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Abstract. Bayesian Networks are probabilistic structured repregimts of domains
which have been applied to monitoring and manipulating eaumnl effects for mod-
elled systems as disparate as the weather, disease an@ tetdibmmunications net-
works. Although useful, Bayesian Networks are notorioudifficult to build accu-
rately and efficiently which has somewhat limited their agggion to real world prob-
lems. Ontologies are also a structured representationmfletige, encoding facts and
rules about a given domain. This paper outlines an appradctarness the knowledge
and inference capabilities inherent in an ontology modedutomate the construc-
tion of Bayesian Networks to accurately represent a domidmerest. The approach
was implemented in the context of an adaptive, self-configuretwork management
system in the telecommunications domain. In this system,otitology model has
the dual function of knowledge repository and facilitatbaatomated workflows and
the generated BN serves to monitor effects of managemenmityadiorming part of a
feedback look for self-configuration decisions and tasks.

1 Introduction

In today’s world of digital compression and storage, thei@wealth of data accessible from a
vast range of domains and topics and in a huge variety of fitsrarad structures. Over the last
number of years, there have been great strides made in h@deta can be accessed, indexed
and searched. The challenge remains how such data can lmtex@s knowledge, facili-
tating and enhancing new and existing applications. Ogteiohave emerged as a means
of providing a structured representation of knowledge Wwlgan range from generic real
world to strictly domain-specific. The purpose of employargontological representation is
to capture concepts in a given domain in order to provide aesheommon understanding
of this domain, enabling interoperability and knowledgese but also machine-readability
and reasoning about information through inferencing. Téreydeterministic in nature, con-
sisting of concepts and facts about a domain and their oelstips to each other. Bayesian
Networks have emerged as a means of estimating complexplitiba of states based on
graphical models of a domain. They also are a structureagseptation of knowledge and
specify relationships between concepts (or variables) @draain. These relationships de-
note the dependencies and independencies that hold betineeoncepts or variables. They
are probabilistic in nature, encoding the probability thatiables assume particular values
given the values of connected variables in the Bayesian dl&tatructure. These two tools



for knowledge representation and manipulation have inddgetly been used to facilitate

machine reasoning and decision-making. This paper descah approach to harness the
knowledge representation and inference capabilities tflogies in order to construct auto-

matically a Bayesian Network which accurately represergsen domain and can then be

used to support machine decision-making processes.

The research is being undertaken as part of a program toageaeaptive, self-configuring
functionality for devices within the mobile telecommurtioas network management do-
main. The research program is addressing the need for afficianagement solutions and
more automation of mobile networks. Recent advances indwared wireless networking
technology have resulted in an explosion in size, comptexttd heterogeneity of such net-
works. At the same time, network operators are strugglingetep their running costs to
a minimum in a highly competitive market. More autonomy ofwrks, network devices
and network management systems presents a means of rgsthlisrconflict between the
ever-increasing demands of running large, complex andrdgeeous networks and the
ever-decreasing operational expenditure (OPEX) buddetetwork operators. The adap-
tive, self-configuring architecture proposed in [1] expdogmerging technologies such as
ontology modelling and bayesian Al to attain the goal of aotay for network devices. The
machine-learning Bayesian Network component of the achite is designed to provide
the adaptivefunctionality, monitoring and learning the effects of cguoifiation actions and
closing the feedback loop on management activity. The ogiomodel component is de-
signed to provide theelf-configuringunctionality, facilitating automation of configuration
workflows. In addition to this primary function, the knowbglrepresented in the ontology
model is leveraged in the construction of the Bayesian NekwiBoth components rely on
expert knowledge for their content. Our approach meanstthisitexpert knowledge need
only be elicited and modelled once as an ontology and caregulesitly be manipulated au-
tomatically to construct a second model with different gies and functions, the Bayesian
Network.

Section 2 gives a brief introduction to Bayesian Networks a@umtlines current approaches
to Bayesian Network construction and how ontologies hawn lexploited to date for this
purpose. Section 3 sets out how in this research the steuatut inference capabilities of on-
tologies have been exploited to automate the construcfiarBayesian Network. Section 4
describes an implementation of this approach in the telewonications network manage-
ment domain. Finally, section 5 discusses some conclusibtigs research and directions
for future work.

