Accepted Manuscript

SOFTWARE
An Aspect-Oriented, Model-Driven Approach to Functional Hardware Verifi- DESIGN

cation

Eamonn Linehan, Siobhan Clarke

PII: S1383-7621(11)00018-X

DOL: 10.1016/j.sysarc.2011.02.001
Reference: SYSARC 999

To appear in: Journal of Systems Architecture
Received Date: 30 June 2010

Revised Date: 20 December 2010

Accepted Date: 4 February 2011

Please cite this article as: E. Linehan, S. Clarke, An Aspect-Oriented, Model-Driven Approach to Functional
Hardware Verification, Journal of Systems Architecture (2011), doi: 10.1016/j.sysarc.2011.02.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.sysarc.2011.02.001
http://dx.doi.org/10.1016/j.sysarc.2011.02.001

An Aspect-Oriented, Model-Driven Approach to
Functional Hardware Verification™

Eamonn Linehan, Siobhan Clarke

Lero - The Irish Software Engineering Research Centre, Distributed Systems Group, School
of Computer Science and Statistics, Trinity College Dublin, Ireland

Abstract

The cost of correcting errors in the design of an embedded system’s hardware
components can be higher than for its software components, making it important
to test as early as possible. Testing hardware components before they are imple-
mented involves verifying the design through either formal or more commonly,
simulation-based functional verification. Performing functional verification of a
hardware design requires software-based simulators and verification testbenches.
However, the increasing complexity of embedded systems is contributing to test-
benches that are progressively more difficult to understand, maintain, extend
and reuse across projects. This paper presents an aspect-oriented domain-
specific modelling language for the e hardware verification language that can
be used as part of a model-based software engineering process. The modelling
language is designed to produce well modularised models from which e code
can be generated, thereby improving engineers ability to develop testbenches
that can be more easily maintained, adapted and reused. We demonstrate the
suitability of the modelling language through its application to a representative
testbench from the automotive semiconductor industry.

Keywords: Model-Based Software Engineering, Aspect-Oriented
Programming, Theme/UML, Code Generation, MARTE, DSML, Hardware
Verification

1. Introduction

Embedded systems are engineering artifacts that involve computation that
is subject to physical constraints [1]. In our daily lives, we are surrounded by
countless examples of embedded systems. For instance, vehicles contain tens of
electronic components (control units, sensors, and actuators) that perform tasks

*This work was supported, in part, by Science Foundation Ireland grant 03/CE2/I303_1
to Lero - the Irish Software Engineering Research Centre (www.lero.ie)
Email addresses: Eamonn.Linehan@scss.tcd.ie (Eamonn Linehan),
Siobhan.Clarke@scss.tcd.ie (Siobhdn Clarke)

Preprint submitted to Journal of Systems Architecture February 18, 2011

ranging from the control of mechanical aspects of the vehicle, such as engine
management, anti-lock brake system, suspension and transmission, to tasks such
as communication, navigation, and entertainment [2]. Similarly, our homes and
workplaces are full electronic devices. Such embedded systems require a high
level of reliability. Consequently, the process of developing such systems and
rigorously verifying their behaviour is critical [3].

Embedded systems are typically realised as a combination of both hardware
and software. The hardware elements range from a single microcontroller to
systems containing multiple processing units, peripherals and networks. Recent
advances in design automation and semiconductor manufacturing have resulted
in the potential to build increasingly complicated systems that consequently
are difficult to develop and test. The development process for the hardware
components of such systems is constrained by a need to test early because of
the increased cost of correcting bugs after hardware has gone into production [4].
The accepted practice is to test before implementation by performing functional
verification of the design [2].

In the case of embedded systems that are realised in hardware, Bergeron
reported that 70% of system design time is spent on verification [5], while in
2007, Li et al. asserted that up to 80% of design costs in many circuit de-
sign projects are due to verification [6]. The primary method of functional
verification of hardware is to perform dynamie; simulation-based verification
using testbenches written in domain specific verification languages [7]. These
languages include, VHDL, Verilog, e and OpenVera [8], but may also include
external data files or C routines [5].

The growing complexity of verification environments can be attributed to
the increased state space of more complex hardware designs [9]. In fact, it
has been shown that verification complexity rises exponentially with hardware
complexity [10]. In embedded systems design, this problem is commonly referred
to as the ‘productivity gap’. As complexity grows, the productivity gap is the
difference between hardware ecapacity and engineering output [11]. With such a
large proportion of design time spent on verification, reducing the productivity
gap requires verification engineers to: 1) increase the reusability of hardware
verification testbenches; and 2) work at higher levels of abstraction.

There have been a number of recent efforts to address the problem of reuse-
ability in functional hardware verification [12, 13]. However, reusing verification
IP is challenging, not least because of incompatible methodologies from single
vendors targeting single verification environments, poorly documented verifica-
tion code and a need to customise verification code provided by third parties.
In addition, many testbenches have evolved over years, developed by different
teams at different sites, with many layers of new functionality added over a
period of time, with knowledge lost along the way through incomplete docu-
mentation [14].

The second approach to increasing productivity is to work at higher levels
of abstraction, where reusing code is made simpler by hiding implementation
detail. In the past, this approach has been used to enhance the productivity of
embedded systems designers by allowing them describe an object (for example,

a logic gate made of transistors) using a model where some low-level details are
ignored. By applying this approach, digital electronic design went from drawing
layouts, to transistor schematics, logic gate netlists and ultimately to today’s
register transfer level (RTL) descriptions [2]. Similarly, verification engineers
have used hardware environments that have evolved from low level C libraries to
aspect and object-oriented domain specific languages for the verification of RTL
designs with built in support for functional coverage measurement, constrained
random generation and other verification-specific functionality. However, the
volume and complexity of code is increasing, methodologies and development
process do not take full advantage of the power of these languages and the use of
programming paradigms unfamiliar to hardware engineers hampers their ability
to understand, maintain, extend and reuse code across projects.

Modelling is gaining popularity as an approach to the design of complex
systems, raising the level of abstraction at which developers work;, promising
improved quality and increased productivity through automation.” A model is
an abstract representation of a system, often diagrammatic in nature. Models
are widely used as part of the design process of safety critical embedded sys-
tems to provide insights into the dynamics and algorithmic aspects of systems
through simulation [4]. These simulation models undergo test and verification
before designs are implemented. The increased state space of complex hardware
designs means that the software-intensive verification process is also increasing
in complexity. Despite this, the design of verification environments has benefited
little from the use of modelling techniques and hence has seen little application
of developments in the area of model-driven engineering! [15]. This is partly due
to the difficulty in creating adequate models with support for concurrency, real-
time requirements and physical properties of continuous functioning computing
platforms using standard object-oriented modelling techniques [16, 17].

