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Abstract

Although scripting languages have become very popular, even mature scripting lan-

guage implementations remain interpreted. Several compilers and reimplementations

have been attempted, generally focusing on performance.

Based on our survey of these reimplementations, we determine that there are three

important features of scripting languages that are difficult to compile or reimplement.

Since scripting languages are defined primarily through the semantics of their original

implementations, they often change semantics between releases. They provide C APIs,

used both for foreign-function interfaces and to write third-party extensions. These

APIs typically have tight integration with the original implementation, and are used to

provide large standard libraries, which are difficult to re-use, and costly to reimplement.

Finally, they support run-time code generation. These features make it difficult to

design a fully compatible compiler.

We present a technique to support these features in an ahead-of-time compiler for

PHP. Our technique uses the original PHP implementation through the provided C

API, both in our compiler and in our generated code. We support all of these impor-

tant scripting language features. Additionally, our approach allows us to automatically

support limited future language changes. We present a discussion and performance

evaluation of this technique.

Key words: Compiler, Scripting Language

1. Motivation

Although scripting languages1 have become very popular [32], most scripting lan-

guage implementations remain interpreted. Typically, these implementations are slow,

Email addresses: pbiggar@cs.tcd.ie (Paul Biggar), edsko.de.vries@cs.tcd.ie (Edsko

de Vries), david.gregg@cs.tcd.ie (David Gregg)
1It is difficult to give a precise definition of “scripting language”. In this paper, we address problems

inherent in the compilation of PHP, Perl, Python, Ruby and Lua. We will use the term scripting language

specifically to refer to this set of languages. Many other languages can be argued to be scripting languages,

but they typically do not present the compilation problems we address in this paper.
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between one and two orders of magnitude slower than C. There are a number of rea-

sons for this. Scripting languages have grown up around interpreters, and were gen-

erally used to glue together performance sensitive tasks, often consisting of existing

code, rather than to write full applications. Hence, the performance of the language

itself was traditionally not important. As they have increased in prominence, larger

applications are being developed entirely in scripting languages, and performance is

increasingly important.

The major strategy for retrofitting performance into an application written in a

scripting language is to identify performance hot-spots, and rewrite them in C using

a provided C API. Though this is not a bad strategy and certainly a strong alternative

to rewriting the entire application in a lower level language, a stronger strategy still

may be to compile the entire application. Having a compiler automatically increase the

speed of an application is an important performance tool, one that contributes to the

current dominance of C, C++ and Java.

However, it is not straight-forward to write a scripting language compiler. Scripting

languages do not, in general, have standards or detailed specifications.2 Rather, they

are defined by the behaviour of their initial implementation, which we refer to as their

“canonical implementation”.3 The correctness of a later implementation is determined

by its semantic equivalence with this canonical implementation. It is also important

to be compatible with large standard libraries, written in C. Both the language and the

libraries often change between releases, leading to not one, but multiple implementa-

tions with which compatibility must be achieved.

In addition, there exist many third-party extensions and libraries in wide use, writ-

ten using the language’s built-in C API. These require a compiler to support this API

in its generated code, since reimplementing the library may not be practical, especially

if it involves proprietary code.

A final challenge is that of run-time code generation. Scripting languages typically

support an eval construct, which executes source code at run-time. Even when eval

is not used, the semantics of some common language features (most notably include,

Section 2.4.2) require some compilation or interpretation to be deferred until run-time.

A compiler must therefore provide a run-time component, with which to execute the

code generated at run-time.

In phc [5], our ahead-of-time compiler for PHP, we are able to deal with the unde-

fined and changing semantics of PHP by tightly coupling our compiler and the existing

PHP system. By the term PHP system we mean the PHP source-code compiler, inter-

preter, run-time system and libraries. At compile-time, we use the PHP system as a

language oracle. That is, we call into the PHP system to discover the meaning of con-

structs, such as the result of adding two constant values. By asking the PHP system,

rather than hard-coding the semantics of all PHP language features into our compiler,

the code generated by our compiler changes to match certain classes of change in the

2This is less true for Python and Lua, which provide reference manuals.
3A canonical implementation differs subtly from a reference implementation, in that a reference imple-

mentation provides an implementation of a specification, while a canonical implementation provides the

specification.
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canonical PHP system. This gives us the ability to automatically adapt to changes in

the language, and allows us to avoid the long process of documenting and copying the

behaviour of several different versions of the language. We also generate C code which

interfaces with the PHP system via its C API. This allows our compiled code to interact

with built-in functions and libraries, saving not only the effort of reimplementation of

large standard libraries, but also allowing us to interface with both future and propri-

etary libraries and extensions. Finally, we reuse the existing PHP interpreter instead

of attempting to implement run-time code generation. This means we are not required

to provide a run-time version of our compiler, which can be a difficult and error-prone

process.

Since many of the problems we discuss occur with any reimplementation, whether

it is a compiler, interpreter or JIT compiler, we shall generally just use the term ‘com-

piler’ to refer to any scripting language reimplementation. We believe it is obvious

when our discussion only applies to a compiler, as opposed to a reimplementation

which is not a compiler.

In Section 2.1, we provide a short motivating example, illustrating these three im-

portant difficulties: the lack of a defined semantics, emulating C APIs, and supporting

run-time code generation. In Section 3, we examine a number of previous scripting

language compilers, focusing on important compromises made by the compiler au-

thors which prevent them from correctly replicating the scripting languages they com-

pile. Section 3.5 discusses the complementary approach of using a JIT compiler. Our

approach is discussed in Section 4, explaining how each important scripting language

feature is correctly handled by re-using the canonical implementation. Section 5 dis-

cusses PHP’s memory model. An experimental evaluation of our technique is provided

in Section 6, including performance results, and supporting evidence that a large num-

ber of programs suffer from the problems we solve.

2. Challenges to Compilation

There are three major challenges to scripting language compilers: the lack of a

defined semantics, emulating C APIs, and supporting run-time code generation. Each

presents a significant challenge, and great care is required both in the design and im-

plementation of scripting language compilers as a result. We begin by presenting a

motivating example, before describing the three challenges in depth.

2.1. Motivating Example

Listing 1 contains a short program segment demonstrating a number of features

which are difficult to compile. The program segment itself is straight-forward, loading

an encryption library and iterating through files, performing some computation and

some encryption on each. The style uses a number of features idiomatic to scripting

languages. Though we wrote this program segment as an example, each important

feature was derived from actual code we saw in the wild.

Lines 3-6 dynamically load an encryption library; the exact library is decided by

the $engine variable, which may be provided at run-time. Line 9 creates an array of

hexadecimal values, to be used later in the encryption process. Lines 12-16 read files

3
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1 define(DEBUG, "0");

2

3 # Create instance of cipher engine

4 include ’Cipher/’ . $engine . ’.php’;

5 $class = ’Cipher_’ . $engine;

6 $cipher = new $class();

7

8 # Load s_box

9 $s_box = array(0x30fb40d4, ..., 0x9fa0ff0b);

10

11 # Load files

12 $filename = "data_1000";

13 for($i = 0; $i < 20; $i++)

14 {

15 if(DEBUG) echo "read serialized data";

16 $serial = file_get_contents($filename);

17 $deserial = eval("return $serial;");

18

19 # Add size suffix

20 $size =& $deserial["SIZE"];

21 if ($size > 1024 * 1024 * 1024)

22 $size .= "GB";

23 elseif ($size > 1024 * 1024)

24 $size .= "MB";

25 elseif ($size > 1024)

26 $size .= "KB";

27 else

28 $size .= "B";

29

30 # Encrypt

31 $out = $cipher->encrypt($deserial, $s_box);

32

33 if(DEBUG) echo "reserialize data";

34 $serial = var_export($out, 1);

35 file_put_contents($filename, $serialized);

36

37 $filename++;

38 }

Listing 1: PHP code demonstrating dynamic, changing or unspecified language fea-

tures.
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from disk. The files contain data serialized by the var_export function, which con-

verts a data structure into PHP code which when executed will create a copy of the data

structure. The serialized data is read on line 16, and is deserialized when line 17 is ex-

ecuted. Lines 20-28 represent some data manipulation, with line 20 performing a hash

table lookup. The data is encrypted on line 31, before being re-serialized and written

to disk in lines 34 and 35 respectively. Line 37 selects the next file by incrementing the

string in $filename.

