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Abstract. Bayesian Networks are probabilistic structured representations of domains
which have been applied to monitoring and manipulating cause and effects for mod-
elled systems as disparate as the weather, disease and mobile telecommunications net-
works. Although useful, Bayesian Networks are notoriouslydifficult to build accu-
rately and efficiently which has somewhat limited their application to real world prob-
lems. Ontologies are also a structured representation of knowledge, encoding facts and
rules about a given domain. This paper outlines an approach to harness the knowledge
and inference capabilities inherent in an ontology model toautomate the construc-
tion of Bayesian Networks to accurately represent a domain of interest. The approach
was implemented in the context of an adaptive, self-configuring network management
system in the telecommunications domain. In this system, the ontology model has
the dual function of knowledge repository and facilitator of automated workflows and
the generated BN serves to monitor effects of management activity, forming part of a
feedback look for self-configuration decisions and tasks.

1 Introduction

In today’s world of digital compression and storage, there is a wealth of data accessible from a
vast range of domains and topics and in a huge variety of formats and structures. Over the last
number of years, there have been great strides made in how this data can be accessed, indexed
and searched. The challenge remains how such data can be exploited as knowledge, facili-
tating and enhancing new and existing applications. Ontologies have emerged as a means
of providing a structured representation of knowledge which can range from generic real
world to strictly domain-specific. The purpose of employingan ontological representation is
to capture concepts in a given domain in order to provide a shared common understanding
of this domain, enabling interoperability and knowledge reuse but also machine-readability
and reasoning about information through inferencing. Theyare deterministic in nature, con-
sisting of concepts and facts about a domain and their relationships to each other. Bayesian
Networks have emerged as a means of estimating complex probabilities of states based on
graphical models of a domain. They also are a structured representation of knowledge and
specify relationships between concepts (or variables) of adomain. These relationships de-
note the dependencies and independencies that hold betweenthe concepts or variables. They
are probabilistic in nature, encoding the probability thatvariables assume particular values
given the values of connected variables in the Bayesian Network structure. These two tools



for knowledge representation and manipulation have independently been used to facilitate
machine reasoning and decision-making. This paper describes an approach to harness the
knowledge representation and inference capabilities of ontologies in order to construct auto-
matically a Bayesian Network which accurately represents agiven domain and can then be
used to support machine decision-making processes.

The research is being undertaken as part of a program to develop adaptive, self-configuring
functionality for devices within the mobile telecommunications network management do-
main. The research program is addressing the need for efficient management solutions and
more automation of mobile networks. Recent advances in wired and wireless networking
technology have resulted in an explosion in size, complexity and heterogeneity of such net-
works. At the same time, network operators are struggling tokeep their running costs to
a minimum in a highly competitive market. More autonomy of networks, network devices
and network management systems presents a means of resolving this conflict between the
ever-increasing demands of running large, complex and heterogeneous networks and the
ever-decreasing operational expenditure (OPEX) budgets of network operators. The adap-
tive, self-configuring architecture proposed in [1] exploits emerging technologies such as
ontology modelling and bayesian AI to attain the goal of autonomy for network devices. The
machine-learning Bayesian Network component of the architecture is designed to provide
the adaptivefunctionality, monitoring and learning the effects of configuration actions and
closing the feedback loop on management activity. The ontology model component is de-
signed to provide theself-configuringfunctionality, facilitating automation of configuration
workflows. In addition to this primary function, the knowledge represented in the ontology
model is leveraged in the construction of the Bayesian Network. Both components rely on
expert knowledge for their content. Our approach means thatthis expert knowledge need
only be elicited and modelled once as an ontology and can subsequently be manipulated au-
tomatically to construct a second model with different properties and functions, the Bayesian
Network.

Section 2 gives a brief introduction to Bayesian Networks and outlines current approaches
to Bayesian Network construction and how ontologies have been exploited to date for this
purpose. Section 3 sets out how in this research the structure and inference capabilities of on-
tologies have been exploited to automate the construction of a Bayesian Network. Section 4
describes an implementation of this approach in the telecommunications network manage-
ment domain. Finally, section 5 discusses some conclusionsof this research and directions
for future work.