Current modelling languages do not contain properties and modelling con-
structs targeting the hardware verification domain. Concepts such as, coverage,
constrained random generation, assertion checking, simulation time and inter-
acting with a design‘under test are absent from modelling languages targeting
other domains. In addition, many of these properties are verification concerns
that cut across the structure and behaviour of functional concerns.

This paper presents a domain-specific modelling language for the e hardware
verification language that can be used as part of a model-driven engineering
toolset for embedded systems development. The e language is chosen as a
representative verification language because of its feature set and wide use in
industry: The e modelling language metamodel is implemented as an extension
to UML, incorporating aspect-oriented constructs from Theme/UML [18] and
design and verification constructs from MARTE [19] to help engineers organise
code in a way that makes it easy to deal with the concerns they really care

IModel-driven engineering is a design approach where systems are specified as models.
Depending on the level of abstraction of the model, code can be generated ranging from
system skeletons to complete, deployable products.

about in a verification environment [20]. Our model-driven approach is designed
to produce well modularised, cleanly decomposed models from which e code
can be generated, thereby improving engineers ability to develop testbenches
that can be more easily maintained, adapted and reused. Providing for aspect-
oriented design at the model level makes it possible to integrate with and directly
reuse existing testbenches, providing a migration path to facilitate adoption of
a model-based software engineering process.

The rest of the paper is structured as follows. Section 2 provides background
on the typical embedded system hardware development and verification process
and tools and describes the e hardware verification language. Section 3 presents
the UML2 profile for the e verification language illustrating how it can be used
to model hardware verification testbenches and Section 4 describes an example
where a testbench is designed using the e profile and source code is generated.
Section 5 summarises related work while Section 6 concludes the paper and
outlines plans for future work.

2. Background

To provide a sufficient context and terminology for our discussion on mod-
elling languages for hardware verification, we start by presenting some back-
ground on verification methods and hardware verification languages.

2.1. Functional Verification Testbenches

Verification of hardware designs can be performed dynamically based on sim-
ulation, or statically based on formal techniques. In the automotive industry it
is common to use both approaches, formal techniques where safety is important
and simulation for the complete design as it provides coverage metrics that give
the designers some assurance that the complete design state space has been
exercised.

This paper concerns itself with the modelling of verification languages for
the dynamic, simulation-based verification of hardware designs. Simulation-
based verification is currently the primary method for functional verification
of hardware and system-level designs [9]. It consists of providing input stimuli
to the Design Under Test (DUT), and checking the correctness of the output
response. The success of simulation has largely been due to automation through
development of testbenches, which provide the verification context for a DUT.

The large proportion of design time consumed puts verification on the critical
path of a design process that is increasing in complexity and cost [21]. In
addition, the majority of design flaws are functional or logic related (78% and
increasing) and current design processes and tools are achieving a first silicon
success of only 28% with a downward trend [22]. These factors compound each
other resulting in significant design challenges in building functional verification
testbenches [1].

Figure 1 illustrates a typical design process in which a DUT is initially spec-
ified. From this design description an engineer produces an implementation in

Requirements Design Verification Fabrication

—complete-
Requirements

fcorrechons-

. I Functional

Specification —»' RTL Desigri I——»I Ve
Placement and
Routing

Design Implementation Execution

Q—
Testbench
Architecture

O—Specification

New Functionality—

Simulation

Analysis

Test C _—

end—-()

Figure 1: Typical Hardware Design and Verification Process.

a hardware description language. The verification phase consists of designing a
testbench architecture and implementing the testbenches and a set of testcases.
Executing the testbench against a simulated design verifies the functional cor-
rectness of the hardware design [23, 24].

Architecturally, a typical testbench consists of a generator of input stimuli,
a checker or monitor for checking output response and a coverage analyser. In
addition, depending on the component being verified, portions of the system may
be simulated as part of the testbench to address issues related to system-level
integration and the effects of distributed concurrent computation (for example,
data buses). The testbench development process can involve many engineers
with limited cross-over between teams writing verification testbenches and teams
implementing the design.

2.2. Hardware Verification Languages

Functional verification testbenches are typically written in domain specific
verification languages such as VHDL, Verilog, e and OpenVera [8], but may
also include external data files or C routines [7, 5]. These languages have
verification-specific constructs as primitives and built-in capabilities to per-

form pseudo-random test generation. The e hardware verification language is
one such domain-specific programming language that was developed in 1997 by
Verisity Design (subsequently acquired by Cadence Design Systems [25]) as part
of their Specman tool [26]. e was standardised as IEEE 1647 [27] and a second
revision of the standard was published in 2008.

This paper adopts e as the verification language on which to base a do-
main specific modelling language so that familiar verification constructs could
be carried over into the modelling language, making it easier for verification en-
gineers to adopt modelling as part of their development process and ultimately
to transition to a model-driven development process. In addition, e is a flex=
ible language with growing tool support [8] and is used by our collaborators
in the automotive semiconductor industry, providing a source of early industry
feedback on our work. By initially focusing on a single verification language it
is possible to support current development techniques in terms of design and
verification language, reducing the burden of learning a new set of tools and
languages [28].

In providing support for the development of testbenches, e brings together
concepts from several languages [29] and

e has a basic object-oriented (OO) programming model with automatic
memory management and single inheritance in a similar manner to Java;

e uses native constructs to modularise concerns that cut across others using
aspects;

e supports constraints as object features, using constraints to refine object
models. The execution model resolves the constraints, picking random
values that satisfy the constraint set;

e is strongly typed, like Pascal and Modula;

e has concurrency constructs for hierarchical composition, similar to hard-
ware description languages such as Verilog and VHDL; and

e contains temporal logic constructs that borrow from linear temporal logic
and interval temporal logic.

As a testbench language, e provides many constructs related to stimuli gen-
eration; such as specification of input constraints and facilities for data packing,
as well as for assessing simulation coverage. All variables are assigned a random
value unless either marked as not generatable or constrained to be a specific
value. e contains constructs that support monitoring and checking the response
of the DUT. In addition, there are constructs to support assessment of the
functional coverage of the DUT (as opposed to simply the code coverage).