2.2. Undefined Language Semantics

A major problem for reimplementations of scripting languages is the languages’

undefined semantics. Jones [15] describes a number of forms of language specification.

Scripting languages typically follow the method of a “production use implementation”

in his taxonomy. In the case of PHP, Jones says:

The PHP group claims that they have the final say in the specification of

PHP. This group’s specification is an implementation, and there is no prose

specification or agreed validation suite. There are alternate implementa-

tions [...] that claim to be compatible (they don’t say what this means)

with some version of PHP.

As a result of this lack of abstract semantics, compilers must instead adhere to the

concrete semantics of the canonical implementation for correctness. However, different

releases of the canonical implementation may have different concrete semantics. In

fact, for PHP, changes to the language definition occur as frequently as a new release

of the PHP system. In theory, the language would only change due to new features.

However, new features frequently build upon older features, occasionally changing the

original semantics. Older features are also modified with bug fixes. Naturally, changes

to a feature may also introduce new bugs, and there exists no validation suite to prevent

these bugs from being considered features. In a number of cases we have observed, a

“bug” has been documented in the language manual, and referred to as a feature, until

a later release when the bug was fixed. As a result of these changes, even the same

feature in different versions of the language may have different semantics.

While in a standardized language like C or C++ the semantics of each feature is

generally clearly defined,4 in a scripting language the task of determining the seman-

tics can be arduous and time consuming. Even with the source code of the canonical

implementation available, it is generally impossible to guarantee that the semantics are

copied exactly.

A lack of a semantic specification is perhaps not such a big issue for an end user,

who probably only uses a single compiler or interpreter—but it is a very important issue

for a compiler writer who wants to provide an alternative compiler and must therefore

guarantee compatibility.

4Standardized languages also consider some semantics ‘undefined’, meaning an implementation can do

anything in this case. Few scripting language features are undefined, since they all do something in the

canonical implementation; features that are explicitly “undefined” in the language manual are rare.
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2.2.1. Literal Parsing

A simple example of a change to the language is a bug fix in PHP version 5.2.3,

which changed the value of some integer literals. In previous versions of PHP, integers

above LONG_MAX,5 were converted to floating-point values — unless they were written

in hexadecimal notation (e.g. 0x30fb40d4). In this case, as in our example on line 9

of Listing 1 they were to be truncated to the value of LONG_MAX. Since version 5.2.3,

however, these hexadecimal integers are converted normally to floating-point values.

2.2.2. Built-in Operators

PHP’s basic operations such as addition and conditionals are weakly typed and

weakly defined. Although the behaviour of any function in the standard library can

depend on the types of the operands passed, nowhere is this more true than for the

behaviour of the built-in operators.

Addition, for example, is more general in PHP than in C since it converts integers

into floats when they overflow.6 The full semantics for an operator can only be dis-

covered by reading the source code of the PHP system. There is a significant amount

of work in determining the full set of semantics for each permutation of operator and

built-in type. What, for example, is the sum of the string “hello” and the boolean value

true?7 As another example, the two statements $a = $a + 1; and $a++; are not

equivalent. The latter will “increment” strings, increasing the ASCII value of the final

character, another unlikely language feature, as shown in Listing 1 on line 37.

Truth is also complicated in PHP, due to its weak-typing rules. Conditional state-

ments implicitly convert values to booleans, and the conversions are not always intu-

itive. Example of false values are "0", "", 0, false and 0.0. Examples of true values

are "1", 1, true, "0x0" and "0.0".

Clearly, the semantics of the operators in PHP is complex. But it is the combination

of complex semantics, and the fact that these semantics can only be discovered from

reading the source code of the canonical implementation that makes PHP particularly

difficult to implement correctly. Furthermore, when new versions of the PHP system

are released, the only way to discover subtle changes in the semantics is to again inspect

the complex source code dealing with operators.

2.2.3. Language Flags

In PHP, the semantics of the language can be tailored through use of the php.ini

file. Certain flags can be set or unset, which affect the behaviour of the language. For

example, the include_path flag affects separate compilation, and alters where files

can be searched for to include them at compile time. The call_time_pass_by_ref

flag decides whether a caller is permitted to pass its actual parameter to a function by

reference, potentially overriding the function’s default of passing by copy.

5Constant from the C standard library representing the maximum signed integer representable in a ma-

chine word.
6Feeley discusses [8] a similar problem in Scheme, in that several Scheme compilers incorrectly prevent

integers from overflowing into Bignums for performance reasons.
7An integer 1, it seems.
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Although compilers for languages such as C++ also support flags that influence the

language behaviour, these flags must be set at compile time. For PHP, however, these

flags can be changed when the application is run and in many cases even while the

application is running.

2.3. C API and Library Support

Following Lua [12], we use the term “C API” to refer to the set of data structures

and functions that are used within the interpreter to provide the interface between user

level PHP code and system level C code. The C API includes the function calling

conventions, the runtime representations of the local and global symbol tables (Sec-

tion 4.3), the data structures which represent PHP level data and support memory man-

agement through reference counting (Section 5), etc. The interpreter uses the C API

to call functions written in C and vice versa: C level functions have access to func-

tions written in PHP through the C API. A discussion of the merits of various scripting

languages’ C APIs is available [22].

Typically, the C API is the only part of the language with stable behaviour. A

change in a particular function or operator is a (relatively) local change, but a change

in the C API would require that both the interpreter and all C libraries are adapted. The

C API is in such heavy use that regressions and bugs are noticed quickly. We have seen

that even when changes to the language and its libraries are frequent, changes to the

behaviour of the C API are not.

If (almost) all libraries are written in PHP itself, then a compiler writer can choose

to ignore the C API. Unlike the C++ libraries which are mostly written in C++ and the

Java libraries which are mostly written in Java, however, the majority of the PHP li-

braries are not written in PHP but in C. To guarantee compatibility with these libraries,

phc must therefore generate code that uses the C API: we cannot choose our own

function calling conventions, use different data structures to represent data, or use a

different runtime representation of symbol tables (although in some special cases we

do not need a runtime representation of symbol tables at all, see Section 4.5.3). In sum-

mary, support for the standard libraries implies support for the C API, which severely

limits the design space for the compiler.

The alternative to supporting the C API is to reimplement the libraries from scratch

to work with the data structures and functions that the generated code uses. How-

ever, one of the major attractions of scripting languages is that they come “batteries

included”, meaning they support a large standard library. Since there is no specifica-

tion for these libraries, they are liable to change, and new libraries are constantly being

added. Reimplementing the standard library is therefore an ongoing and major under-

taking. Moreover, there may be third party libraries to which we do not have source

code access, which we are unable to reimplement, but which will work because of the

C API.

2.4. Run-time Code Generation

A number of PHP’s dynamic features allow source code, constructed at run-time,

to be executed at run-time. Frequently these features are used as quick hacks, and they

are also a common vector for security flaws. However, there are a sufficient number of

legitimate uses of these features that a compiler must support them.

7
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2.4.1. Eval Statements

As demonstrated in Listing 1, the eval statement executes arbitrary fragments of

PHP code at run-time. It is passed a string of code, which it parses and executes in the

current scope, potentially defining functions or classes, calling functions whose names

are passed by the user, or writing to user-named variables.

2.4.2. Include Statements

The PHP include statement is used to import code into a given script from an-

other source file. Although similar in theory to the eval statement, this feature is

generally used by programmers to logically separate code into different source files, in

a similar fashion to C’s #include directive, or Java’s import declaration. However,

unlike those static approaches, an include statement is executed at run-time, and the

included code is only then inserted in place of the include statement.

Dynamic include statements are commonly used in PHP to provide a plugin fa-

cility, or to implement localization. In Section 6.5, we provide statistics about usage

of dynamic and static includes (as well as eval statements) from a large number of

publicly available PHP programs.