2 Background

Korb and Nicholson state that the ultimate goal of Bayesigrofwhich Bayesian Networks
are an integral part, is to:

create a thinking agent which does as well or better than hanmasuch [reasoning]
tasks, which can adapt to stochastic and changing envinotsmescognize its own
limited knowledge and cope sensibly with these varied ssiof uncertainty.[2, p.21]

Bayesian Networks provide a means of capturing existingwedge about a domain, learn-
ing the stochastic properties of that domain and therebyséidg its model of the domain
over time. They are currently being exploited in severalliappon areas, notably for esti-
mating effects of different types of behaviour and as supfaosrhuman or automated de-
cision tasks. Some sample applications include using BNledace power consumption of
machines with reference to user behaviour [3] or to diagfedés in industrial processes [4].



The ultimate goal of an autonomous thinking agent is not galised but BNs are currently
the state-of-the-art for modelling, monitoring and adagttochastic processes.

BNs consists of a Directed Acyclic Graph (DAG) structureeTiodes of this graph
represent variables from an application domafoy example, performance counters in a
telecommunications network or weather indicators in tieate domain. The arcs represent
the dependencies that hold between these variables, formeaa drop in parameter X trig-
gers alarm Y or high atmospheric pressure is associatedwatm weather. Additionally,
there is an associated conditional probability distributver these variables which encodes
the probability that the variables assume their differeti®s given the values of their parent
variables in the BN graph structure. For example, the pritibabf alarm Y being triggered
when parameter X is above a given thresholgd is 1 or the probability of the weather being
good when the atmospheric pressure is high is 0.65. It should be noted that the arcs of
the Bayesian Network do not necessarily denote a causébreship between two variables
but only that the distribution of the child variable valuesiependenbn its parents value.
In some instances, this may be a causal relationship bunrait cases. Figure 1 shows a
sample Bayesian Network for a set of eight variables fromteélecommunications network
domain. It consists of a Key Performance Indicator (KPI)ddelecommunications device
(SuccessfulSetupRatéhe performance counters which contribute to that KRIQfRIAddI-
tionalFailures, SetupFailures, SetupAttenmpesservice workflow ATMConnectionServige
which is triggered by degradation in the KPI levels and twoperal variables, day of the
week and peak time. It is a structure such as this which theoaph outline in this paper
aims to build based on an ontology model of the telecommtinitgadomain.

NoOfRIAdditi ailures SetupFailures SetupAttempt:
0to 10 0to 10 0to 10
10 to 100 10 to 100 10 to 100
100 to 1.8e308 100 to 1.8e308 100 to 1.8e308

SuccessfulSetupRate
0to 95
95 to 100

Day OnOffPeak AtmConnectionService

Monday OnPeak (G
Tuesday OffPeak InActive
Recent
Wednesday
Thursday
Friday
Saturday
Sunday

v
AtmLinkAckEvent AtmLinkReqEvent
Present Present
Absent Absent
Recent Recent

Figure 1: Sample Bayesian Network for Telecommunicatioes\wédrk Management Domain

Terminology: Ontologies represent knowledge in terms ofoepts and relations. Ontological concepts, in
Bayesian Network terms, are domain variables which candaiain values and have an associated probablility
distribution which are represented as nodes in the BN grapthis paper, we use the terms concept, variable
and node interchangeably to denote concepts in the ontataiflel and variables in the Bayesian Network
directed acyclic graph.



The task of building the structure and assigning the prdibadistributions of a Bayesian
Network is complex and knowledge-intensive. It requiresittentification of relevant statis-
tical variables in the application domain, the specificatdd dependency relations between
these variables and assignment of initial probabilityristions. Both the structure and pa-
rameters, or probability distribution, of such a network b& assigned by an expert or learnt
off-line from historical data. The parameters may also benton-line incrementally from a
live feed of data. Parameter estimation is a mature fielduafysand several algorithms exist
to derive conditional probability tables for a fixed netwstkucture efficiently and accurately
from data [5, 6, 7]. In more recent years, structure learfim@ayesian Networks has be-
come a hot topic in the data mining community. Initial BN apations involved defining the
network structure and learning the parameters from datareTére a number of methodolo-
gies proposed for facilitating building BNs by hand [8, 9ffandeed most BN software tools
today include a GUI component for defining BN structures. eeev, in addition to expert
knowledge in the application domain, the human may requineesunderstanding of the sta-
tistical principles and in particular the notion of condital dependence and independence
underlying a Bayesian Network in order to correctly specgiations between the variables
in the domain. To address this knowledge bottleneck andntierent difficulties of building
BNs by hand, several algorithms have been developed toedrés/structure of the network
from data, such as the K2 algorithm [10], MDL (Minimum Degtion Length) [11] and
CAMML [12]. While learning causal structure for BayesiantiNerks can eradicate some
of the bottlenecks which impede the application of BNs td weald problems, the learning
algorithms are not without their own drawbacks such as ngp&wer-simplifying assump-
tions about the input data or output structure, inabilitgéal with missing data, requirement
for huge input datasets or intractability for complex mudtiate input data. Furthermore, al-
though there may exist a knowledge source representingdimaiac of interest, it can be a
complex task to integrate these sources which in todayas-delh world constitutes an un-
necessary waste of resources.