3. An Aspect-Oriented Model-Driven Approach

This paper presents a modelling language for the e hardware verification lan-
guage that can be used as part of a model-based software engineering process

for embedded systems development, raising the level of abstraction at which de-
velopers work, promising improved quality and increased productivity. Model-
based software engineering (MBSE)? is an approach to software development
that focuses on the production of high-level models that are used as the ba-
sis for automating system implementation. The fundamental notions behind
MBSE are to raise the level of abstraction of software specifications away from
underlying implementation technologies and to automate the transition from
design specifications to corresponding implementations [30].

8.1. Aspect-Oriented Design

The e hardware verification language (and Vera 6.24) supports aspect-
oriented constructs, which must therefore be supported by modelling tools. Be-
fore we present the design of our domain-specific modelling language, we provide
a brief introduction to aspect-oriented design and modelling® in the context of its
improvements in support for modularisation over the object-oriented paradigm.

Object-Oriented Programming (OOP) offers a “separation of concerns” that
allows designers to break down a program into distinct parts. Each of these
parts, be they classes, packages, components, etc., are designed to encapsulate
all the code related to a single concern. However, object-oriented decomposition
results in developers having to work on many concerns at once as secondary
concerns crosscut the primary decomposition resulting in modules that overlap
in functionality. Allan et. al. presented a simple example of a single task from
a class used to manage a DMA controller [33]. In his example, he showed how
code for tracing the execution of the program, handling errors, checking input
and accessing shared resources was scattered throughout the code dealing with
the tasks intended function. The code dealing directly with the task’s intended
function is referred to as the dominant concern and the remaining code belongs
to secondary cross-cutting concerns.

Aspect-Oriented Programming (AOP) offers a new construct, an aspect, that
can be used to encapsulate these crosscutting concerns in a way that minimises
the overlap in functionality between modules [31]. Dominant concerns are coded
using OOP as before and aspects are used to code cross-cutting concerns and
integrate them with the dominant concerns. Studies have shown that AOP
improves the degree to which crosscutting concerns are separated in software,
improving maintainability and developer productivity [34, 35, 36].

The AOP features of the e language give it the power to significantly sim-
plify and accelerate the development of reusable, automated, verification envi-
ronments [20]. However, aspect-based techniques in e are rarely considered at
design time as a way of modularising code. Instead, aspect-oriented features

2The terms model-driven development, model-driven engineering and model-driven archi-
tecture refer roughly to the same software engineering approach and are used interchangeably
in the literature, though model-driven architecture generally refers to OMG’s standards-based
approach.

3See Kiczales et. al. for description of aspect-oriented programming [31] and Gomes et.
al. for chapters on its application in embedded systems design [32]

in e are often used to add new features to existing code without having to in-
trusively modify the code base. This can, in part, be attributed to published
methodologies [37, 26], verification IP [38, 13, 12], tutorials [39, 40] and best
practice guidelines [41] on testbenches design from industry.

Reasoning about decomposition becomes simpler at higher levels of ab-
straction [42]. For this reason the aspect-oriented paradigm, when applied at
the model level and with the existing support of underlying verification lan-
guages, can contribute to a more productive functional verification process.
It has been reported that hardware verification testbenches lend themselves
to aspect-oriented design as they commonly contain concerns that cannot be
cleanly modularised with object-oriented methods alone [43, 33, 17, 44]. Fur-
thermore, aspect-oriented design complements the MBSE approach by facili=
tating the partitioning of models along aspect boundaries, providing a single
view of each concern. However, integrating MBSE and AOP requires modelling
conventions for expressing crosscutting concerns at the model level. This pa-
per presents a verification testbench modelling language based on extensions to
Theme/UML, an aspect-oriented modelling language [18].

3.2. Model-Driven Theme/UML

Theme/UML facilitates graphical modeling of concerns in an extended ver-
sion of UML, the object-oriented analysis and design-language from the Object
Management Group. Theme/UML add constructs including a new type of clas-
sifier called a theme and three integration strategies - merge, bind and override,
to UML. These UML constructs are implemented as a UML2 profile, facilitating
the tagging of UML models with information that indicates where functionality
belongs to an aspect and how aspects are related to each other. The theme
construct is based on the standard UML package and encapsulates the design
specification of a base or aspect concern. Base themes are modelled using the
standard UML process and any of the available diagram types. An aspect theme
is one that encapsulates a crosscutting concern and is designed relative to ab-
stract templates. In the current version of Theme/UML, sequence diagrams are
used to specify when and how the templates interact with the base themes.

Theme/UML supports compositional constructs to cater for both overlap-
ping and crosscutting relationships between themes. A merge integration strat-
egy is used between two or more themes to produce a single theme containing
the union of the merged themes. A bind integration strategy facilitates compo-
sition of aspect themes with base themes e.g., specification of how cross-cutting
embedded systems concerns are composed with core functional concerns. Bind
composition relationships relate aspect themes template operations to triggering
base operations by means of a sequence diagram. The third kind of integration
strategy is called override and deals specifically with overlapping specifications
where the design specification of one theme is denoted to override that of an-
other.

In addition to the profile, a set of tools have been developed to support a
MBSE process based on Theme/UML. These tools facilitate modularised design
with Theme/UML and subsequent model composition and synthesis to source

Figure 2: Model-Driven Theme/UML Process

code [45]. The tool suite and process was originally designed to support devel-
opment of applications for deployment on smartphones but has been extended
to support transformations to other embedded software platforms by offering
synthesis to C code [46]. Figure 2 illustrates the Model-Driven Theme/UML
development process. The process contains three distinct phases that are titled
based on the activities of the developer during each phase.

The first phase involves system modelling via specification of base concerns,
aspect concerns and composition relationships in Theme/UML. The second
phase involves composition of the models specified during the modelling phase to
produce a composed, platform-independent standard UML view of the system.
The transformation phase performs a template-based model-to-text transforma-
tion using an open code generation technology called Xpand, part of the Eclipse
Modelling; Model To Text Project 4.

In collaboration with Infineon Technologies, we have analysed the challenges
in modeling hardware verification environments, using the Theme/UML MBSE
process [14]. Theme/UML is a natural fit to modeling e testbenches because
of its aspect-oriented approach. However, when applied to verification, the ex-
tended Model-Driven Theme/UML approach has been found to be deficient in
a number of areas. Specifically, temporal concerns, runtime constrained com-
position, constraints and type extension could not be easily modelled. This
paper contributes, a new profile for the e verification language that supports

4http://www.eclipse.org/modeling/m2t/

aspect-oriented design using Theme/UML and a model-based software engi-
neering process based on the model-driven Theme/UML process and tools.