2.4.3. Variable-variables

PHP variables are simply a map of strings to values. Variable-variables provide a

means to access a variable whose name is known at run-time — for example, one can

assign to the variable $x using a variable containing the string value "x". Access to

these variables may be required by eval or include statements, and so this feature

may take advantage of the infrastructure used by these functions. Variable functions

are also accessible in this way, and Listing 1 shows a class initialized dynamically in

the same manner.

3. Related Work

Having discussed the typical scripting language features, we examine previous

scripting language compilers, discussing how they handled the challenging features in

their implementations. We believe that many of their solutions are sub-optimal, either

requiring great engineering or sacrifices which limit the potential speed improvement

of their approach.

3.1. Undefined Semantics

The most difficult and rarely addressed issue is ensuring that a program is exe-

cuted correctly by a reimplementation of a scripting language. In particular, it is rarely

mentioned that different versions of a scripting language can have different semantics,

especially in standard libraries.

Very few scripting language compilers provide any compatibility guarantees for

their language. Instead, we very often see laundry lists of features which do not work,

and libraries which are not supported. A number of implementations we surveyed

chose to rewrite the standard libraries. UCPy [3], a reverse-engineered Python com-

piler, reports many of the same difficulties that motivated us: a large set of standard

8
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libraries, a language in constant flux, and a manual whose contents surprise its own

authors. They chose to rewrite the standard library, even though it was 71,000 lines of

code long, risking potential semantic differences with the official distribution.

Both Roadsend [27] and Quercus [25] are PHP compilers, referred to by Jones’s

quote in Section 2.2. Both of these compilers reimplement a very small portion of

the PHP standard libraries. In Shed Skin [6, Sect. 4.3.3], a Python-to-C++ compiler,

the authors were unable to analyse or reuse Python’s comprehensive standard library.

Instead, library functions they wanted to support were both reimplemented in C++ and

separately modelled in Python.

Jython [17] and JRuby [16] are reimplementations of Python and Ruby, respec-

tively, on the JVM. They reimplement their respective standard libraries in their re-

spective host languages, and do not reuse the canonical implementation. A much better

approach is employed by Phalanger [4, Sect. 3], a PHP compiler targeting the .NET

run-time. It uses a special manager to emulate the PHP system, through which PHP

programs access the standard libraries through the C API. Benda et al. report that their

Phalanger system is compatible with the entire set of extensions and standard libraries.

However, Phalanger does not use the PHP system’s functions for its built-in operators,

instead rewriting them in its host language, C#. As described in Section 2.2.2, many of

PHP’s most difficult features to compile involve its built-in operators, and we believe

that reimplementing them is costly and error-prone.

In terms of language features, none of the compilers discussed have a strategy for

automatically adapting to new language semantics. Instead, each provides a list of

features with which they are compatible, and the degree to which they are compati-

ble. None mentioned the fact that language features change, or that standard libraries

change, and we cannot find any discussion of policies to deal with these changes.

A few, however, mention specific examples where they were unable to be com-

patible with the canonical implementation of their language. Johnson et al. [14]

attempted to reimplement PHP from public specifications, using an existing virtual-

machine. They reported problems caused by PHP’s call-by-reference semantics. In

their implementation, callee functions are responsible for copying passed arguments,

but no means was available to inform the callee that an argument to the called function

was passed-by-reference.8 Shed Skin [6] deliberately chose to use restricted language

semantics, in that it only compiles a statically-typed subset of Python.

However, two approaches stand out as having taken approaches which can guar-

antee a strong degree of compatibility. The 211 compiler [1] converts Python virtual

machine code to C. Similar to the classical algorithm by Pagan et al. [24, 29], it works

by pasting together code from the Python interpreter, which corresponds to the byte-

codes for a program’s hot-spots. The 211 compiler which is very resilient to changes

in the language, as its approach is not invalidated by the addition of new opcodes. Its

approach is more likely to be correct than any other approach we mention, including

our own, though it comes at a cost, which we discuss is Section 6.2.

Python2C [28, Section 1.3.1] has a similar approach to phc, and, like both phc and

the 211 compiler, provides great compatibility. Unfortunately, it comes with a similar

8In PHP, call-by-reference parameters can be declared at function-definition time or at call-time.
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cost to 211, as detailed in Section 6.2.

Pyrex [7] is a domain-specific language for creating Python extensions. It extends

a subset of Python with C types and operations, allowing mixed semantics within a

function. It is then compiled, in a similar fashion to our approach. Though they omit

much of the language, it is easy to see that by following this approach, they have to

ability to have a very high degree of compatibility with Python, even as the language

changes.

3.2. C API

Very few compilers attempt to emulate the C API. However, Johnson et al. [14]

provide a case study, in which they determine that it is not possible in their implemen-

tation, claiming that the integration between the PHP system and the extensions was

too tight. We have also observed this, as the C API is very closely modelled on the

PHP system’s implementation. Phalanger [4] does not emulate the C API, but it does

provide a bridge allowing programs to call into extensions and libraries. Instead of

a C API, it provides a foreign-function interface through the .NET run-time. Jython

[17] and JRuby [16] provide a foreign-function interface through the JVM, in a similar

fashion.

3.3. Run-time Code Generation

A number of compilers [27, 14, 4, 16, 17] support run-time code generation using

a run-time version of their compiler. Some [6, 25] choose not to support it at all.

Quercus [25] in particular claims not to support it for security reasons, as run-time

code generation can lead to code-injection security vulnerabilities. We show in Section

6.5 that this results in a large number of PHP programs which could not be run using

the Quercus compiler.

Dealing with scripting source code that is generated at run time is easy for a JIT

compiler. The PHP compiler translates the source code to bytecode, and the JIT com-

piler can compile the resulting bytecode to native machine code. A JIT compiler must

already be designed to be suitable for execution while the program is running. Most of

these systems are not JIT compilers, however, and are instead designed for ahead-of-

time compilation. Making a compiler suitable for compiling scripting source code that

is generated at run time requires that the implementation is suitable for run-time use; it

must have a small footprint, it cannot leak memory, it must be checked for security is-

sues, and it must generate code which interfaces with the code which has already been

generated. These requirements are not trivial, and we believe the approach we outline

in Section 4 affords the same benefits, at much lower engineering cost. We discuss

using a JIT compiler in more detail in Section 3.5.

3.4. Other Approaches

Walker and Griswold’s optimizing compiler for Icon [34] uses the same system for

its compiled code as its interpreter used. In addition, since they were in control of both

the compiler and the run-time system, they modified the system to generate data to help

the compiler make decisions at compile-time. Typically, scripting language implemen-

tations do not provide a compiler, and compilers are instead created by separate groups.

10
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As a result, it is generally not possible to get this tight integration, though it would be

the ideal approach.

3.5. Just-in-time Compilers

Just-in-time compilers (JITs) [2] are an alternative to interpreting or ahead-of-time

compiling. In recent years, the growing popularity of managed languages running on

virtual machines, such as Java’s JVM and the Microsoft .NET framework, has con-

tributed to the growth of JITs.

JIT compilers are generally tightly coupled to the existing interpretation frame-

work, like we propose for phc. Their optimizations are not inhibited by dynamic

features, such as reflection and run-time code generation. Method specialization [26]

compiles methods specifically for the actual run-time types and values. Other tech-

niques can be used to gradually compile hot code paths [10, 36].

JITs, however, suffer from great implementation difficulty. They are typically not

portable between different architectures, one of the great advantages of interpreters.

Every modern scripting language’s canonical implementation is an interpreter, and

many implementations sacrifice performance for ease of implementation. The Lua

Project [13, Section 2], for example, strongly values portability, and will only use ANSI

C, despite potential performance improvement from using less portable C dialects, such

as using computed gotos in GNU C.

In addition to being difficult to retarget, JIT compilers are difficult to debug. While

it can be difficult to debug generated code in an ahead-of-time compiler, it is much

more difficult to debug code generated into memory, especially when the JIT compiles

a function multiple times, and replaces the previously generated code in memory. By

contrast, our approach of generating C code using the PHP C API is generally very

easy to debug, using traditional debugging techniques.