Ontologies provide a potential knowledge source which adond exploited to build the
BN structure. Helsper and Gaag [13] outline an approachhwvirées ontologies to facilitate
the building of Bayesian Networks in the medical domain. ldeer, the ontologies are used
only as means of representing knowledge to facilitate theuakcreation of the BN structure.
The ontology constitutes shared and agreed domain knowlexdige used to derive the BN
graph structure that is close to the ontological descmgtio the given domain. Due to the
complexity of the medical domain and the high impact of nasslfications, the derivation of
the graph structure is still done manually by expert analyBne following sections outline
how the BN—from-ontology building process in the telecominations domain has been
automated and enhanced using the inference capabilifiesedfby the formal ontological
representation.

3 Automating Bayesian Network Construction

This section outlines how our approach uses the inheritatroeture and inference capa-
bilities of an ontology to build the structure of a Bayesiaatiork (BN). This addresses
two challenges associated with the construction of BNsctmplexity of hand-coding BN
structure, requiring both domain and statistical knowtedgd the need to integrate existing
knowledge sources. As with manual BN construction, therélgo relies wholly on expert
knowledge, rather than evidence derived from data. Howéeze the work of the expert is
simplified. They no longer have to master the statisticaiqgples of BNs, they must only
classify their domain knowledge in the familiar ontolodiearld of concepts and relations.



While this is not a trivial task, it is a more straightforwayde. Furthermore, where there is
an existing ontology knowledge source, little extra inmutequired to build a BN for this
domain. In this implementation, the primary function of thietology model is workflow
automation and the BN construction algorithm is merely & sidnefit of having this rich
knowledge store.

The complex task of construction a BN for a given domain caddmmposed into four
subtasks: 1) identifying the variables of interest; 2) #yaw the values these variables can
take; 3) defining the relations the hold between the vargahiel 4) assigning a conditional
probability distribution to the variables. The followingaions set out how the use of an
ontology model facilitates each of these steps.

3.1 Identifying Variables of Interest

The approach described here assumes that an ontology adtsrior the domain of interest
has been (as in this project) or can be built. Some of the gisceay be of interest to
include in a BN which models causal relations in that domath some may not. In order to
distinguish between these, we have defined a new ontologWNoddhcepts and link this to
the original domain ontology. All concepts of interest foe Bayesian Network then inherit
from a node in this BN ontology. The root concept of the BN dogy is the BNnode. In
order to create the Bayesian Network, an instance of ea€leliess which inherits from the
BNnode class is created. The description of the generic BNmoncept, its properties and
relations are set out in figure 2. The concept has two typeslations:

e hasParentNode: BN nodes have a directed link from themselves to at leastpanent
node;

e hasDelayParentNode: this is a directed time-delay link which can be used to gateen
Dynamic Bayesian Network (a BN which includes a temporaletision) [14].

bn:BMNode
br:hasKind | String
bn:hasEquation | String
bn:hasLevels | String
brn:hasStateNames | String
brnhasName | String br:hasDelayParentNode? bn:hasParentNode*®
bn:isDiscreet ‘ Boolean
bn:hasCPTable | String
brn:hasNumOfStates | Integer
bn:hasDelayParentNode | Instance® | bn:BNNode
bn:hasParentNods | Instance® | bn:BNNode

Figure 2: Bayesian Network Node concept

When a BNnode instance is created, these relations definafthential links between this
BNnode instance and other BNnode instances (see sectipMBe8BNnode concept proper-
ties listed in the figure constitute the set of possiblelaitas which a BN node can contain.
These include name, conditional probability table (CPigtesnames (for discreet variables,
the list of values which the variable the node representsaia), levels (for continuous vari-
ables, the ranges of values which the variable can take)n\&IBiNnode instance of a domain
concept is created, the BN attributes are derived from ptigseof that concept in the domain
ontology (see section 3.2). By defining inheritance retegibetween concepts of interest in
the domain ontology and the BNnode concept, it is possib&itomate the creation of BN
nodes, their attributes and the arcs that connect them tasisa the sections that follow.