3.3. Modeling the e Language

This section presents the e UML2 profile, a collection of extensions that col-
lectively customise UML for the hardware verification domain. The following
requirements have been identified for extensions to standard UML. These re-
quirements are derived from the e language reference model [27] and literature
on best practice in metamodel design [47, 48].

Aspects: Aspect constructs in e have different semantics than languages
like AspectJ. Theme/UML pointcuts are modelled when a theme template
is bound to a set of triggers in the base themes. This method of specifying
aspect composition is more powerful than is required by e, which has only
three types of join point and permits only a single join point per advice.

Modularity: The e language does not impose strict rules on how aspect
and object-oriented code should be packaged. The modelling language
should enforce its own packaging rules to organise code so that aspects
and object-oriented code can be easily navigated and to facilitate the
mapping from aspects to files as proposed by Robinson, [20, pg. 75, chap.

Reuse: It is required that lightweight metamodelling approach is taken to
allow the reuse and specialisation of existing profiles. This will also reduce
the effort required to build and integrate a consistent toolchain for MBSE.

Type System: Support must be provided for scalar sub-types. These types
are created in e using asscalar modifier to specify the range or bit width of
a scalar type. In addition, these modifiers can be applied to enumerated
scalar types.

Encapsulation: There are two types of object in e, a struct and a unit.
Structs roughly correspond to objects in other programming languages
and units differ in that they are bound to a component in the DUT.

Inheritance: Two types of inheritance must be supported, like and when.
Like inheritance is the classical single inheritance familiar to users of all
object-oriented languages. When inheritance is a concept unique to e and
is specified by defining sub-types with when struct members, supporting
multiple orthogonal sub-types based on field values.

Physical Fields; Fields can be either physical or virtual. Physical fields
represent data to be sent to the DUT and may be automatically generated
or not. Attributes attached to fields define the behaviour of the field when
copied or compared.

10

e Behaviour: Operations can be time consuming or non-time consuming.
Time consuming operations are triggered by events that are defined based
on a simulator clock.

e Concurrency: Behavioural actions exist to control concurrent execution of
time-consuming methods.

e Constraints: Constraints define the legal values of data items. There are
two basic types of constraints: Hard constraints must be met or an error
is issued; Soft constraints suggest default values but can be overridden by
hard constraints.

e Events: The e language provides temporal constructs for specifying and
verifying behavior over time. All e temporal language features depend on
the occurrence of events, which are used to synchronise activity within the
simulation environment.

e Temporal Behaviour: The environment interprets and guarantees tempo-
ral behaviour rules. These rules are also used to define events based on
simulator clocks and must be modelled.

e Coverage: Coverage groups are struct members that contain a list of data
items for which data is collected over time. This data is analysed by
developers to determine design coverage for tests.

e Simulation Constructs; Verification languages typically expose a simulator
interface through constructs built into the language.

e Pre-defined Elements; The e verification language contains a range of pre-
defined types, structs, events and error handlers which must be modelled.

The domain specific abstractions, highlighted in our requirements, have been
implemented as extensions in a UML2 profile. Profiles are UML’s mechanism
for lightweight extension where each extension of an element from the UML2
metamodel is captured by a stereotype. Each stereotype definition can be asso-
ciated with properties that make sense for the domain targeted by the profile.
Stereotypes are then used at the modeling level as annotations on model ele-
ments.

A systematic approach was taken to the design of the e UML2 profile. Fol-
lowing advice from the literature [48], we used the e reference model [29] as
conceptual model from which entities could be extracted and transformed into
stereotypes. For example, the reference model defines e constructs as belong-
ing to categories that determine how the constructs can be used. Examples of
these categories are Struct Members and Actions with Struct Members being
constructs that are contained within a Struct such as, fields, methods, sub-
types, constraints, coverage and temporal declaration. Our modelling language
includes a Struct stereotype that is an extension of the UML2 Class metaclass.
Struct Members are introduced as NamedElements that are related to Structs

11

package ie.lero.tcd.e[eﬁProfiIeRelationshipsU
“«profile”» “«profile”»
MARTE ThemeUML
£3 MARTE_Foundations “# merge
I MARTE_Annexes “# pind
CJMARTE_AnalysisModel % explicit
£ MARTE_DesignModel “# theme
“# override
1 1 7
“«profile’» “«profile’» ,
Time VSL ,
/
~ /
\ N /
\ /
/
“«profile”»
e
1 1
“«profile”» “«profile”»
Verilog VHDL

Figure 3: UML Profile Relationships

by a containment relationship. Struct members that represent concepts that do
not already exist in the UML2 Class element (the parent of the Struct element)
are defined as stereotypes inheriting from the StructMember stereotype.

Other e specific constructs, such as, field parameters are defined as tags
(stereotype properties). For example, e supports parameters (i.e. physical or
generated) that can be attached to fields to indicate how the fields interact with
the simulation environment during verification. These parameters are modelled
as attributes of the ‘StructMember stereotype.

The e UML2 profile inherits features from both Theme/UML and the OMG
UML profile for Modeling and Analysis of Real-time and Embedded systems
(MARTE) [19]. MARTE is a UML profile that supports specification of real-
time and embedded systems. In addition to functional design, this profile adds
constructs to describe the hardware and software (for example, OS services)
resources and defines specific properties to enable designers to perform timing
and power consumption analysis. MARTE packages features into individual
sub-profiles allowing one to import only the parts of the profile that are required.

The e profile extends and reuses elements from the Time and Value Specifi-
cation Language (VSL) (See Figure 3). These constructs are reused to specify
constructs such as concurrency and synchronisation and to attach quality at-
tributes and model simulator clocks. For example, the MARTE TimeFEvent
stereotype from the Time sub-profile is used as a basis for modelling e events
and their associated actions. In addition, MARTE’s TimedElement is the basis

12

for defining constructs to represent e’s time consuming methods. From the VSL
sub-profile we have reused MARTE’s IntervalType to define scalar data type
range modifiers in e.

The e profile itself is divided into three packages: the Core package contains
model elements corresponding to e language constructs; the Verilog package;
and the VHDL package contain simulation related constructs (statements or
unit members that expose functionality simulator).