2 Background

Korb and Nicholson state that the ultimate goal of Bayesian AI, of which Bayesian Networks
are an integral part, is to:

create a thinking agent which does as well or better than humans in such [reasoning]
tasks, which can adapt to stochastic and changing environments, recognize its own
limited knowledge and cope sensibly with these varied sources of uncertainty.[2, p.21]

Bayesian Networks provide a means of capturing existing knowledge about a domain, learn-
ing the stochastic properties of that domain and thereby adjusting its model of the domain
over time. They are currently being exploited in several application areas, notably for esti-
mating effects of different types of behaviour and as support for human or automated de-
cision tasks. Some sample applications include using BNs toreduce power consumption of
machines with reference to user behaviour [3] or to diagnosefaults in industrial processes [4].



The ultimate goal of an autonomous thinking agent is not yet realised but BNs are currently
the state-of-the-art for modelling, monitoring and adapting stochastic processes.

BNs consists of a Directed Acyclic Graph (DAG) structure. The nodes of this graph
represent variables from an application domain,1 for example, performance counters in a
telecommunications network or weather indicators in the climate domain. The arcs represent
the dependencies that hold between these variables, for example, a drop in parameter X trig-
gers alarm Y or high atmospheric pressure is associated withwarm weather. Additionally,
there is an associated conditional probability distribution over these variables which encodes
the probability that the variables assume their different values given the values of their parent
variables in the BN graph structure. For example, the probability of alarm Y being triggered
when parameter X is above a given threshold isp = 1 or the probability of the weather being
good when the atmospheric pressure is high isp = 0.65. It should be noted that the arcs of
the Bayesian Network do not necessarily denote a causal relationship between two variables
but only that the distribution of the child variable values is dependenton its parents value.
In some instances, this may be a causal relationship but not in all cases. Figure 1 shows a
sample Bayesian Network for a set of eight variables from thetelecommunications network
domain. It consists of a Key Performance Indicator (KPI) fora telecommunications device
(SuccessfulSetupRate), the performance counters which contribute to that KPI (NoOfRlAddi-
tionalFailures, SetupFailures, SetupAttempts), a service workflow (ATMConnectionService)
which is triggered by degradation in the KPI levels and two temporal variables, day of the
week and peak time. It is a structure such as this which the approach outline in this paper
aims to build based on an ontology model of the telecommunications domain.

Day

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

14.3
14.3
14.3
14.3
14.3
14.3
14.3

NoOfRIAdditionFailures

0 to 10
10 to 100
100 to 1.8e308

33.3
33.3
33.3

SetupAttempts

0 to 10
10 to 100
100 to 1.8e308

33.3
33.3
33.3

OnOffPeak

OnPeak
OffPeak

50.0
50.0

SuccessfulSetupRate

0 to 95
95 to 100

50.0
50.0

SetupFailures

0 to 10
10 to 100
100 to 1.8e308

33.3
33.3
33.3

AtmConnectionService

Active
InActive
Recent

33.3
33.3
33.3

AtmLinkReqEvent

Present
Absent
Recent

33.3
33.3
33.3

AtmLinkAckEvent

Present
Absent
Recent

33.3
33.3
33.3

Figure 1: Sample Bayesian Network for Telecommunications Network Management Domain

1Terminology: Ontologies represent knowledge in terms of concepts and relations. Ontological concepts, in
Bayesian Network terms, are domain variables which can takecertain values and have an associated probablility
distribution which are represented as nodes in the BN graph.In this paper, we use the terms concept, variable
and node interchangeably to denote concepts in the ontologymodel and variables in the Bayesian Network
directed acyclic graph.