The inheritance relation expresses that a class of the damadlel is to be included as a node
in the behaviour model. This combined ontology is enrichél facts which describe how a
domain can be represented as a Bayesian Network.

The combined domain and BN ontology can be further enricbecbhstrain BN cre-
ation. In addition to the basic BNnode concept, the BN omplmay contain additional BN
concepts which are more specific either to the BN applicadiaio characteristics of the do-
main ontology. Figure 3 illustrates a simple ontology foe telecommunications network
management application for which this approach has beefemented. The root concept
of the BN ontology remains the BNnode. The domain ontologyhis figure consists of
the conceptslomain:SubConceptOfNolnteremtd domain:SubConceptOfintereand their
parent conceptlomain:ConceptlThe domain:SubConceptOfinteresbncept inherits both
from the domain ontology and the BN ontology and only thiscapt node will be included
in an output BN for this domain. In this figure, however, betwéehe root node and @n-
ceptOfintereshode, there are two additional, intermediate concdpesiaviourModelNode
and bmConceptlNoderhe BehaviourModelNode concept represents the chaistaterof
BN nodes required for a particular application, in this disgenetwork management applica-
tion.? This separation between pure BN and BN for an applicatimwallthe original generic
BNnode ontology to be re-used for other applications whatuire a BN component by
defining a differenApplicationNodeconcept. TheConceptlNodeoncept defines character-
istics of Conceptlinstances which should be treated in a particular way. Thelogy can
define a hierarchy of more specific BNnode classes for any oloamacepts which should
be included in the output BN, if these concepts would bengadinfadditional processing.
This additional level is not a requirement of this approddbwever, the structure enables
tailored processing of domain ontology concepts in the getius of the Bayesian Network,
for example, setting ranges for continuous variables cadeprobability values.

bn:BNNode

isa

| bm:BehaviourModelNode

isa

domain:Concept1 | |bm:Concept1 Node
is

domain:SubConceptOfNolnterest|

domain:SubConceptOfinterest

Figure 3: Generic Domain Ontology with BN concepts

3.2 Specifying the Attributes of the Bayesian Network Node

The properties of the BN nodes created at the previous séegaaived from the combined
BNnode and domain ontology. Properties, such as nameNstates and kind of bayesian
network node, are specified in the BNnode concept and thkiesare instantiated from the
relevant domain concept using the constraints offered bglogy restrictions. The domain
concepts specify restrictions on their properties andetla@s used to populate the BNnode
properties of newly created BN nodes. In particular, liasValuerestriction specifies the

2See section 4 and Baliosian et al [15] for an outline of thdiagfion architecture and the BN “Behaviour-
Model” component function.



values which a property can assume. For example hdgStateNameBNnode property,
which all sub-concepts of BNnode inherit, can be constdhinghe sub-concept class to a
specific value of the domain ontology concept property utiilednasValuerestriction.
(1) <Restriction>

<onProperty hasStat eNanes/ >

<hasVal ue "Present, Absent, Recent"/>
</ Restriction>

Other restrictions are used to control correct node natakor example, the requirement that
a node must have exactly one name is expressed by a cargneslitiction:

(2) hasName property = 1

Figure 4 shows the restrictions on a sample EventNode fdeteeommunications ontology,
expressing for particular node properties what valuesttaperty can take for this class and
its subclasses. For example, for all BN event nodes theNaiates property must have values
{Present, Absent, Recent}. The ontology inheritance structure allows some restrirgtito
be specified at a very generic level (e.g. notational regiris) and others at a lower level
in the ontology (e.g. value specifications), thereby masing the generalizability of the
ontology. For each BNnode instance created, the ontolaggoreer compiles all restrictions
from the class and all its superclasses and the BNnode piegpare generated from these.
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Figure 4: Restrictions on Event Node in telecommunicatamtslogy