“«stereotype”» “«metaclass”». “«stereotype’»
ThemeUML::theme Element i Directil
[Package] [Element]
-template T
T 7 “«stereotype» “«stereotype’» “«stereotype»
«metaclass»
IP“a ec::ga:s e::ExtendableElement exlfDef e::Port
[Element] [Element] [NamedElement]
Import -definition : String -element-type.
“«stereotype’»
e:Module |
[Package]
“«stereotype» “«stereotype » “«stereotype”»
0." euStruct e::Field e::Method
ype » [Class] [Property] [Operation]
“«stereotype » ex:Unit -ownedCover : Cover [0.."] -physical : boolean -isEmpty : boolean = false
e::Manifest [Class] -ownedEvent : Event [0.."] -assignDefaultValue : boolean
-const : boolean
[Package] -hdl_path : String . - boolean
-keepConstraint : String
-keepSoft : boolean
-members|0..*

“«stereotype’»
e::Event
[NamedElement]

“«stereotype»
e::StructMember
[NamedElement]

-event-type |1 T

“«stereotype » -definition| “«stereotype’»
e::Cover * e::Coverltem
[NamedElement] [NamedElement]
-empty : Boolean = false -type : Field

Figure 4: e Profile Aspect-Oriented Elements

Figure 4 illustrates some of the core UML extensions in the profile®. Classes
with the e:: prefix belong to the e profile. The main structural entity in the
profile is e::Module, an extension to ThemeUML::theme which in turn is an
extension to the uml:Package UML 2.0 metamodel element. The e::Module class
represents a block of verification logic that belongs in a single file. Modules can
encapsulate a single aspect or a collection of object-oriented structures and are
related to each other using import relationships. Other key structural elements
of the profile include e::Struct and e::Unit, each of which have a corresponding
abstract stereotype definition that groups their members. For example, e::Struct
has an abstract e::StructMember stereotype that is realised by elements such as

5The complete UML2 profile is available for download from our website http://www.lero.
ie/project/saa2 and a document providing examples and illustrating its application has been
published as a technical report [49].

13

e::Bvent, e::Cover, e::Operation and e::Field. Where a member is extendable
by an aspect it inherits from the e::ExtendableFElement stereotype, indicating
that this element can be used as a join point.

package ie.lero.tcd.e[e_AOP]J

“«stereotype’» “«stereotype’» Supports conditional
ThemeUML.::bind e::Extend aspect;orientgd
Dependenc K— Dependenc: extension using
— [Dep] [Dep 3_/] —{Theme/UML
-binding -struct-subtype : String composition
relationship and

specified behaviour
(Default IsAlso)

\ -advice_type |1
‘«metaclass”» “«metaclass’
D .
ependency Interaction

T

“«interaction”» “«interaction”» “«interaction”»
IsAlso IsFirst IsOnly
(e.AdviceType) (e.AdviceType) (e.AdviceType)
-aspect -aspect -aspect

-base -base -base

Figure 5: The definition of e UML2 Profile aspect-oriented constructs as extensions to
Theme/UML.

Figure 5 illustrates how the Theme/UML profile is reused and extended
to support e’s aspect-oriented constructs. Theme/UML’s profile extends the
UML 2.0 metamodel uml::Dependency class to add a bind attribute. This new
relationship is intended to model a bind relationship between base and aspect
themes. The e profile further refines the Theme UML::bind stereotype by extend-
ing it-with the e::Fxtend stereotype. This stereotype models an aspect-oriented
extension and has two attributes, the struct_subtype to support conditional ex-
tension and an advice_type attribute of type uml::Interaction. The profile in-
cludes three predefined uml::Interaction instance that model the possible advice
types in e. Figure 6 shows the sequence diagram for one of these instances of
uml::Interaction, isFirst.

The isFirst advice type indicates that the aspect behaviour should be exe-
cuted before the base behaviour at a join point. This is illustrated in the se-
quence diagram where the aspect behaviour is called first, followed by the base
behaviour before the operation returns. These interactions serve as a shorthand

14

aspect base

1: target
2: source
3: target
4: return
5: return

Figure 6: Sequence diagram for interaction isFirst

for modelling the aspect-oriented constructs of e. To use Theme/UML directly
without this extension would require composition behaviour to be specified in
a unique sequence diagram for every piece of advice. ‘The one to one mapping
from advice to join points in e would result in many diagrams, limiting the
scalability of the approach.

Figure 7 illustrates how a developer would apply these aspect-oriented con-
cepts to a UML model using the e profile. In this example two modules contain
objects that are related through an aspect-oriented extension. In this case
the pkt-msg() operation in the base modules Packet object is extended by the
method of the same name in the eth module using the isFirst advice type.
This construct should be interpreted as, at runtime, the pky_msg() behaviour in
the eth module should be executed before the pky_msg() behaviour in the core
module. A more complex-example of this behaviour is illustrated in Section 4.

The following modifications to Theme/UML are specified to facilitate the
modelling of the aspect-oriented constructs in e:

1. Composition relationships are represented by curved, dashed lines between
elements to be composed. All composition relationships are directional
with theme precedence being inferred from relationships direction.

2. Override integration must be specified explicitly in the same way as merge
integration.

3. Each element named in a match composition must appear in both modules
and be of the same type.

4. Matching elements in a composition are specified as part of the compo-
sition using a list syntax (similar to template and binding specification)
that supports multiple element specification using groups and wildcards.

5. Theme composition relationship is extended to incorporate an advice_type
tag that specifies and instance of a umli::Interaction.

The e profile also includes all e’s primitive datatypes, to which the e::ScalarModifier
stereotype can be applied. An e::EnumeratedScalar stereotype extending uml:: Enumeration

15

1]

“«Module’»
core

“«Struct’»

Packet
{ownedCover = PacketCover }
- > “«Field’»-kind : PacketKind

“«Method"»+pkt_msg()
“«Method»+checksum()
“«Method"»+run()

N

I ‘«Extend’»
| {advice_type = IsAlso ,
binding = "match[Packet.run()]" }
| , g
— «Module»
S eth

“«Struct’»
‘«Extend’» Packet
{advice_type = IsFirst ,
binding = "match[Packet.pkt_msg()]" }
—_— — —- —- - T = - — = = = = = “«Field"»-proto_version : int
“«Field"»-virtual_channel_identifier : int

{ownedCover = PacketCover }

“«Method »+pkt_msg()
“«Method "»+checksum()
“«Method »+run()

Figure 7: An example of applying aspect-oriented profile constructs.

supports the definition of lists of symbolic constants. Like and When inheritance
are modelled as stereotype extensions to uml::Generalisation. Events are mod-
elled using the e::Fvent stereotype that supports the definition of a temporal
expression property. Coverage is modelled using the e::Cover stereotype. In to-
tal, the profile consists of 38 unique stereotypes grouped into three sub-profiles.
Entities are referenced from Theme/UML, MARTE and UML.