Much of the performance benefit of JIT compilers comes from inlining functions

[30]. However, the majority of the PHP standard libraries are written in C rather than

in PHP, and so cannot be optimized using the JIT’s inlining heuristics. These problems

have been encountered both by JITs written for both Javascript [9] and Lua [20].

Another alternative is to compile to a standard intermediate representation (IR),

where a JIT compiler already exists for that IR. Examples, of these include Java byte-

code, .NET CIL code and the Low Level Virtual Machine (LLVM) [18]. Lopes [19]

explored this idea with a very simple prototype JIT compiler for PHP that compiles to

LLVM. The resulting JIT compiled code runs around 21 times slower that the standard

PHP interpreter. The main reason is that naive compilation works very poorly for PHP.

For performance to even match that of the PHP interpreter, optimizations similar to

those described in Section 4.5 are necessary. The original version of our compiler also

produced naive code which was much slower than the PHP interpreter, mostly because

of memory allocation and hashing costs.

It is also important to note that simply translating to an IR such as LLVM will not

yield the sort of benefits that come from method specialization or trace compilation.

It would still be necessary to build a JIT compiler to perform these sort of optimiza-

tions on the PHP at run time. However, by allowing the JIT which performs these

optimizations to generate bytecode code rather than executable machine code, the im-

plementation would remain portable. Once the PHP JIT had created this IR code, the
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Java, LLVM or .NET JIT compiler would then have the job of translating it to native

machine code on the target machine.

3.6. Is there one good solution?

A common question is whether ahead-of-time compilation or JIT compilation is the

best approach for implementing a given language, with perhaps the implicit assumption

that interpretation is not a good choice. In fact, interpreters are a popular approach to

implementing many languages, and especially dynamic scripting languages. Although

interpreters are typically slower than compiled code, they offer huge software engi-

neering advantages. They are easy to construct, and simple enough to make reliable

without huge effort. They can be efficiently written in C, so the language implemen-

tation can be made portable across architectures. Most interpreters do not interpret

the source code directly, but instead interpret bytecode for an abstract virtual machine.

This virtual machine code is typically much smaller than executable native machine

code. Supporting dynamic language features such as dynamic loading of code, and

run-time source-code generation is simple in an interpreter. Finally, developing other

tools such as source-level debuggers and profilers is simple in an interpretive system,

but very complex for compiled code. These software engineering advantages mean

that it is possible to construct and maintain a complete interpretive implementation of

a language quite easily. Interpreters are often the appropriate solution for program-

ming languages where a small teams develops and maintains the implementation, even

though execution speed may be slow.

Ahead of time (AOT) compilers offer the possibility of significant speedups over

interpreters. AOT compilers have plenty of time for program analysis and optimization.

A significant problem with AOT compilation is native code generation, as the compiler

may have to target several different instruction sets, and optimize for particular models

of processor. A common solution to this problem is to build a source-to-source com-

piler that compiles to C, rather than executable code. Most machines already have at

least one good C compiler. This is the solution we have followed in our phc system,

and it allows our generated C code to run on many different architectures. The main

disadvantage of AOT compilation for scripting languages is that they contain many

dynamic features, such as eval and dynamic typing. The compiler may have time to

perform complex analyses AOT, but analysis is more difficult if some of the code or

data types are unknown until run time.

A significant advantage of JIT compilation is that compilation is delayed until the

program is running, at which point code, data and types may be partially or fully

known. The main downside of JIT compilers is the software engineering difficulty of

reliably generating correct, optimized executable code with only a very small amount

of time for analysis and optimization. JIT compilers are complex systems, but must

also be highly efficient, because of the need to generate code quickly. This require-

ment to be efficient also makes them more difficult to understand and maintain. This is

a particular challenge when trying to maintain compatibility with a complex language

such as PHP, where the semantics may subtly change from one release to another.

Generally, interpretation, AOT compilation and JIT compilation are all solutions to

the problem of implementing programming languages, each with its own advantages
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and disadvantages. In the next section we outline our solution to AOT compilation of

PHP in our ahead-of-time compiler.

4. Our Approach

Nearly all of the approaches discussed in Section 3 have been deficient in some

manner. Most were not resilient to changes in their target language, and instead reim-

plemented the standard libraries [17, 16, 27, 25, 3, 14, 6]. Those which handled this

elegantly still failed to provide the C API [4], and those which achieved a high degree

of compatibility [7, 28, 1] failed to provide a means to achieving good performance.

In phc, our ahead-of-time compiler for PHP, we are able to correct all of these

problems by tightly coupling the PHP system with both our compiler and compiled

code. At compile-time, we use the PHP system as a language oracle, allowing us

to automatically adapt to changes in the language, and saving us the long process of

documenting and copying the behaviour of many different versions of the language.

Our generated C code interfaces with the PHP system at run-time, via its C API [11].

This allows our compiled code to interact with built-in functions and libraries and to

re-use the existing PHP system to handle run-time code generation.

4.1. Undefined Semantics

4.1.1. Language Semantics

One option for handling PHP’s volatile semantics is to keep track of changes in the

PHP system, with separate functionality for each feature and version. However, our

link to the PHP system allows us to resiliently handle both past and future changes.

For built-in operators, we add calls in our generated code to the built-in PHP func-

tion for handling the relevant operator. As well as automatically supporting changes to

the semantics of the operators, this also helps us avoid the difficulty of documenting

the many permutations of types, values and operators, including unusual edge cases.

Note that this strategy makes our approach vulnerable to certain types of changes

to the PHP API. For example, if newer versions of PHP were to change the way that

operators are implemented, by calling different functions or changing the function in-

terfaces our technique would no longer be robust. However, such changes in the C API

have been very rare. The whole purpose of an API is to keep the interface the same,

even if the implementation on either side of the interface changes. For this reason, it is

not surprising that changes in the API are rare.

We solve the problem of changing literal definitions by parsing the literals with the

PHP system’s interpreter, and extracting the value using the C API. If the behaviour of

this parsing changes in newer versions, the PHP system’s interpreter will still parse it

correctly, and so we can automatically adapt to some language changes which have not

yet been made.

We handle language flags by simply querying them via the C API. With this, we can

handle the case where the flag is set at configure-time, build-time, or via the php.ini

file. No surveyed compiler handles these scenarios.
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4.1.2. Libraries and Extensions

One of the largest and most persistent problems in creating a scripting language

reimplementation is that of providing access to standard libraries and extensions. We

do not reimplement any libraries or extensions, instead re-using the PHP system’s li-

braries via the C API. This allows us to support proprietary extensions, for which no

source code is available, which is not possible without supporting the C API. It also

allows support for libraries which have yet to be written, and changing definitions of

libraries between versions.

4.2. C API

Naturally, we support the entire C API, as our generated code is a client of it. This

goes two ways, as extensions can call into our compiled code in the same manner as

the code calls into extensions.

Integrating the PHP system into the compiler is not complicated, as most scripting

languages are designed for embedding into other applications [22]. Lua in particular is

designed expressly for this purpose [13]. In the case of PHP, it is a simple process [11]

of including two lines of C code to initialize and shutdown the PHP system. We then

compile our compiler using the PHP “embed” headers, and link our compiler against

the “embed” version of libphp5.so, the shared library containing the PHP system.

Users can choose to upgrade their version of the PHP system, in which case phc

will automatically assume the new behaviour for the generated code. However, com-

piled binaries may need to be re-compiled, since the language has effectively changed.

The C API is quite complete, in that we have only found one construct 9 which is

difficult to efficiently compile using the C API.

4.3. Run-time Code Generation

In addition to being important for correctness and reuse, the link between our gen-

erated code and the PHP system can be used to deal with PHP’s dynamic features, in

particular, the problem of run-time code generation.

Though the include statement is semantically a run-time operation, phc supports

a mode in which we attempt to include files at compile-time, for performance. Since the

default directories to search for these files can change, we use the C API to access the

include_path language flag. If we determine that we are unable to include a file, due

to its unavailability at compile-time, or if the correctness of its inclusion is in doubt,

we generate code to invoke the interpreter at run-time, which executes the included

file. We must therefore accurately maintain the program’s state in a format which the

interpreter may alter at run-time. Our generated code registers functions and classes

with the PHP system, and keeps variables accessible via the PHP system’s local and

global run-time symbol tables. This also allows us to support variable-variables and

the eval statement with little difficulty.