3.3 Finding Parent Nodes

In building the Bayesian network from the behaviour modebtoygy, the ontology reasoner
operates over the hierarchy and its restrictions to creay@8&lan Network nodes and to pop-
ulate the properties of those nodes. As noted above, amuesisicreated for each Behaviour-
ModelNode subclass, in the domain ontology. At the same, tingealgorithm also generates
a node in the Bayesian Network representation with appaitgproperty values. To create
arcs between these nodes, the algorithm relies on ruleseThkes are specific to the applica-
tion domain and define which ontology properties or relaibatween concepts correspond
to arcs in the Bayesian Network. For example, in the medicaialn, a disease may present
as one or more symptoms, a single rule can express this caletan from disease to symp-
toms for all sub-classes of disease and the symptoms as=bwidh them. The rules are then
used to generate arcs in the Bayesian Network from a nodesepting a disease variable
to the node representing its symptoms. Section 4.3 dekalsules used to generate BN arcs



for the network management application. This rule-basemageh over ontology classes
provides a means of specifying generic BN relationshipsiviare then generated automati-
cally when the nodes are initialised. Finally, the reasamesed to check that the generated
Bayesian Network is valid by checking all BNnode instanced the domain ontology for
consistency.

3.4 Conditional Probability Table (CPT) Estimation

As noted in section 2, estimation of Conditional Probapiliables for Bayesian Networks
is and has been a field of intensive research for several dec@tie approach set out in this
paper does not delve into this area. Indeed the network neamagt application for which
this approach was designed exploits existing parameterifegpalgorithms and the Bayesian
Network CPTs are learnt incrementally and on-line from a feed of network event data.
However, the knowledge resource of a domain ontology carxpiged to estimate initial
probability distributions for some concepts that lend teelves to this interpretation. Some
relations between parent and child nodes can be assigneitiahprobability value based
on the nature of the concepts involved. For example, a datestic relation where the value
of the parent entails the value of the child variable can lw®ded directly in the CPT of the
child variable. Like the arc construction method, this carebcoded as a rule in the ontology.

4 Application in Telecommunications Network Management domain

As noted in the introduction, the work described here wagiooted as part of large-scale
project to develop a self-adapting auto-configuration rgangent functionality for network
management systems in the mobile telecommunications dorbe ever-increasing size,
complexity and heterogeneity of communications netwooklay is driving intense research
activity in the area of adaptive, autonomous networks amwar& devices. One crucial ob-
stacle to increased autonomy in today’s networks which rbastvercome is that network
management systems have only partial models of the netwugigsnanage and these models
are semantically empty. In deployed commercial systenedyiiinagement Information Base
(MIB) records device attributes and the current state of/agk parameters but it does not ex-
plicitly represent constraints that hold for individualmaged elements and even lbgtween
elements of the MIB. Recent approaches propose using @islto capture Management In-
formation Base models [16], annotating, constraining aa#ing machine-readable the Op-
erations and Maintenance (O&M) descriptions of the networbrder to enable automation
of O&M activities, as in [17]. However, a system which alloastomation of management
decisions and tasks could be prey to instability. A viabl®aamous management solution
must include a feedback loop to observe and deal with thescpesices of its activities. This
can be provided using the machine learning capabilitiesredf by a Bayesian Network to
monitor the effects of human, semi-automated or fully awttad O&M activities and feed
the derived knowledge back into the management system sasiloked in [15].

The construction algorithm described here was implemeintddva. The Bayesian Net-
work software is the Netica APIl. The choice of ontology laage and support tools for
modelling was a matter for much debate. This project buildpr@vious work which used an
ontology defined in F-Logic and the Ontobroker reasoner tolate the results of configu-
ration activities. Having evaluated the merits of F-LogSML and OWL variants (OWL-
Lite, OWL and OWL-DL), we decided to employ the W3C standacdommendation OWL.
OWL-DL provides the level of expressiveness desired forkftow definitions and valida-
tion. Combined with the Jena framework with rule-basedregriee engine, this OWL flavour



allows direct work with subclasses, definition of propedgges and domains and use of re-
strictions. Furthermore, its guarantee of completenedsdacidability is a requirement for
any real world application. The debate remains open as tochumiodelling language will
emerge as the true standard for telecommunications and geoerally web services appli-
cations. In the meantime, this solution provides more tltlagaate reasoning capabilities to
illustrate the benefits of our approach.