In addition to the stereotypes provided by the e profile, there are a number
of required elements of verification environments that need to be modelled.
These elements are contained within a UML model library as instances of UML
elements cannot be defined within a profile. This model acts as a template
for modelling e verification testbenches and contains predefined constants, error
handling operations, default struct hierarchy, simulator clock models and various
flags and constants that are used by the language and need to be referenced by
models of verification environments.

4. Application

To assess the applicability of the e profile to testbench development we ap-
plied it to an example involving the reimplementation of a representative test-
bench from the automotive semiconductor industry. This sample testbench

16

makes use of constrained random generation to verify the operation of a pro-
prietary bus protocol. Architecturally, the testbench is coverage-driven and
consists of multiple master and slave end points connected to the DUT via a
crossbar. The testbench is designed to work with Cadence’s Specman tool and
interacts with a design modelled in VHDL. The goal is to explain the features
of the e UML2 profile through the implementation of a realistic testbench, illus-
trating how the e profile facilitates testbench modularisation through separation
of concerns in design and automated source code generation.

Development began by analysing the sample testbench, extracting its main
features. From these features, two sets of UML models were produced using
a UML editor: models of the testbench itself; and models of the test cases
which constrain the testbench behaviour to exercise particular features of the
hardware design. The primary requirement for a UML editor is that it supports
the use of UML2 profiles and export to Eclipse Modelling Framework® (EMF)
XML Metadata Interchange (XMI) format. Our current editor of choice is
MagicDraw 16.97, which is free under academic license. However, any UML
editor that supports integration of profiles and export to XMI can be used.

To build the testbench models, the functionality was first divided into base or
aspect concerns. In our case, because we were re-implementing a testbench for
which source code existed, we could use aspect mining techniques such as clone
detection and matching patterns of method calls to identify cross-cutting aspect
concerns [50]. If implementing a testbench from scratch, it would be necessary
to identify and group these concerns through an aspect-oriented analysis of the
design [18].

In the e profile, modules are based on Theme/UML themes and encapsulate
the specification of a base or aspect concern. Figure 8 shows how base themes
and aspect themes are designed by applying the Module stereotype defined in
the e profile to standard UML elements in the model. Cross-cutting modules
are indicated by a module dependency relationship with the Extend stereotype
applied. These aspect-oriented modelling constructs should be interpreted as
follows. In the case-of the tb::Log module a Driver is defined with its asso-
ciated attributes and operations. The Extend relationship indicates that these
attributes and operations are merged with those of the Driver object in the
tb: :Driver module. That is, the tb::Log module is an aspect that, through
identically named concepts, is composed with base classes in the tb::Driver
module.

This approach ensures that the tb: :Log module contains only the structures
and behaviour necessary to represent the logging behaviour and the tb: :Driver
module contains only elements related to managing input signals for the DUT.
This design illustrates how the crosscutting ReportHandler concern is cleanly
modularised within the single module as opposed to occurring repeatedly through-
out the code.

Shttp://www.eclipse.org/modeling/emf/
"http://www.magicdraw.com

17

“«Module’» “«Module’»
tb::Log b. icati

o o “eUnit'» agents “eUnit'»
<Unit» ~Units <Unt -
Sri_Mif Sri_Log Sri_Mif ~ Agent
I = ~dut_signals : Signal [0..'] “name : Strin
init() 99, log_name : String 59 a0 “bus o
-log_file : file init()
+setup() wiite_beat()
+open_file() “«Extend’» +run() +read_beat()
Uit +close_file() Fo— = 20O E “init_agent()
oni write() {advice_type = IsAlso , -
river +log_trans(trans : Sri_Transfer) binding = "matchiname]" } ‘ﬁ
Jlog : Sti_Log Uty o
+adress_phase() Sri_MasterAgent Sri_SlaveAgent
1t
+data_phase() “master_signals : Signal [0.."] _slave_signals : Signal [0.."]
T
~
| ~
“«Extend’»

“«Extend’» ~
{advice_type = IsAlso b

Module"» \bmumg:‘-mamh[namé]") _ 7 ladvice_type|=IsAlso) “«Module’»
th::Driver N - tb::Checker

_driver “eUnit'> ~checker “Unit'»
“eUnit'» “eUnit'» Driver Checker
Sri_Mif Driver +address_phase() -expect_data : byte [0.."]
+run() -beat_num +data_phase() -scoreboard : Sri_Scoreboard
“data byte [32] -address_pipe : Sri_Transfer
o . . -data_pipe : Sri_Transfer
-ed96 align_bursts : bool _ _«Bxtend>» | ~checking_info, . ’:pdd ; |
“Unit'» +ready() {advice_type = IsAlso } +check_addr_phase
Entrophy_Decoder +drive_transfer() S_truct +check_data_phase()
= +address_phase() Checking_Info +check_scoreboard_key()
+encode() +data_phase() address : unit
+decode() Spcods R
-rw : Sri_Transfer
-err_val : uint{numberOfBits = 8} Protocol checkers
omitted for b

Figure 8: An excerpt from the UML model of the testbench.

Whereas Figure 8 focuses on a portion of the generated model, Figure 9
illustrates the full set of unique modules developed for the testbench. The
relationships between each module are included showing how aspect-oriented
extensions are used to keep verification testbench components loosely coupled
with respect to each other. These relationships dictate how the modules are
composed to form a complete testbench and how the base modules are bound
to the aspect modules that crosscut them. The design decisions required to
produce this decomposition-are based on work by Vax and Robinson who make
a case for the use of aspect-oriented design in testbench development and present
a method of organising concerns in a verification environment [20, 17].

Having built aspect-oriented models of the testbench in UML, the next step
is to synthesise source code from this model. A code generation template has
been developed to perform code synthesis to e using a combination of Xpand
and a collection of custom Java extensions to the Xpand language®.