9Dynamic inheritance—where a class is defined in multiple places at run-time, using different parent

classes each time—is difficult to support because the C API’s class definition API depends on compile-time

information, and cannot be altered at run-time. We do not believe this feature is widely used.
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4.4. Compiling with phc

Technically, phc is a source to source compiler: it parses PHP source code into an

Abstract Syntax Tree [5], translates this AST into various levels of intermediate rep-

resentations10, and finally generates C code which can then be further optimized and

compiled into machine code by the C compiler. We perform optimizations at each

of these levels: high level optimizations at the AST and increasingly lower level opti-

mizations at the various IRs; we leave the lowest level optimization (such as instruction

scheduling) to the C compiler.

The generated code interfaces with the PHP C API, and is compiled into an ex-

ecutable — or a shared library in the case of web applications — by a C compiler.

Listings 2–5 show extracts of code compiled from the example in Listing 1. In each

case, the example has been edited for brevity and readability, and we omit many low-

level details from our discussion.

1 int main (int argc, char *argv[]) {

2 php_embed_init (argc, argv);

3 php_startup_module (&main_module);

4 call_user_function ("__MAIN__");

5 php_embed_shutdown ();

6 }

Listing 2: phc generated code is called via the PHP system.

Listing 2 shows the main() method for the generated code. phc compiles all top-

level code into a function called __MAIN__. All functions compiled by phc are added

to the PHP system when the program starts, after which they are treated no differently

from PHP library functions. To run the compiled program, we simply start the PHP

system, load our compiled functions, and invoke __MAIN__.

1 zval* p_i;

2 php_hash_find (LOCAL_ST, "i", 5863374, p_i);

3 php_destruct (p_i);

4 php_allocate (p_i);

5 ZVAL_LONG (*p_i, 0);

Listing 3: phc generated code for $i = 0;

Listing 3 shows a simple assignment. Each value in the PHP system is stored in

a zval instance, which combines type, value and garbage-collection information. We

access the zvals by fetching them by name from the local symbol table. We then

carefully remove the old value, replacing it with the new value and type. We use the

same symbol tables used within the PHP system, with the result that the source of the

zval — whether interpreted code, libraries or compiled code — is immaterial.

10We do not make any use of the bytecode representation used by the PHP interpreter.
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1 static php_fcall_info fgc_info;

2 php_fcall_info_init (

3 "file_get_contents", &fgc_info);

4

5 php_hash_find (

6 LOCAL_ST, "f", 5863275, &fgc_info.params);

7

8 php_call_function (&fgc_info);

Listing 4: phc generated code for file_get_contents($f);

Listing 4 shows a function call. Compiled functions are accessed identically to

library or interpreted functions. The function information is fetched from the PHP

system, and the parameters are fetched from the local symbol table. They are passed to

the PHP system, which executes the function indirectly.

1 php_file_handle fh;

2 php_stream_open (Z_STRVAL_P (p_TLE0), &fh);

3 php_execute_scripts (PHP_INCLUDE, &fh);

4 php_stream_close (&fh);

Listing 5: phc generated code for include($TLE0);

Listing 5 shows an include statement. The PHP system is used to open, parse,

execute and close the file to be included. The PHP system’s interpreter uses the same

symbol tables, functions and values as our compiled code, so the interface is seam-

less.11

4.5. Optimizations

The link to the C API also allows phc to preform a number of optimizations, typi-

cally performing computation at compile-time, which would otherwise be computed at

run-time.

4.5.1. Constant-folding

The simplest optimization we perform is constant folding. In Listing 1, line 23, we

would attempt to fold the constant expression 1024 * 1024 into 1048576. PHP has

five scalar types: booleans, integers, strings, reals and nulls, and 18 operators, leading

to a large number of interactions which need to be accounted for and implemented.

By using the PHP system at compile-time, we are able to avoid this duplicated effort,

and stay compatible with changes in future versions of PHP. We note that the process of

extracting the result of a constant folding does not change if the computation overflows.

11We note that the seamless interface requires being very careful with a zval’s reference count.
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Note that PHP is compiled from source code to internal byte code before it is exe-

cuted. So there is no reason why the source code compiler could not perform constant

folding, allowing the interpreted code to benefit from the optimization. In fact, in 2008

a software patch was developed for the PHP system to do exactly this.

4.5.2. Pre-hashing

We can also use the embedded PHP system to help us generate optimized code.

Scripting languages generally contain powerful syntax for hash table operations. List-

ing 1 demonstrates their use on line 20.

When optimizing our generated code, we determined that 15% of our compiled ap-

plication’s running time was spent looking up the symbol table and other hash tables,

in particular calculating the hashed values of variable names used to index the local

symbol table. However, for nearly all variable lookups, this hash value can be calcu-

lated at compile-time via the C API, removing the need to calculate the hash value at

run-time. This can be seen in Listing 3, when the number 5863374 is the hashed value

of "i", used to lookup the variable $i. This optimization removes nearly all run-time

spent calculating hash values in our benchmark.

Note that an interpreted PHP system could also use this optimization, if the source

code compiler can distinguish cases where the hash value can be resolved at compile

time, and the compiled byte code is able to represent this information to the interpreter.

4.5.3. Symbol table Removal

In Section 4.3, we discussed keeping variables in PHP’s run-time symbol tables.

This is only necessary in the presence of run-time code generation. If we statically

guarantee that a particular function never uses run-time code generation — that is to

say, in the majority of cases — we remove the local symbol table, and access variables

directly in our generated code.

This optimization could, in principle, also be implemented by the source code com-

piler in an interpreted bytecode system. However, it would require that there be two

versions of many of the opcodes in the interpreter — one for where the local variables

are in a symbol table, and another for where they are stored elsewhere. In contrast,

it is relatively simple to vary the way in which local variables are accessed in code

generated by a compiler.

4.5.4. Pass-by-reference Optimization

PHP programs tend to make considerable use of functions written in the C API.

As these functions are not written in PHP, our source level compiler is unable to deter-

mine their signature. Our generated code must therefore check, at run-time, whether

each parameter is passed by-copy or by-reference. However, we are able to query the

function’s signatures of any function written in the C API, which allows us to calculate

these at compile-time, rather than run-time.

Again, this optimization could, in principle, be implemented in a bytecode inter-

preted system. However, it would require that the interpreter would have multiple

versions of the call code, to take advantage of knowing ahead of time whether the

parameters should be passed by reference or copy.
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4.5.5. Caching function calls.

Since PHP is so dynamic, with functions only defined at run-time, we must lookup

functions by name before we can call them. Initially, we began by looking up a function

each time we called it. However, since functions cannot change their definition after

they are first defined, we cache the function lookup after the first time we call it. This

speedup from this optimization is significant (around 23% compared with a similar

version of phc without this optimization).

This optimization could also be applied in an interpretive bytecode system, and

in fact it can be implemented entirely in the interpreter without intervention from the

compiler. A common trick in interpreters for Java is to use slow and “quick” versions of

interpreter instructions. The source code compiler always generates the “slow” version

of the instruction. When the slow instruction is executed for the first time, it resolved

the function name looked up. The instruction then replaces itself in the bytecode with

the corresponding “quick” instruction, which uses the resolved function pointer, rather

than looking up the function by name again.

4.6. Caveats

Our approach allows us to gracefully handle changes in the PHP language, standard

libraries and extensions. However, clearly it is not possible to automatically deal with

large changes to the language syntax or semantics. When the parser changes — and

it already has for the next major version of PHP — we are still required to adapt our

compiler for the new version manually. Though we find it difficult to anticipate minor

changes to the language, framing these problems to use the PHP system is generally

straight-forward after the fact. Finally, we are not resilient to changes to the behaviour

of the C API; empirically we have noticed that this API is very stable, far more so

than any of the features implemented in it. This is not assured, as bugs could creep

in, but these tend to be found quickly since the API is in very heavy use, and we have

experienced no problems in this regard.