4.1 Domain Ontology

The domain ontology model is a super-enhanced MIB for a sitglecommunications net-
work device. It stores the current configuration of the deyits relationships with other
objects in the network and constraints on its possible cardigon imposed by the hardware
and software deployed on the network element. It also stheeservice workflows associ-
ated with configuration tasks, i.e., the sequence of actffesting a network element that
need to be completed in order to automatically fulfil a givervice request, for example, a
request to configure a port. In addition, it models the pentorce and fault metrics associ-
ated with that node (i.e. alarm types, performance coutedsKPIs) and any associations
between these (e.g. KPI equations, alarm triggers). Figgleows a subsection of this on-
tology which is focused on the Service concept and othereagiscconnected with it. The
relations between these concepts are expressed by dititedblue arcs with arrows) rep-
resenting object properties of concepts. Links lead frooperty domain to property range
concepts. As noted previously, the primary goal of this magléo facilitate automation of
management tasks by explicitly representing the eventshwthigger a service, the sequence
of atomic tasks and complex processes that constitute theeseand any events issued or
expected while the service is active. The secondary funaifdhe model is to generate an

accurate BN representation of the domain to be used for wramgf effects of these manage-
ment services.

node:Service

node:initState
-

node:State node:directNext

node:relatedTo (node:inE:@ node:outEvent

event:Event node:Process

node:process

event:hasSubject event:hasTarget node:startTask*

node:NetworkElement node:isConnectedTo* task:Task = task:directPre task:directPost

node:hasMeContext

node:ManagedObject

Figure 5: Part of Telecommunications Network ManagememhBia Ontology

4.2 Behaviour Model Ontology

The BehaviourModelNode is the root class for any node to bleided in the Bayesian Net-
work. Below this root, there is a hierarchy of more specifid@olasses for each node type to



be included (KPI, Performance Parameter, Service, andtlteeallow custom processing of
the various node types. A part of the combined Bayesian N&tewod Domain ontology for
the application domain is shown in figure 6, whes-@ links represent the inheritance hierar-
chy. This ontology subsection defines two classes, Seradeldnd EventNode, as subclasses
of BehaviourModelNode to describe properties of the sendnd event domain concepts
which are specifically relevant to a Bayesian Network regméstion. For example, all ser-
vice nodes in the Bayesian network share the same state qatngse, In Active, Recent}.
This data and other shared property values are recorded hasValue restrictions on the
corresponding ServiceNode properties. Likewise, all emedes share the same state names
{Present, Absent, Recent}, different from service nodes state names. The EventNdgle su
class contains this information in the form of hasValuerresbns. Every service and event
which is of interest to the Bayesian Network inherits frora 8erviceNode subclass and the
EventNode subclass respectively.

bn:BNNode

isa

| bm:BehaviourModelNode

isa isa

| bm:ServiceNode bm:EventNode event:Event

/ isa isa \isa isa isa isa \sa

event:AtmLinkAckEvent |

node:Service

acs:AtmConnectionService

crs:ComputeRouteService event:AtmLinkRegEvent |

acs:inEvent acs:outEvent

Figure 6: Domain plus Behaviour Model Ontologies

4.3 Rules for BN arc construction

In order to generate arcs automatically from the domainlogyorules are defined using the
Jenarule language. Rules specify how to create arcs fratiaes between domain concepts.
The reasoner infereasParentNodend hasDelayParentNodeelations from inter-concept
relations such as those represented by the blue arcs in figuidter rule inference, the
hasParentelations appear in the behaviour model ontology as shovigune 7. Example 3
shows a sample rule for generating arcs between the Ever8amntte concepts.

(3) [ Service-Event _arc_rule
(?s type Service) // if there is a service

(?e type Event) /1 and an event
(?s ?p ?e) /1 that is related to this service
-> /1 then

(?e hasParent ?s) // the event has the service as a parent

]

Likewise, each KPI has its relevant performance paramdedised in the ontology as proper-
ties of the KPI concept. A generic rule for all KPIs gener&agesian Network arcs to each
KPI from their associated performance parameters. If tieer® relation defined between
classes in the domain ontology, it is also possible to defihesrthat explicitly specify arc
creation. This final model is checked for consistency andegged as a Bayesian Network,
such as the BN shown in figure 1, using the Netica API.



