, as above, an 

analytical formulation of the maximum hydrostatic component has to be defined. The hydrostatic 

component of the stress tensor is given by: 

 

( ) ( )( ) ( )( ) ( )( )H
1 1t tr t tr t tr t
3 3

⎡ ⎤′ ′′σ = σ = σ + σ⎢ ⎥⎣ ⎦
 (44) 

 

Using the mean value and the amplitude of the stress components, the stress tensors ( )t′σ  and ( )t′′σ  

can be split into mean and amplitude stress tensors so the trace matrix results in the following 

expressions: 

 

( )( ) ( )( ) ( ) ( ) ( )m a m atr t tr sin t tr tr sin t′ ′ ′ ′ ′σ = σ + σ ⋅ ω = σ + σ ⋅ ω  (45) 

 

( )( ) ( )( ) ( ) ( ) ( )m a m atr t tr sin t tr tr sin t′′ ′′ ′′ ′′ ′′σ = σ + σ ⋅ ω − ϕ = σ + σ ⋅ ω − ϕ  (46) 

 

By simplifying eq. (44) with previous equations the hydrostatic component turns out to be: 

 

( ) ( ) ( )H H,m H,a H,m H,at sin t sin t′ ′ ′′ ′′σ =σ +σ ⋅ ω +σ +σ ⋅ ω −ϕ  (47) 

 

where: 

 

( )H,m x,m y,m z,m
1
3

′ ′ ′ ′σ = σ + σ + σ  (48) 

( )H,a x,a y,a z,a
1
3

′ ′ ′ ′σ = σ + σ + σ  (49) 

( )H,m x,m y,m z,m
1
3

′′ ′′ ′′ ′′σ = σ + σ + σ  (50) 

( )H,a x,a y,a z,a
1
3

′′ ′′ ′′ ′′σ = σ + σ + σ  (51) 

 

Imposing the first derivate of eq. (47) equal to zero, it is possible to find the two solutions that 

represent the stationary points for ( )H tσ  over a period T: 
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H

H,a

H,a

1 1arctan
sin tanσ

⎛ ⎞⎛ ⎞′σ
α = − ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′′σ ϕ ϕ⎝ ⎠⎝ ⎠

 (52) 

H Hσ σβ = α + π  (53) 

 

In this paper, we only consider constant amplitude loading with the load ratio equal to -1 so that, the 

mean values of the stress components are equal to zero i.e. H,m H,m 0′ ′′σ = σ =  and eq. (47) is given by 

the following relationship: 

 

( ) ( ) ( )H H,a H,at sin t sin t′ ′′σ = σ ⋅ ω + σ ⋅ ω − ϕ  (54) 

 

Finally, the maximum value of hydrostatic component over a period T results in the following 

explicit formula: 

 

( ) ( )H HH,max H,a H,asin sinσ σ′ ′′σ = σ ⋅ α + σ ⋅ α − ϕ  (55) 

 

 

6. Experimental details and results 

 

In order to check the validity of the fatigue assessment procedure proposed previously, 70 tests 

were carried out by testing cylindrical 3D-notched specimens with a diameter equal to 8 mm and 

made of commercial cold-rolled low-carbon steel, En3B. This material has an ultimate tensile 

strength, UTSσ , equal to 676 MPa, a yield stress, Yσ , equal to 653 MPa and a Young’s modulus equal 

to 208500 MPa [40]. The geometry of the tested fatigue samples is shown in Fig. 4.  

The specimens are characterised by severe stress raisers with root radius equal to 0.03mm. Such 

specimens were tested under pure tension, pure torsion and mixed tension–torsion loading in-phase 

and 90° out-of-phase, by imposing a uniaxial and torsional load ratio, R, equal to −1. Under biaxial 

load, two different ratios, δ , between the amplitudes of the tensile, aσ , and torsional, aτ , nominal 

stress referring to the gross section were considered, that is, 1δ =  and 3δ = . All tests were carried 

out on an Instron® 8874 servo-hydraulic axial-torsional testing system with an axial cell ±10 KN 

and a torsion cell of ±100 Nm. All tests were performed under load control, with a frequency 

ranging from 8 and 16 Hz, as a function of load value. During all fatigue tests, the specimen 

stiffness was monitored and fatigue failure was defined by 10% stiffness drop, which resulted in 

cracks, emanating from the tip of the notch, having a length of approximately 1 mm. Fatigue data 
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and Wohler’s curves of all series are shown in Fig. 5, where the data are reported in terms of 

nominal stress referring to the gross section. In agreement with observed fatigue behaviour, the 

reference high cycle fatigue strength was extrapolated at NA=2·106 cycles. A summary of the results 

obtained from the experimental investigations of all series is given in Table 1, where k denotes the 

inverse slope of the Wöhler curve. 

Fig. 6 shows examples of the crack paths generated on the surfaces of the specimens for various 

loading conditions. 

 

 

7. Tools of calculation and numerical results 

 

The flow-chart reported in Fig. 7 summarises the procedure explained above and highlights the 

numerical software tools used. In particular, the Structural Mechanics Models of COMSOL 

Multiphysics® was used to perform linear elastic stress analysis and Matlab® was used to calculate 

the projection system frame, equivalent deviatoric stress amplitude, d,aσ , and hydrostatic component, 

H,maxσ , for any nodal point with reference at 2·106 cycles. Finally, PDE Modes of COMSOL 

Multiphysics® were used to solve eq. (12)-(15) and to perform the fatigue strength estimation. 