The task of building the structure and assigning the probability distributions of a Bayesian
Network is complex and knowledge-intensive. It requires the identification of relevant statis-
tical variables in the application domain, the specification of dependency relations between
these variables and assignment of initial probability distributions. Both the structure and pa-
rameters, or probability distribution, of such a network can be assigned by an expert or learnt
off-line from historical data. The parameters may also be learnt on-line incrementally from a
live feed of data. Parameter estimation is a mature field of study and several algorithms exist
to derive conditional probability tables for a fixed networkstructure efficiently and accurately
from data [5, 6, 7]. In more recent years, structure learningfor Bayesian Networks has be-
come a hot topic in the data mining community. Initial BN applications involved defining the
network structure and learning the parameters from data. There are a number of methodolo-
gies proposed for facilitating building BNs by hand [8, 9] and indeed most BN software tools
today include a GUI component for defining BN structures. However, in addition to expert
knowledge in the application domain, the human may require some understanding of the sta-
tistical principles and in particular the notion of conditional dependence and independence
underlying a Bayesian Network in order to correctly specifyrelations between the variables
in the domain. To address this knowledge bottleneck and the inherent difficulties of building
BNs by hand, several algorithms have been developed to derive the structure of the network
from data, such as the K2 algorithm [10], MDL (Minimum Description Length) [11] and
CAMML [12]. While learning causal structure for Bayesian Networks can eradicate some
of the bottlenecks which impede the application of BNs to real world problems, the learning
algorithms are not without their own drawbacks such as making over-simplifying assump-
tions about the input data or output structure, inability todeal with missing data, requirement
for huge input datasets or intractability for complex multivariate input data. Furthermore, al-
though there may exist a knowledge source representing the domain of interest, it can be a
complex task to integrate these sources which in today’s data-rich world constitutes an un-
necessary waste of resources.

Ontologies provide a potential knowledge source which could be exploited to build the
BN structure. Helsper and Gaag [13] outline an approach which uses ontologies to facilitate
the building of Bayesian Networks in the medical domain. However, the ontologies are used
only as means of representing knowledge to facilitate the manual creation of the BN structure.
The ontology constitutes shared and agreed domain knowledge to be used to derive the BN
graph structure that is close to the ontological descriptions in the given domain. Due to the
complexity of the medical domain and the high impact of misclassifications, the derivation of
the graph structure is still done manually by expert analysis. The following sections outline
how the BN–from–ontology building process in the telecommunications domain has been
automated and enhanced using the inference capabilities offered by the formal ontological
representation.

3 Automating Bayesian Network Construction

This section outlines how our approach uses the inheritancestructure and inference capa-
bilities of an ontology to build the structure of a Bayesian Network (BN). This addresses
two challenges associated with the construction of BNs: thecomplexity of hand-coding BN
structure, requiring both domain and statistical knowledge and the need to integrate existing
knowledge sources. As with manual BN construction, the algorithm relies wholly on expert
knowledge, rather than evidence derived from data. However, here the work of the expert is
simplified. They no longer have to master the statistical principles of BNs, they must only
classify their domain knowledge in the familiar ontological world of concepts and relations.



While this is not a trivial task, it is a more straightforwardone. Furthermore, where there is
an existing ontology knowledge source, little extra input is required to build a BN for this
domain. In this implementation, the primary function of theontology model is workflow
automation and the BN construction algorithm is merely a side benefit of having this rich
knowledge store.

The complex task of construction a BN for a given domain can bedecomposed into four
subtasks: 1) identifying the variables of interest; 2) specifying the values these variables can
take; 3) defining the relations the hold between the variables and 4) assigning a conditional
probability distribution to the variables. The following sections set out how the use of an
ontology model facilitates each of these steps.

3.1 Identifying Variables of Interest

The approach described here assumes that an ontology of concepts for the domain of interest
has been (as in this project) or can be built. Some of the concepts may be of interest to
include in a BN which models causal relations in that domain and some may not. In order to
distinguish between these, we have defined a new ontology of BN concepts and link this to
the original domain ontology. All concepts of interest for the Bayesian Network then inherit
from a node in this BN ontology. The root concept of the BN ontology is the BNnode. In
order to create the Bayesian Network, an instance of each leaf class which inherits from the
BNnode class is created. The description of the generic BNnode concept, its properties and
relations are set out in figure 2. The concept has two types of relations:

• hasParentNode: BN nodes have a directed link from themselves to at least oneparent
node;

• hasDelayParentNode: this is a directed time-delay link which can be used to generate a
Dynamic Bayesian Network (a BN which includes a temporal dimension) [14].

Figure 2: Bayesian Network Node concept

When a BNnode instance is created, these relations define theinfluential links between this
BNnode instance and other BNnode instances (see section 3.3). The BNnode concept proper-
ties listed in the figure constitute the set of possible attributes which a BN node can contain.
These include name, conditional probability table (CPT), state names (for discreet variables,
the list of values which the variable the node represents cantake), levels (for continuous vari-
ables, the ranges of values which the variable can take). When a BNnode instance of a domain
concept is created, the BN attributes are derived from properties of that concept in the domain
ontology (see section 3.2). By defining inheritance relations between concepts of interest in
the domain ontology and the BNnode concept, it is possible toautomate the creation of BN
nodes, their attributes and the arcs that connect them, as set out in the sections that follow.