5. Interactions with the PHP Memory Model

When assessing the performance of a programming language implementation, it is

natural to think that most of the execution time is likely to be spent performing com-

putations. In fact, as we discuss in Section 6.1, the run-time system often has a major

impact on performance. This is particularly true for scripting languages for three main

reasons. First, scripting languages generally provide automatic memory management

to reclaim objects that are no longer in use. The memory manager adds to execution

time, whether it uses a tracing garbage collector, or as in the case of PHP, reference

counting. Second, even scalar values in scripting languages are typically implemented

with data structures rather than simple C scalars, because additional information such a

type and memory management information must be stored along with the value. Third,

the main data-structuring feature provided by scripting language is the associative ar-

ray (referred to as a table in PHP parlance), which is typically implemented using a

hash table. Thus, even simple record or array type data structures need a more com-

plicated memory representation, which often consists of more than one single piece of
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memory. For these reasons, to optimize the performance of a compiler which uses the

canonical implementation, it is essential to understand the memory model used by the

implementation.

In this section, we discuss the PHP memory model and pitfalls which occur when

linking to such a model.

5.1. The PHP Memory Model

The primitive unit of data in PHP is the zval, a small structure encompassing a

union of values — objects, arrays and scalars — and memory-management counters

and flags. A PHP variable is a symbol table entry pointing to a zval, and multiple vari-

ables can point to the same zval, using reference counting for memory management.

PHP assignment is by copy, meaning that semantically the l-value becomes a copy

of the r-value. This is not only true of scalars: PHP arrays are deeply copied during

an assignment, and object references are copied to a new run-time zval. As an opti-

mization, the PHP system causes the l-value to share the r-value’s zval, increasing its

reference count. The variables are said to become part of the same copy-on-write set.

Thus, even though an assignment is semantically a copy, the assigned value is shared

until it is required to be altered.

Assignment can also be by reference, which puts the two variables in the same

change-on-write set, in a similar fashion. This sets the is_ref flag of the shared zval,

indicating that the variables in this set all reference each other. Setting a variable’s

value, where that variable is part of a change-on-write set, changes the value of all the

other variables in that set.

Variables in a copy-on-write set share the same zval, but are not semantically

related. Although this is an optimization applied by the PHP system, it is a feature

which phc must deal with to interact with the PHP system, and so it reuses it for

performance. In order to update the value of a variable in a copy-on-write set, it must

first be separated. A copy of its zval is created — a deep copy in the case of arrays

and strings — and the original zval has its reference count decremented. Variables in

a change-on-write set must similarly be separated if they are assigned by copy.

Assignment to a variable in a change-on-write set overwrites the zval’s value field,

changing the value of all the variables in that set. Variables with a reference count

of one, which are in neither a copy-on-write or change-on-write set — are treated

similarly.

The PHP interpreter keeps pointers to a variable’s zval in global and function-

local symbol tables — hash tables indexed by the variable’s name. When a function

finishes execution, the local symbol table is destroyed, decreasing the reference count

of all zvals contained within. The global symbol table is destroyed at the end of the

execution of a script.

5.2. Three Address Code versus Copy-on-Write

In creating phc, we came across an interesting pitfall related to PHP’s copy-on-

write implementation12. At first, our naively generated code was around ten times

12See [33] for more information on PHP’s copy-on-write model.

19



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 for ($i = 0; $i < $N; $i++)

2 {

3 $str .= "hello"; // concat

4 }

Listing 6: String concatenation benchmark.

1 for ($i = 0; $i < $N; $i++)

2 {

3 $T1 = "hello";

4 $T2 = $str; // T2.refcount++;

5 $T2 = $T2 . $T1; // concat

6 $str = $T2;

7 }

Listing 7: Lowered string concatenation benchmark.

slower than the PHP interpreter. This was primarily due to the fact that our code used

significantly more memory than the PHP interpreter. The most important factor in this

was our use of three-address code. Note that the source code to bytecode compiler

in the canonical PHP implementation does not convert to three address code, so this

problem does not arise for that compiler, or for the resulting interpreted bytecode.

In order to simplify our compiler transformations and code generation, we low-

ered complex expressions into three address code by adding assignment to temporary

variables. However, these extra assignments increase the reference count of a zval,

meaning not only that a program’s memory remains live for a longer period, but also

that there are more separations, leading to extra memory allocations, copying, and sub-

sequent deallocations.

In a simpler language such as C, copying a value has no ramifications for the copied

value, so introducing three-address code does not have great performance side-effects.

However, in PHP, copying a value will increase its reference count, meaning it must

be separated before it can be written to or altered. We removed many of the cases in

which we generated poor code simply by being more careful during our conversion to

three address code.

To highlight the magnitude of this problem, consider Listing 6. In this example, we

accidentally turn an O(N) algorithm into an O(N2) one, shown in Listing 7. This is a

subtle, but interesting problem stemming from the interaction of three address code and

copy-on-write implementation. Other scripting languages which use copy-on-write,

such as Perl and Tcl, may also experience this problem.

Listing 6 is a string concatenation benchmark, referred to later as strcat. The .=

operator performs in-place concatenation, in this case appending "hello" onto the

end of the string in $str. Though this code did not strictly need to be lowered to three

address code, our over-zealous lowering algorithm added extra temporaries into this

code, resulting in Listing 7. Semantically, these perform the same operations. However,

the zval pointed to by $T2 has a reference count of two after line 4, meaning the string
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Figure 1: Profiling results of the PHP interpreter, using callgrind.

cannot be concatenated in place. Instead, $T2 must be separated, even though it will

be freed on line 4 of the next loop iteration.

It is interesting to observe the difference in performance between the two similar

pieces of code. Listing 6 takes O(N) time.13 By contrast, in Listing 7, when $str

must be copied in every iteration due to an increased reference count, the same work

takes O(N2) time in total. We note that this problem does not only occur due to three

address code. It is not always trivial to determine the reference count of a variable, and

problems such as these may appear in user-code by accident.

6. Evaluation

6.1. PHP performance profile

Conventional wisdom states that a compiled program should run an order of magni-

tude faster than an interpreted program. In our experience, however, dynamic scripting

languages do not follow this rule of thumb. Instead, a program written in a scripting

language spends most of its run-time handling dynamic features, such as dynamic types

and zvals. This limits the potential improvement of simply removing the interpreter

loop. This is particularly important for a compiler like phc which re-uses the PHP

system, as many of the code paths executed will be the same, whether the program is

interpreted or compiled.

To understand where time is spent in the PHP system, and to determine the potential

speedup from optimization, we profiled the PHP system. Figure 1 shows the profile of a

number of PHP benchmark applications, interpreted using PHP version 5.2.3, using the

callgrind tool from valgrind 3.4.1 [23]. We compiled PHP using gcc version 4.4.0,

13We ignore the complexity of memory allocation due to increasing the size of the string, which will be

the same in both cases.
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using the options -O3 -g -NDEBUG, targeting the x86-64 instruction set. We analysed

the flat profile provided by callgrind, looking at the “self ” results (that is, time spent

in a function, not including time spent in the function’s callees). We categorized each

function in the profile into broad categories, based on our knowledge of the design of

the PHP system.

Interpreter overhead includes time spent parsing, generating bytecode, running the

interpreter loop and dispatching to bytecodes. Bytecode handlers are the code blocks

dispatched to by the interpreter, which actually execute the desired operation. Oper-

ators includes time spent executing arithmetic and logical operators. Memory man-

agement is self explanatory. Hashtable access involves access to hash tables (which

includes arrays, objects and symbol tables), including calculating hash values from

string keys. Object oriented field accesses excludes the actual hash table access, but

includes other object oriented overhead such as checking for special object oriented

handlers. libc denotes time spent in the C standard library.

While there is a significant amount of time spent in interpreter overhead (26%),

it is not nearly enough to allow for a order-of-magnitude speedup from compilation.

This lends support to our approach, as compared to that of 211 and Python2C. Both of

these Python compilers take a narrow approach, attempting only to remove interpreter

overhead, but they do not allow for higher-level optimizations or static analysis. This

means that their techniques cannot achieve a great speedup if they were applied to the

PHP system.