bn:BNNode

A
isa

| bm:BehaviourModelNode

isa isa

bm:EventNode isa

io bm:KPINode

bm:AtmLinkReqEvent |

bn:hasDelayParentNode bm:ServiceNode isa

bm:AtmLinkAckEvent bn:hasParentNode io io

bn:hasParentNode

bm:AtmConnectionService

bn:hasParentNode

bm:SuccessfulSetupRate

bm:ParameterNode

bn:hasParentNode bn:hasParentNode bn:hasParentNode

bm:SetupAttempts I/| bm:SetupFailures |’/| bm:NoOfRIAdditionFailures

Figure 7: Domain plus Behaviour Model Ontologies after Rggplications

4.4 Sample Use Case: ATMCrossConnection Service

The use case to evaluate this approach deals with ATM crmssections. In a 3G WCDMA
mobile network, data is transported over ATM connectiomsnfithe Radio Network Con-
troller (RNC) to its Radio Base Stations (RBSs). In a largewvoek, the data signal may
be cross-connected through an intermediate network nolleh &BS or RXI. The domain
ontology for this use case models an ATMCrossConnectioncgeto build and configure a
cross-connection on an intermediate network node. The soomology models the Man-
aged Object Model of the network device (hub RBS or RXI),vafg Key Performance Indi-
cators (KPIs) and their related performance counters am@iiMCrossConnection service
itself. There are two aspects to the definition of this servibe external interface and the
internal workflows. The external interface defines the typevents the service will receive
and send in each of its states and which constitute the tiamel conditions to move from
one state to another of the service. The internal workfloviimeléhe managed objects, such
as ATM ports and channels, to create or modify in the Managaiéc® Model in order for a
node to cross-connect data. This domain ontology condi¥8 concepts and 49 properties.
In this use case, all event and service concepts togethbrailier workflow compo-
nents (e.g. tasks and processes) and the associated KPa$ iaterest” for constructing the
Bayesian Network and therefore inherit from both the donmaitology and the behaviour
model ontology. The initial behaviour model ontology conss® domain dependent concepts
covering these concepts of interest. The output behaviagehontology after inference and
automatic rule based arc creation contains 21 instancesyefsian network node class with



26 hasParent and 12 hasDelayParent relations. This is theped to a Bayesian network
with 21 nodes, 26 arcs and 12 time-delay links, an extendesiloreof the BN in figure 1.

5 Conclusions and Future Work

This paper has outlined an approach to building a Bayesiandtk from an ontology model

of a given domain. Bayesian Networks are notoriously diffit hand-code and structure
learning algorithms, while useful, can have significantndracks. The use of a domain on-
tology coupled with the capabilities of an inference engiae automate the BN building
task, reducing the knowledge bottleneck of expert knowdetgBN structure, while accu-
rately representing the domain of interest. The approacimplemented in the context of an
adaptive, self-configuring network management systemernteélecommunications domain.
In this system, the ontology model has the dual function aiWedge repository and au-
tomation facilitator and the generated BN serves to momifi@cts of management activity
and forms part of a feedback look for self-configuration diecis and tasks.

This approach opens up several avenues for future work rt@fiwhich is an evaluation
of the current system. However, the evaluation of BN stmgstus a non-trivial task and
estimation of the success of this ontology-based approacidwequire both a subjective and
an objective evaluation. The subjective evaluation mustpre how the task is perceived by
the ontology or BN builders to assess whether there has bheesaving in the time and
effort of domain experts. The objective evaluation showlskas the quality of the generated
structure by performing a comparison of the ontology-bstitticture and other data-learnt
models on the basis of a selected metric, such as prediciweacy for an expert—annotated
test data set.

Other technical extensions are also planned. To date, theemented algorithm does
not specify any values for the BN conditional probabilitles. In future implementations,
we aim to specify CPT priors on the basis of properties of th®logy model. For exam-
ple, the service workflows which are composed of events irtidy the service is active if
at least one of its events is present, this could be encod#teirvent CPT. Similarly, the
triggering of services by KPI violations can be encoded enghrvice CPT as a determinis-
tic relationshipp,ervice = 1 When K PI > threshold. Another more complex direction for
future research involves modification of the ontology-tsitucture by supplementing addi-
tional arcs or removing superfluous ones on the basis oftléata. This is an area ripe for
research as existing methodologies entail learning aneintiew structure from data using
the original structure as a prior in the learning processs Tésearch direction should also
provide interesting insights into the primacy of expert\kiexige, in the form of ontologies,
over information learnt from data as the degree and kinds adification required are an
indicator of the (in)accuracies of the expert model.
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