The inheritance relation expresses that a class of the domain model is to be included as a node
in the behaviour model. This combined ontology is enriched with facts which describe how a
domain can be represented as a Bayesian Network.

The combined domain and BN ontology can be further enriched to constrain BN cre-
ation. In addition to the basic BNnode concept, the BN ontology may contain additional BN
concepts which are more specific either to the BN applicationor to characteristics of the do-
main ontology. Figure 3 illustrates a simple ontology for the telecommunications network
management application for which this approach has been implemented. The root concept
of the BN ontology remains the BNnode. The domain ontology inthis figure consists of
the conceptsdomain:SubConceptOfNoInterestanddomain:SubConceptOfInterestand their
parent conceptdomain:Concept1. Thedomain:SubConceptOfInterestconcept inherits both
from the domain ontology and the BN ontology and only this concept node will be included
in an output BN for this domain. In this figure, however, between the root node and acon-
ceptOfInterestnode, there are two additional, intermediate concepts:BehaviourModelNode
andbmConcept1Node. The BehaviourModelNode concept represents the characteristics of
BN nodes required for a particular application, in this casethe network management applica-
tion.2 This separation between pure BN and BN for an application allows the original generic
BNnode ontology to be re-used for other applications which require a BN component by
defining a differentApplicationNodeconcept. TheConcept1Nodeconcept defines character-
istics of Concept1instances which should be treated in a particular way. The ontology can
define a hierarchy of more specific BNnode classes for any domain concepts which should
be included in the output BN, if these concepts would benefit from additional processing.
This additional level is not a requirement of this approach.However, the structure enables
tailored processing of domain ontology concepts in the generation of the Bayesian Network,
for example, setting ranges for continuous variables or default probability values.

domain:SubConceptOfInterest

domain:Concept1

isa

domain:SubConceptOfNoInterest

bm:Concept1Node

isa

bm:BehaviourModelNode

bn:BNNode

isa

isa

isa

Figure 3: Generic Domain Ontology with BN concepts

3.2 Specifying the Attributes of the Bayesian Network Node

The properties of the BN nodes created at the previous step are derived from the combined
BNnode and domain ontology. Properties, such as name, stateNames and kind of bayesian
network node, are specified in the BNnode concept and their values are instantiated from the
relevant domain concept using the constraints offered by ontology restrictions. The domain
concepts specify restrictions on their properties and these are used to populate the BNnode
properties of newly created BN nodes. In particular, thehasValuerestriction specifies the

2See section 4 and Baliosian et al [15] for an outline of the application architecture and the BN “Behaviour-
Model” component function.



values which a property can assume. For example, thehasStateNamesBNnode property,
which all sub-concepts of BNnode inherit, can be constrained in the sub-concept class to a
specific value of the domain ontology concept property usingthehasValuerestriction.

(1) <Restriction>
<onProperty hasStateNames/>
<hasValue "Present, Absent, Recent"/>

</Restriction>

Other restrictions are used to control correct node notation. For example, the requirement that
a node must have exactly one name is expressed by a cardinality restriction:

(2) hasName property = 1

Figure 4 shows the restrictions on a sample EventNode for thetelecommunications ontology,
expressing for particular node properties what values thisproperty can take for this class and
its subclasses. For example, for all BN event nodes the stateNames property must have values
{Present, Absent, Recent}. The ontology inheritance structure allows some restrictions to
be specified at a very generic level (e.g. notational restrictions) and others at a lower level
in the ontology (e.g. value specifications), thereby maximising the generalizability of the
ontology. For each BNnode instance created, the ontology reasoner compiles all restrictions
from the class and all its superclasses and the BNnode properties are generated from these.