Nearly 18% of the run-time is spent performing calculations in the Operators cat-

egory. This is principally due to PHP’s dynamic typing. PHP uses opcodes which

perform significantly more computation than, say, a Java bytecode. For example, an

add uses a single opcode, like in Java. However, where a Java add opcode is little more

than a machine add and an overflow check, PHP’s add opcode calls an add function.

This function, depending on the types of the operands, might merge two arrays, convert

strings to integers, or a number of other operations.

We also see a 10% overhead due to hash table accesses. Hash tables are used ex-

tensively in PHP, not only as the principal data structure (as both arrays and associative

arrays), but also to provide symbol tables and objects. In theory, the PHP system’s

interpreter accesses every local variable through the local symbol table. However, it

uses an optimization similar to our symbol table removal in Section 4.5.3, which pre-

vents this overhead [21]. As a result, all of the hash table overhead comes from array

manipulation, accesses to the global symbol table, and accessing fields of objects.

PHP’s dynamic typing cross-cuts all of these categories. Hash tables must be used

in PHP’s object orientation, as a result of objects’ dynamic types. A great deal of mem-

ory management is due to allocating zvals for every value in the program, used in PHP

to implement dynamic typing. A lot of the overhead of operators are due to checking

types before performing the computation, which might be cheap by comparison. Thus

dynamic types not only take up time in the PHP system, but also prevent compiling

PHP programs to more efficient representations. We expect that static analyses can

be developed which can remove many of these type checks and allow more efficient

compilation, which we intend to follow up on in future work.
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6.2. Performance

The major motivation of this research is to demonstrate that compatibility and per-

formance can co-exist in a scripting language reimplementation. In this section, we

demonstrate that we are able to increase the performance of our compiled code, com-

pared to the PHP system’s interpreter.

The PHP designers use a small benchmark [31], consisting of eighteen simple func-

tions, iterated a large number of times, to test the speed of the PHP interpreter.

We compared the generated code from phc with the PHP system’s interpreter,

version 5.2.3. We used Linux kernel version 2.6.29.2 on an Intel Xeon 5138 with four

cores,14 rated at 2.13Ghz (clocked at 1.6 Ghz), with 12GB of RAM and a 1MB cache

per CPU. Both our compiled code and the PHP system were compiled with gcc version

4.4.0, using -03 -NDEBUG compiler flags.
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Figure 2: Speedups of phc compiled code vs the PHP interpreter. Results greater than one

indicate phc’s generated code is faster than the PHP interpreter. The mean bar shows phc’s

speedup of 1.55 over the PHP interpreter.

Figure 2 shows the execution time of our generated code relative to the PHP inter-

preter. phc compiled code performs faster on 16 out of 18 tests. The final column is the

arithmetic mean of the speedups, showing that we have achieved an average speedup

of 1.55. In Figure 3, our metric is memory usage, measured using the space-time mea-

sure of Valgrind’s [23] massif tool (version 3.2). Our graph shows the per-test relative

memory usage of phc and the PHP interpreter. The final column is the arithmetic mean

of the reductions in memory usage, showing a reduction of 1.30.

14Note that all of our benchmarks are single-threaded, and that PHP does not support threads at a language

level.
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Figure 3: Relative memory usage of phc compiled code vs the PHP interpreter. Results greater

than one indicate phc’s generated code uses less memory than the PHP interpreter. The mean

bar shows phc’s a memory reduction of 1.30 over the PHP interpreter.

It can be expected that we are able to optimize away the interpreter overhead, as

discussed in Section 6.1, to achieve a speedup of 1.35. This is in the same league as

previous implementations. Python2C [28, Section 1.3.1] is reputed to have a speedup

of approximately 1.2, using a similar approach to ours, including some minor optimiza-

tions. 211 [1] only achieves a speedup of 1.06, the result of removing the interpreter

dispatch from the program execution, and performing some local optimizations. It re-

moves Python’s interpreter dispatch overhead, and removes stores to the operand stack

which are immediately followed by loads. We do not benefit from 211’s optimiza-

tion as peephole stack optimization will also not work for PHP, which does not use an

operand stack.

However, our speedup is in some cases much greater than that which can be achieved

by simply removing the interpreter overhead. In most cases, these are due to the op-

timizations which we discussed in Section 4.5. However, these are mitigated in some

cases by poor code generation, especially related to hash tables, for example in ary,

ary2, ary3 and hash2. By contrast, we achieve much better speedups in functions

which primarily manipulate loops and integers, in particular nestedloop and mandel.

We expect that traditional data-flow optimizations will also greatly increase our

performance improvement, and our approach allows this in the future, which neither

211 nor Python2C allow. Without this ability, it is not clear to us how the performance

shortcomings of 211 and Python2C could be resolved, given that the approach used in

their construction seems to inherently limit their performance.

We also believe that the PHP system could achieve higher performance with a better
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Figure 4: Hardware simulation results showing the reduction in the number of branches in

phc compiled code vs that of the PHP interpreter. Results are presented as a percentage of

the instruction count. Results greater than zero indicate phc’s generated code executes fewer

branches.

implementation. However, the run-time work which slows PHP down also slows down

our generated code, and so as PHP is improved, our speedup over PHP will likely re-

main constant or may even improve as the relative interpretation-specific cost (parsing,

bytecode generation, etc.) increases.

6.3. Performance examination

In order to understand why we achieved our performance improvement, we anal-

ysed both interpreted and compiled PHP benchmarks using the cachegrind tool from

Valgrind 3.4.1, a hardware simulator. We measured a wide range of metrics including

instruction counts, level-1 and level-2 data and instruction cache access, and branch

behaviour. We use the same benchmarks, tools and program versions as discussed in

Section 6.2.

Figure 4 shows the change in the number of branches. Results above zero indicate

the decrease in branches as a percentage of instructions executed in the compiled pro-

gram; results below zero indicate an increase. A major difference between interpreters

and compilers is that an interpreter loop typically leads to a great number of indi-

rect branches. Our results do not show this expected decrease however. Indeed, they

even show a slight increase (approximately 2%), and a larger decrease in conditional

branches.

We believe that the cost of the interpreter loop is not great in the PHP interpreter,

when compared to the cost of dynamic features. Our generated code heavily uses
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switch statements in order to handle dynamic typing, and it appears that the reduction

in the number of indirect mispredictions due to interpreter overhead is small compared

to mispredictions due to type checks.

We also measured changes in level-1 and level-2 cache misses, for both instruction

and data caches. The difference in these misses is insignificant (that is, approaching

0%) when compared to instruction count, so we do not present them visually. We would

expect to have in increase in instruction cache misses due to essentially inlining the

bytecode handlers, but this did not materialize. We believe that with larger benchmarks,

this may become more apparent.

Instructions executed
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Figure 5: Hardware simulation results comparing the number of executed instructions and mem-

ory accesses in phc compiled code vs that of the PHP interpreter. Results greater than one

indicate phc’s generated code performs better.

It is clear that the speed of the running programs is not greatly affected by cache

accesses or branch predictors. Figure 5 shows the decrease in instruction count and

memory accesses due to compilation. Since the number of cache misses is not different,

we surmise that the memory accesses removed due to compilation were level-1 cache

hits, which have a low cost. Nevertheless, the ebb and flow of Figure 5 matches that

of our speedup in Figure 2. It seems clear that the decrease in instruction count is

due somewhat to the decrease in conditional branches. Indeed, in Figure 4 only two

benchmarks (hash2 and strcat) have an increase in conditional branches, and those

same benchmarks are the only ones to result in a slowdown instead of a speedup in

Figure 2.

As a result, we believe that our speedups come not from removing the cost of mis-

predictions in the interpreter loop, but instead through a combination of removing the

rest of the interpreter overhead, and small optimizations. One of the costs of the inter-
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preter is an extra layer of indirection when accessing zvals. While we store pointers

to zvals in registers, the interpreter fetches pointers to zvals from memory, leading

to increased memory accesses. While most of our simple optimizations are local, and

aimed at reducing the instruction count, removing symbol tables is aimed at reducing

memory accesses, at which we appear to have been largely successful.