Moreover, to shift between working environments , it was necessary to establish a suitable import 

and extraction routine of the stress nodal quantities. In order to evaluate the characteristic length c 

in Eqs. (12,14), we have imposed in a plate with central crack, that the non local equivalent 

deviatoric stress d,aσ  equal to the estimated fatigue limit 
FL

d,A ρ
σ , in terms of deviatoric components, 

when the stress intensity factor at crack tip equal the threshold value thKΔ . 

The error factor is defined as: 

 

( ) A,exp A,fem

A,fem

E % 100
σ − σ

= ×
σ

 (56) 

 

Hence, an error factor greater than zero indicates a conservative prediction. The results in terms 

of tensile and torsional nominal stress amplitude referring to the gross section, are summarised in 

Table 2. The predictions were extremely good, having an error index always less than 4%. To our 

knowledge, no other method has been shown to be capable of this level of accuracy when analysing 

these types of specimens in either uniaxial or multiaxial loading. 

In addition, the proposed method is able to assess, at each nodal point P, the value of nominal 

stress amplitude to be applied in order to have point P in 2·106 cycles strength condition. 
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The nodal point showing the lower value is the critical point and such a value is the estimated 

strength of the specimen. The plot of this estimation is given in Fig. 8. 

The sub-modelling technique was used to allow use of a refined mesh near the singularity points 

in order to obtain the convergence of the non local stress field. 

The locations of the critical point predicted by FEA also agree with the experimentally-observed 

crack initiation points shown in Fig.6. 

 

 

8. Conclusions 

 

In this paper the effects of high stress-concentrations, three-dimensional notches and multiaxial 

loading conditions on the fatigue behaviour were considered. The stress field was calculated under 

linear elastic behaviour of the material, and by taking advantage of the application of the implicit 

gradient approach, a multiaxial criterion based on the Crossland deviatoric stress has been 

proposed. 

The major conclusions obtained from this work can be summarised as follows: 

-The devised approach is seen to be highly accurate in estimating high-cycle fatigue damage in 

mechanical components without assuming the position of the critical point a priori. The method can 

consider the presence of both multiaxial loading and non zero out-of-phase angles. 

- The implicit gradient method applied in conjunction with Projection by Projection approach (PbP) 

is capable of analysing complex three-dimensional notches with small root radii. 

- The fatigue life estimation technique proposed in this paper is suitable for situations of practical 

interest where a safety index can be directly obtained from a post-processing of linear-elastic FE 

models. 
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Table 1. Summary of the experimental fatigue results in terms of tensile and torsional nominal stress amplitude 

referring to the gross section. 

 

Loading conditions 
Experimental 

results 
at 2·106 cycles Series 

δ=σa/τa φ R 

No. 
data 

Slope 
k σA,50% 

[MPa] 
τA,50% 
[MPa] 

Uniaxial ∞ 0° -1 15 3.76 75.7 - 

Torsional 0 0° -1 16 6.87 - 66.1 

Biaxial in-phase 1 0° -1 13 4.98 52.7 52.7 

Biaxial out-of-phase 1 90° -1 11 4.61 52.9 52.9 

Biaxial in-phase √3 0° -1 8 5.67 68.7 39.7 

Biaxial out-of-phase √3 90° -1 7 5.36 66.7 38.5 
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Table 2. Synthesis of the numerical results in terms of tensile and torsional nominal stress amplitude referring to the 

gross section. 

 

Loading conditions Experimental results
at 2·106 cycles 

Fatigue strength 
prediction 

at 2·106 cycles 

Error 
index Critical point location 

Series 

δ=σa/τa φ R σA,50% 
[MPa] 

τA,50% 
[MPa] 

σA,50% 
[MPa] 

τA,50% 
[MPa] E(%) x 

[mm] 
y 

[mm] 
z 

[mm] 

Uniaxial ∞ 0° -1 75.7 - 77.5 - -2.3% 0.00 0.00 0.00 

Torsional 0 0° -1 - 66.1 - 67.5 -2.1% 0.84 0.00 0.85 

Biaxial in-phase 1 0° -1 52.7 52.7 50.8 50.8 3.7% -0.25 0.00 0.25 

Biaxial out-of-phase 1 90° -1 52.9 52.9 54.3 54.3 -2.6% -0.00 0.02 0.04 

Biaxial in-phase √3 0° -1 68.7 39.7 66.3 38.3 3.6% -0.03 0.01 0.06 

Biaxial out-of-phase √3 90° -1 66.7 38.5 66.3 38.3 0.6% -0.00 0.02 0.04 
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Figure 1. Loading path. 
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Figure 2. Reference frame. 
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Figure 3. Projected path. 

*O
*n1

2
*n

i
*n  

( )tΓ

( )s t

( )s t *ni

( )s t *n1

( )s t *n2



  

 26

 

41,51 16,98 41,51

12

100

5

Ø
 7

.9
4

Ø2,9
53,

97

6,
54

90
°

16,97

1,
72

23,48
4,

50

R 0,03

A

DETAIL A
SCALE 20:1

 
Figure 4. Geometry of the tested specimen. 
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Figure 5. Fatigue date of all series tested. 
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c) Multiaxial test –δ=1, φ=0°        d) Multiaxial test – δ=1, φ=0° 
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e) Multiaxial test – δ=1, φ=90°       f) Multiaxial test – δ=√3, φ=0° 

 

 

 

 

 

 

 

   
g) Multiaxial test – δ=√3, φ=0°       h) Multiaxial test – δ=√3, φ=90° 

Figure 6. Examples of the observed crack path. 
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Figure 7. Procedure framework. 
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 a)                b) 

              
 c)                d) 

              
 e)                f) 

Figure 8. Estimation of nominal stress amplitude to be applied in order to have each nodal point in 2·106 cycles strength 

condition. 

 

 