Figure 4: Restrictions on Event Node in telecommunicationsontology

3.3 Finding Parent Nodes

In building the Bayesian network from the behaviour model ontology, the ontology reasoner
operates over the hierarchy and its restrictions to create Bayesian Network nodes and to pop-
ulate the properties of those nodes. As noted above, an instance is created for each Behaviour-
ModelNode subclass, in the domain ontology. At the same time, the algorithm also generates
a node in the Bayesian Network representation with appropriate property values. To create
arcs between these nodes, the algorithm relies on rules. These rules are specific to the applica-
tion domain and define which ontology properties or relations between concepts correspond
to arcs in the Bayesian Network. For example, in the medical domain, a disease may present
as one or more symptoms, a single rule can express this causalrelation from disease to symp-
toms for all sub-classes of disease and the symptoms associated with them. The rules are then
used to generate arcs in the Bayesian Network from a node representing a disease variable
to the node representing its symptoms. Section 4.3 details the rules used to generate BN arcs



for the network management application. This rule-based approach over ontology classes
provides a means of specifying generic BN relationships which are then generated automati-
cally when the nodes are initialised. Finally, the reasoneris used to check that the generated
Bayesian Network is valid by checking all BNnode instances and the domain ontology for
consistency.

3.4 Conditional Probability Table (CPT) Estimation

As noted in section 2, estimation of Conditional Probability Tables for Bayesian Networks
is and has been a field of intensive research for several decades. The approach set out in this
paper does not delve into this area. Indeed the network management application for which
this approach was designed exploits existing parameter learning algorithms and the Bayesian
Network CPTs are learnt incrementally and on-line from a live feed of network event data.
However, the knowledge resource of a domain ontology can be exploited to estimate initial
probability distributions for some concepts that lend themselves to this interpretation. Some
relations between parent and child nodes can be assigned an initial probability value based
on the nature of the concepts involved. For example, a deterministic relation where the value
of the parent entails the value of the child variable can be encoded directly in the CPT of the
child variable. Like the arc construction method, this can be encoded as a rule in the ontology.

4 Application in Telecommunications Network Management domain

As noted in the introduction, the work described here was conducted as part of large-scale
project to develop a self-adapting auto-configuration management functionality for network
management systems in the mobile telecommunications domain. The ever-increasing size,
complexity and heterogeneity of communications networks today is driving intense research
activity in the area of adaptive, autonomous networks and network devices. One crucial ob-
stacle to increased autonomy in today’s networks which mustbe overcome is that network
management systems have only partial models of the networksthey manage and these models
are semantically empty. In deployed commercial systems, the Management Information Base
(MIB) records device attributes and the current state of network parameters but it does not ex-
plicitly represent constraints that hold for individual managed elements and even lessbetween
elements of the MIB. Recent approaches propose using ontologies to capture Management In-
formation Base models [16], annotating, constraining and making machine-readable the Op-
erations and Maintenance (O&M) descriptions of the networkin order to enable automation
of O&M activities, as in [17]. However, a system which allowsautomation of management
decisions and tasks could be prey to instability. A viable autonomous management solution
must include a feedback loop to observe and deal with the consequences of its activities. This
can be provided using the machine learning capabilities offered by a Bayesian Network to
monitor the effects of human, semi-automated or fully automated O&M activities and feed
the derived knowledge back into the management system, as described in [15].

The construction algorithm described here was implementedin Java. The Bayesian Net-
work software is the Netica API. The choice of ontology language and support tools for
modelling was a matter for much debate. This project builds on previous work which used an
ontology defined in F-Logic and the Ontobroker reasoner to validate the results of configu-
ration activities. Having evaluated the merits of F-Logic,WSML and OWL variants (OWL-
Lite, OWL and OWL-DL), we decided to employ the W3C standard recommendation OWL.
OWL-DL provides the level of expressiveness desired for workflow definitions and valida-
tion. Combined with the Jena framework with rule-based inference engine, this OWL flavour



allows direct work with subclasses, definition of property ranges and domains and use of re-
strictions. Furthermore, its guarantee of completeness and decidability is a requirement for
any real world application. The debate remains open as to which modelling language will
emerge as the true standard for telecommunications and moregenerally web services appli-
cations. In the meantime, this solution provides more than adequate reasoning capabilities to
illustrate the benefits of our approach.