Figure 10 shows a snippet of the Xpand template designed to deal with When
inheritance relationships in UML models. The template uses references to types
defined as stereotypes in the e profile to navigate the UML model outputting
code. The EXPAND keyword indicates that a template defined elsewhere should
be applied to the specified elements. In the example, the EXPAND command is

8Xpand is a language for code generation based on EMF models that is part of the eclipse
modelling project [51].

18

“«Module
Clock “«Module)
“«Module"» Coverage

- - - “«Extend’»

L fadvice_type = IsAlso } [xoar |
=~ < Xbar B .
«Extend’» — —

7 “«Module
s
“«Extend’» Checker|

. binding = "match[name]" }
~ , n
, tadvice_type = IsAiso }

s

- /
= N[“«Module}> ,) A
«Exond” = _ Driver | P __"<Extend

{advice_type = IsAlso } -~ _ N L -~ ~ {advice_type = IsAlso } |

|
! T~ {advice-typ@ = 1sAIso }
| — S - y y
| _ «Bxtend» > 67——~—7~__1Exf"d”
| | ladvice_type = IsAiso | {advice_type 1 1sAls0)
| | “Module > _ 7 “«Module}» |
| | Log = bxtends Monitor| I
| | {advice_type = IsAlso , * |
| | binding = "matchfname]" } |
|
| |

! | “«Extend» |
! ! ~ | {advice_type = IsAlso } iz
| \ S | s |
| ~ “«Extend"» ya |

NO_PREFETCI ~ {advice_type = IsAlso , |
| | |
! I
‘ I
! \
|
|

,,,,,,,,,,,,,,,,,,,, N |"«Extend"»

“«Extend’» L _ ~ Modue >] fadvice_type = IsAlso }
{advice_type = IsAlso , Scoreboard

binding = "match(name]" } “«Extend —
{advice_type=IsAlso }

Figure 9: e UNL2 Profile showing full module composition diagram.

an instruction to apply the template named Operations to all contained model
elements with the e::Method stereotype applied.

The code output by applying the Xpand template to a UML model developed
using the e UML2 profile extensions is illustrated in Figure 11. The UML models
resulted in eleven source codefiles being generated in the e verification language.
These files are organised in a package hierarchy that reflects the structure of the
e model with each package containing many files and each file containing a single
e module.

The testbench illustrates the main features of the e UML profile through
the re-implementation of a testbench that is in use in industry. The e profile
facilitates testbench modularisation through separation of concerns in design
and automated source code generation. The aspect-oriented modelling approach
is shown to ease the creation, maintainance and reuse of testbenches by making
it possible to tackle common testbench scenarios that are not easily solved using
OOP techniques alone [33].

5. Related Work

There are a number of MBSE approaches that provide some support for
modelling hardware verification testbenches. In this section related projects
are reviewed that contribute to either modelling the hardware components of
embedded systems or modelling functional verification environments.

19

«IMPORT uml»
«IMPORT e»

«EXTENSION metamodel::Extensions»

«DEFINE Statements FOR e::Struct»
«EXPAND Comment FOREACH typeSelect(uml::Comment)-»
struct «name» {
«EXPAND Fields FOREACH typeSelect(e::Field)-»
«EXPAND Operations FOREACH typeSelect(e::Method)-»
«EXPAND When FOREACH getWhenInheritance()-»
; -- End struct «name»
«ENDDEFINE»

«DEFINE When FOR e::When»when
«this.structsubtype» «getBaseStruct().name» {
«EXPAND Operations FOREACH
getSpecificStruct().typeSelect(e::Method)»

i
«ENDDEFINE»
Figure 10: Snippet of the Xpand e code generation template.

The value in providing models of hardware verification environments at
higher levels of abstraction was demonstrated by Gluska et. al:"in the develop-
ment of their pre-RTL model for verification [52]. They identified verification
as being on the critical path of hardware development and demonstrated how
abstract modelling of designs can shorten the verification process and enhance
the effective use of coverage and formal verification techniques. However, the
modelling taken was textual and did not consider reusability or modularity [52]

There are a set of approaches that are capable of generating UML from ver-
ification testbenches for the purpose of documenting their design. For example,
the design and verification tools plugin (DVT) for eclipse by AMIQ [53] is ca-
pable of extracting a UML class diagram illustrating a set of selected structs
from an e or SystemVerilog testbench. The purpose of this feature is to extract
a documenting UML model that shows inheritance, associations (pointers) and
class members. Diagrammatically illustrating the structure of the testbench
using a tool for drawing directed graphs reduces the time it takes engineers
to become familiar with a new code base and helps manage naming and code
navigation. However, the UML diagrams produced do not contain any behav-
ioural information and cannot capture the aspect-oriented constructs of the e
language, making the diagrams of little use for interpreting behaviour at run-
time. The transformation from code to model cannot be reversed preventing
any modifications of the class diagrams being reflected in the code.

Other work by Thompson et al. goes further than simply facilitating the
generation of documentation and provides some support for code generation
[64]. In this case code stubs for the verification language Vera are generated
from class diagrams using UML to C++4 code synthesis. However, the code
skeletons then need to be modified by hand to remove C++ specific artefact’s
and have their behaviour inserted. Because there is no Vera specific model, the
transformations are not fully automated and cannot be reversed.

The UML to SystemVerilog synthesis proposed by Li et al. takes a differ-
ent approach [6]. UML is extended with a profile supporting the modeling of

20

© @ @ Generated e Code - e Language - Generated e Codaf'uk;’irﬁineom’sri.-’appfication.e - Eclipse SDK

File Edit Re Run Naviga F t Window Help
ciy BrOvQy | 9y HAEEE SRR EeEo | WS T e
%5 Navig 3 . e Hierar | = 8 ||% application.e 2 . % monitore |5 S0 (308 L% S
Generated e Code o SR BE g
@B S . — B sri_mif_u
= .dvt : W xbar
+ = .dv e :
o 4 DATE: W init()
g u T
EFE"’ - MODULE : % setupl)
— & infineon
a S | N B run()
- g sh L
s ~ B sri_agent_u
- B test v F
| s € name
Y& MIF_DELAYED [import xbar/xbar.e;)
4 & write beat()
+ & xbar . e
: “unit sri mif u { % read beatf()
% application.e i)
%) checkere keep sequence kind in [READS,WRITES,RMW IR - agent(
% clocke keep check scoreboard == FALSE; = & sri_transfer_s
< N keep num_sequences == 180; ® agent
% coverage.e keep wbuf delay in [10..20]; %o allan: hursts
&) drivere keep rbuf delay in [0..4]; i an.
% opcode
@ loge xbar: xbar_u is instance; “® address
& monitor.e 3
o init() is { % data
le] scoreboard.e R g
~ "B sri_master_agent_u
%8 tope }; -- dnit P i
2 J St ¢ master_signals
X .project B
setup() is { 5 = sri_slave_agent_u
‘@ slave_signals
- s
smazes |