6.4. Feedback-directed optimization

Our technique is roughly similar to inlining the PHP system’s bytecode handlers.

In theory, this could allow the code to be rearranged based on feedback-directed op-

timization (FDO). This might allow the C compiler to do aggressive optimization, in

a similar technique to speculative inlining [8] or trace trees [9]. Ideally, this would

mitigate the slowdown of some of PHP’s dynamic features, in particular its dynamic

type checks, by moving the most likely code into a straight path, eliding pipeline stalls

and branch mispredictions.

In order to determine whether such profiling has a beneficial effect, we reran our

benchmarks using the gcc 4.4’s FDO feature. Figure 6 shows the speed improve-

ments over PHP 5.2.3, when using feedback directed optimization. PHP was config-

ured as discussed above. We compiled phc generated code in the same manner as

above, with the exception that we used the FDO options from gcc 4.4.0. We com-

piled the benchmarks initially using the -fprofile-generate flag. After running

the generated executable, we compiled the benchmarks again using its feedback, with

the -fprofile-use -fprofile-generate flags. Finally, we reused that feedback

when compiling the benchmarks again using the -fprofile-use flag only.

In Figure 6, the “Without FDO” bar repeats the data from Figure 2. The “With

FDO” bar shows the speedup over the PHP interpreter, when the code is compiled

using FDO. Note that neither the PHP interpreter, nor the PHP system, are compiled

using FDO.

It seems that while we achieve a small speedup from FDO, we are not able to au-

tomatically achieve large speedups. FDO causes our speedup to increase from 1.55 to

1.63. Most of the results indicate a small speedup, with the occasional small slowdown.

While this average speedup is not insignificant, it is clear than most of the changes we

seek can not be done at such a low-level, but will instead have to be handled within

phc. In the future, we will attempt to incorporate FDO within phc, applying a tech-

nique like that of Feeley [8].

Currently FDO provides a small speedup which is not possible in an interpreted

environment. Our generated code separates the bytecode handlers’ code paths in a

context-sensitive manner. Since the C code is essentially inlined, it can be optimized

using the profile for a single application. Naturally, we link the compiled code to

the PHP system, which is not optimized in this way. However, we are still able to

automatically achieve a small improvement by exposing phc generated code to the C

compiler.

This optimization is not reasonable for an interpreted program. Other programs

may need to be executed by the same interpreter, and may not benefit from the same

optimizations, due to having a different profile.
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Figure 6: Speedups of phc compiled code vs the PHP interpreter, with and without FDO.

Results greater than one indicate phc’s generated code is faster than the PHP interpreter. The

“Without FDO” bar repeats the results from Figure 2. The mean “With FDO” bar shows phc’s

speedup of 1.63 over the PHP interpreter, when using feedback-directed optimization.

6.5. Run-time code generation in PHP programs

The techniques we describe in this paper are particularly useful in the presence of

run-time code generation. To evaluate its utility, we attempted to determine how often

run-time code generation was used, by analysing a large number of publicly available

PHP programs.

We automatically downloaded source code packages from the open-source code

hosting site sourceforge.net. We selected packages which were labelled with the tag

“php” and contained PHP source files. Of 645 packages chosen automatically, 581

of them contained an include statement. We consider these our test corpus, exclud-

ing packages without a single include statement. We believe files without include

statements are likely to be simple programs or small classes, and are unlikely to be

complete PHP programs. Figure 7 show overall statistics for the analysed code, show-

ing we analysed over 42,000 files, incorporating over 8 million lines of code.15

We created a plugin for the phc front-end to determine the presence of run-time

code generation. We searched for either eval statements, or include statements

which used dynamic features. We considered include statements which used only

PHP constants, literal strings and concatenations to be static — all other features were

deemed to be indicative of run-time code generation. We show the results of this anal-

ysis in Figure 8.

15We measured lines of code using the Unix utility wc, so this figure includes blank lines and comments.
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PHP files SLOC includes

Total 42,523 8,130,837 66,999

Average 73 13,995 115

Figure 7: Package statistics for 581 PHP code packages, including number of files, number of

source lines of code (SLOC), and number of include statements. include statements also

includes require, include_once and require_once statements. “Average” means per

package.

Dynamic includes evals Either Neither

Instances 11,731 1,586

Packages 331 (57%) 156 (26.9%) 358 (61.6%) 223 (38.4%)

Average 35.4 10.2

Figure 8: Dynamic features in PHP code. The rows are: the number of instances of each feature,

the number of packages using the feature at least once (with percentage of total packages), and

the average number of times the feature is used by packages which use it.

From these figures, it is clear that support for run-time code generation is excep-

tionally important. It is used in 61% of PHP application, and when it is used, it is used

extensively, with evals appearing over 10 times in each package in which they appear,

and dynamic includes appearing 35 times in each package in which they appear. This

strongly indicates that our approach of supporting these features in our ahead-of-time

compiler was wise, and that more static approaches would be unable to compile a large

amount of PHP code. In fact, less than 39% of PHP applications do not use these

dynamic features (though other dynamic features exist, which we did not attempt to

detect).

Dynamic include statements are typically either plugin mechanisms or provide lo-

calisation. We suspect that in many cases, localization could be handled statically. This

would mean searching for files in the source directories and replacing the dynamic in-

clude with a switch statement and a set of static includes. This approach is used in

other tools [35]. However, it is not safe, as the directory in which to search can be

altered at run-time.

While dynamic includes are prevalent, and require special support, we note that the

large majority of include statements use a static string. Of the 66,999 includes, fewer

than 18% of them are dynamic. This implies that static analysis of PHP can be useful

in a lot of cases, if code generation is not required.

7. Conclusion

Scripting languages have become very popular, but existing approaches to com-

piling and reimplementing scripting languages provide insufficient compatibility with

the canonical implementations. We present phc, our ahead-of-time compiler for PHP,

which effectively supports important scripting language features which have been poorly

supported in existing approaches; we effectively handle run-time code generation, the

undefined and changing semantics of scripting languages, and the built-in C API.
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An important problem of compiling scripting languages is the lack of language

definition or semantics. We believe we are the first to systematically evaluate linking

an interpreter — our source language’s de facto specification — into our compiler,

making it resilient to changes in the PHP language. We describe how linking to the

PHP system helps to keep our compiler semantically equivalent to PHP.

To verify the correctness of phc, we use a test suite of over 580 PHP scripts. We

consider a test to be successful when the compiled code gives the same result as when

the script is ran with the canonical interpreter. We have used this test suite with PHP 5

releases between May 2007 and June 2009. Apart from some minor code generation

bugs exposed by PHP 5.3.0, phc has worked successfully across all these releases.

We also generate code which interfaces with the PHP system. This allows us to

reuse not only the entire PHP standard library, but also to invoke the system’s inter-

preter to handle source code generated at run-time. We discuss how this allows us to

reuse built-in functions for PHP’s operators, replicating their frequently unusual se-

mantics, and allowing us to automatically support those semantics as they change be-

tween releases. Changes to the standard libraries and to extensions are also supported

with this mechanism.

Through discussing existing approaches, we show that our technique handles the

difficulties of compiler scripting languages better than the existing alternatives. We

show too that the percentage of PHP packages which benefit from our approach exceeds

60% of our sample. We show that we are able to achieve a speedup of 1.55 over the

existing canonical implementation, and present a detailed discussion of why this is so.

A speedup of 1.55 may seem disappointing; after all, traditional wisdom holds

that compiled code is generally an order of magnitude after than interpreted code. We

have explained why this may not be the case for scripting language. A number of our

optimizations have allowed the generated code to avoid slow paths through the PHP

system. We believe that traditional code optimization techniques will allow further

speed improvements in the same way, and that our technique provides a path for sig-

nificantly greater optimization in the future. Finally, when PHP is employed in large

server farms with thousands of servers, a speedup of 1.55 allows the number of servers

to be reduced significantly.

Overall, we have shown that our approach is novel, worthwhile, and gracefully

deals with run-time code generation, large libraries written using the C API, and unde-

fined language semantics, while maintaining semantic equivalence with the language’s

canonical implementation, and achieving a notable increase in performance.
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