4.1 Domain Ontology

The domain ontology model is a super-enhanced MIB for a single telecommunications net-
work device. It stores the current configuration of the device, its relationships with other
objects in the network and constraints on its possible configuration imposed by the hardware
and software deployed on the network element. It also storesthe service workflows associ-
ated with configuration tasks, i.e., the sequence of actionsaffecting a network element that
need to be completed in order to automatically fulfil a given service request, for example, a
request to configure a port. In addition, it models the performance and fault metrics associ-
ated with that node (i.e. alarm types, performance countersand KPIs) and any associations
between these (e.g. KPI equations, alarm triggers). Figure5 shows a subsection of this on-
tology which is focused on the Service concept and other concepts connected with it. The
relations between these concepts are expressed by directedlinks (blue arcs with arrows) rep-
resenting object properties of concepts. Links lead from property domain to property range
concepts. As noted previously, the primary goal of this model is to facilitate automation of
management tasks by explicitly representing the events which trigger a service, the sequence
of atomic tasks and complex processes that constitute the service and any events issued or
expected while the service is active. The secondary function of the model is to generate an
accurate BN representation of the domain to be used for monitoring effects of these manage-
ment services.

node:NetworkElement node:isConnectedTo*

node:ManagedObject

node:hasMeContext

node:Process

task:Task

node:startTask*

task:directPre task:directPost

event:Event

event:hasTargetevent:hasSubject

node:Service

node:relatedTo

node:State

node:initState

node:processnode:inEvent node:outEvent

node:directNext

Figure 5: Part of Telecommunications Network Management Domain Ontology

4.2 Behaviour Model Ontology

The BehaviourModelNode is the root class for any node to be included in the Bayesian Net-
work. Below this root, there is a hierarchy of more specific node classes for each node type to



be included (KPI, Performance Parameter, Service, and Event) to allow custom processing of
the various node types. A part of the combined Bayesian Network and Domain ontology for
the application domain is shown in figure 6, whereis-a links represent the inheritance hierar-
chy. This ontology subsection defines two classes, ServiceNode and EventNode, as subclasses
of BehaviourModelNode to describe properties of the service and event domain concepts
which are specifically relevant to a Bayesian Network representation. For example, all ser-
vice nodes in the Bayesian network share the same state names{Active, InActive, Recent}.
This data and other shared property values are recorded using hasValue restrictions on the
corresponding ServiceNode properties. Likewise, all event nodes share the same state names
{Present, Absent, Recent}, different from service nodes state names. The EventNode sub-
class contains this information in the form of hasValue restrictions. Every service and event
which is of interest to the Bayesian Network inherits from the ServiceNode subclass and the
EventNode subclass respectively.

acs:AtmConnectionService

node:Service

isa

crs:ComputeRouteService

isa

bm:ServiceNode

isa

bm:EventNode

event:AtmLinkReqEvent

isa

event:AtmLinkAckEvent

isa

bm:BehaviourModelNode

isa

event:Event

isaisa

bn:BNNode

isa

isa

acs:inEvent acs:outEvent

Figure 6: Domain plus Behaviour Model Ontologies

4.3 Rules for BN arc construction

In order to generate arcs automatically from the domain ontology, rules are defined using the
Jena rule language. Rules specify how to create arcs from relations between domain concepts.
The reasoner infershasParentNodeand hasDelayParentNoderelations from inter-concept
relations such as those represented by the blue arcs in figure6. After rule inference, the
hasParentrelations appear in the behaviour model ontology as shown infigure 7. Example 3
shows a sample rule for generating arcs between the Event andService concepts.

(3) [Service-Event_arc_rule:
(?s type Service) // if there is a service
(?e type Event) // and an event
(?s ?p ?e) // that is related to this service
-> // then

(?e hasParent ?s) // the event has the service as a parent
]

Likewise, each KPI has its relevant performance parametersdefined in the ontology as proper-
ties of the KPI concept. A generic rule for all KPIs generatesBayesian Network arcs to each
KPI from their associated performance parameters. If thereis no relation defined between
classes in the domain ontology, it is also possible to define rules that explicitly specify arc
creation. This final model is checked for consistency and recreated as a Bayesian Network,
such as the BN shown in figure 1, using the Netica API.



bm:SetupAttempts

bm:ParameterNode

io

bm:NoOfRIAdditionFailures

io

bm:SetupFailures

io

bm:BehaviourModelNode

isa

bm:KPINode

isa

bm:ServiceNode

isabm:EventNode

isa

bm:SuccessfulSetupRate

io

bn:BNNode

isa

bm:AtmConnectionService

bn:hasParentNode

io

bn:hasParentNode bn:hasParentNodebn:hasParentNode

bm:AtmLinkAckEvent

io bm:AtmLinkReqEvent

io

bn:hasParentNode

bn:hasParentNode

bn:hasDelayParentNode

Figure 7: Domain plus Behaviour Model Ontologies after RuleApplications

4.4 Sample Use Case: ATMCrossConnection Service

The use case to evaluate this approach deals with ATM cross-connections. In a 3G WCDMA
mobile network, data is transported over ATM connections from the Radio Network Con-
troller (RNC) to its Radio Base Stations (RBSs). In a large network, the data signal may
be cross-connected through an intermediate network node, ahub RBS or RXI. The domain
ontology for this use case models an ATMCrossConnection service to build and configure a
cross-connection on an intermediate network node. The domain ontology models the Man-
aged Object Model of the network device (hub RBS or RXI), relevant Key Performance Indi-
cators (KPIs) and their related performance counters and the ATMCrossConnection service
itself. There are two aspects to the definition of this service: the external interface and the
internal workflows. The external interface defines the type of events the service will receive
and send in each of its states and which constitute the transitional conditions to move from
one state to another of the service. The internal workflows define the managed objects, such
as ATM ports and channels, to create or modify in the Managed Object Model in order for a
node to cross-connect data. This domain ontology consists of 32 concepts and 49 properties.

In this use case, all event and service concepts together with other workflow compo-
nents (e.g. tasks and processes) and the associated KPIs are“of interest” for constructing the
Bayesian Network and therefore inherit from both the domainontology and the behaviour
model ontology. The initial behaviour model ontology contains 9 domain dependent concepts
covering these concepts of interest. The output behaviour model ontology after inference and
automatic rule based arc creation contains 21 instances of bayesian network node class with



26 hasParent and 12 hasDelayParent relations. This is then mapped to a Bayesian network
with 21 nodes, 26 arcs and 12 time-delay links, an extended version of the BN in figure 1.

5 Conclusions and Future Work

This paper has outlined an approach to building a Bayesian Network from an ontology model
of a given domain. Bayesian Networks are notoriously difficult to hand-code and structure
learning algorithms, while useful, can have significant drawbacks. The use of a domain on-
tology coupled with the capabilities of an inference enginecan automate the BN building
task, reducing the knowledge bottleneck of expert knowledge to BN structure, while accu-
rately representing the domain of interest. The approach was implemented in the context of an
adaptive, self-configuring network management system in the telecommunications domain.
In this system, the ontology model has the dual function of knowledge repository and au-
tomation facilitator and the generated BN serves to monitoreffects of management activity
and forms part of a feedback look for self-configuration decisions and tasks.

This approach opens up several avenues for future work, the first of which is an evaluation
of the current system. However, the evaluation of BN structures is a non-trivial task and
estimation of the success of this ontology-based approach would require both a subjective and
an objective evaluation. The subjective evaluation must compare how the task is perceived by
the ontology or BN builders to assess whether there has been any saving in the time and
effort of domain experts. The objective evaluation should assess the quality of the generated
structure by performing a comparison of the ontology-builtstructure and other data-learnt
models on the basis of a selected metric, such as predictive accuracy for an expert–annotated
test data set.

Other technical extensions are also planned. To date, the implemented algorithm does
not specify any values for the BN conditional probability tables. In future implementations,
we aim to specify CPT priors on the basis of properties of the ontology model. For exam-
ple, the service workflows which are composed of events implythat the service is active if
at least one of its events is present, this could be encoded inthe event CPT. Similarly, the
triggering of services by KPI violations can be encoded in the service CPT as a determinis-
tic relationshippservice = 1 whenKPI ≥ threshold. Another more complex direction for
future research involves modification of the ontology-built structure by supplementing addi-
tional arcs or removing superfluous ones on the basis of learnt data. This is an area ripe for
research as existing methodologies entail learning an entirely new structure from data using
the original structure as a prior in the learning process. This research direction should also
provide interesting insights into the primacy of expert knowledge, in the form of ontologies,
over information learnt from data as the degree and kinds of modification required are an
indicator of the (in)accuracies of the expert model.
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