Figure 11: Generated e code in eclipse.

real-time systems and informally specifying verification assertions at the model
level. UML state diagrams are then transformed using an intermediate XMI
representation to SystemVerilog code. Both structure and behaviour are speci-
fied at the model level but the transformation is not reversible. McUmber at al.
also make use of UML class and state diagrams to specify both structure and
behaviour [28]. In their case VHDL specifications are generated by applying a
set of rules for mapping from UML to VHDL.

These early examples of modeling hardware definition and verification lan-
guages had the ambition of reducing design complexity by raising the level of
abstraction engineers work at, enabling designs so complex that they cannot
be understood in detail all at once to be broken down into pieces that can be
viewed and understood, one aspect at a time. However, these approaches fail
to hide implementation details. Model-driven approaches, however, increase the
level of automation and facilitate the specification and transformation of models
at multiple levels of detail as well as reversible model to code transformations.
The TestBencher Pro graphical code generator by SynaptiCAD Inc., inspired
by model-driven engineering’s platform independent models, provides a means
to model verification testbenches independent of the verification language in use

21

[65]. However, TestBencher Pro’s timing diagram can only model a subset of
the functionality required of a verification testbench.

The Embedded Systems Modeling Language (ESMoL), a language with sim-
ilar capabilities to AADL [56], was proposed by Porter et. al. as part of a suite
of domain-specific modeling languages for the design and verification of embed-
ded systems [57]. However, ESMoL did not address the specific challenges of
modelling functional verification of RTL designs. A similar high level modelling
approach was demonstrated by Kukkala et. al. [58] who developed a UML 2.0
profile, called TUT-Profile, introducing a set of stereotypes and design rules for
embedded system structural design. Numerous other projects define modelling
languages for embedded systems [59, 60, 61]. However, none of these use UML2
profiles to address complexity and reuse issues of aspect-oriented hardware ver-
ification testbenches.

Espinoza et. al. reference a number of projects that started recently and
are working on modelling languages and tools for the design and verification of
embedded systems [16]. The INTERESTED project is creating a tool-chain for
rapid design and prototyping of embedded systems. The SATURN project is
developing tools for architecture exploration, simulation and synthesis in Sys-
temC/VHDL for hardware designs and the Lambda project intends to reconcile
a number of related standards, including SysML, MARTE, AADL, and IP-
XACT. These projects, yet to publish results, are not considering the use of
aspect-oriented modelling to reduce design complexity by separating models
into smaller more coherent pieces.

Although there has been some work in aspect-orientated and model-driven
engineering of embedded systems [62, 5, 63, 32], these approaches can not be
directly applied to hardware design and verification as languages in these ar-
eas incorporate constructs that do met appear in general purpose high level
languages (like C++ or Java). For example, constrained random stimulus gen-
eration, temporal assertions and functional coverage constructs. Our profile for
hardware verification in'the e language allows engineers to incorporate MBSE in
their existing design process by adopting a domain specific modelling language
with familiar constructs.

6. Conclusion and Future Work

Model-based software engineering raises the level of abstraction at which de-
velopers work, promising improved quality and increased productivity through
automation. However, despite the increasing application of model-driven tech-
nologies to the development of embedded systems, little attention has been paid
to the corresponding larger increase in complexity of verification environments.
This paper has presented a new UML profile for the e verification language and a
code synthesis template that facilitates its use as part of a MBSE process. This
modelling language enables the design and development of verification environ-
ments at the model level, reducing the cost of verifying hardware designs and
ultimately reducing the time to market for new products. The aspect-oriented
modelling approach facilitates a better modularisation of the code, resulting in

22

testbenches that are less complex and easier to maintain and reuse. In addition,
the e profile supports e’s aspect-oriented constructs, making it possible to inte-
grate with and directly reuse existing testbenches, providing a migration path
to facilitate adoption of a model-based software engineering process. The MBSE
process supported by the e profile contributes an ability to reduce development
time without sacraficing quality through automation.

A limitation of the current e profile is how close it is to the code level,
requiring a good knowledge of the e verification language. The extraction of
verification features and constructs that are common to all verification lan-
guages into a higher level platform independent model will facilitate the design
of verification testbenches at a higher level of abstraction and will eliminate
the implementation and verification language specific features that are present
in the current e UML profile. This future work will further contribute to the
approaches ability to reduce design complexity and provide for the portability
and reuse of test cases between various verification platforms.

It was also found that the approach of reusing elements from other UML
profiles has the potential to introduce additional complexity due to the diversity
of elements inherited from other combined profiles. Although this problem
is minimised by use of MARTE’s sub-profiles it remains the case that many
concepts of a sub-profile that are not useful become available to developers
using our e profile. The ability to produce models that can include concepts
that are misused or simply do not belong is a significant challenge. Tools are
required that enforce rules limiting the available constructs to those that belong
to the domain of interest and to check for model correctness.

References

[1] T. A. Henzinger, J. Sifakis, The discipline of embedded systems design,
Computer 40 (10) (2007) 32-40.

[2] R. Zurawski, Embedded Systems Handbook, CRC Press, Inc., Boca Raton,
FL, USA, 2004.

[3] National Instruments, Shortening the embedded design cycle with model-
based design, Online, http://zone.ni.com/devzone/cda/tut/p/id/4074
(June 2009).

[4] B+ Murphy, Best practices for verification, validation, and test in model-
based design, Webinar, http://www.mathworks.com/company/events/
webinars/wbnr43247.html (Apr. 2010).

[5] J. Bergeron, Writing Testbenches - Functional Verification of HDL Models,
2nd Edition, Springer - Verlag, 2003.

[6] L. Li, F. P. Coyle, M. A. Thornton, UML to SystemVerilog synthesis for
embedded system models with support for assertion generation, in: Pro-
ceedings of the ECSI Forum on Design Languages, 2007.

23

[7]

8]

[11]

[12]

[13]

M. Yogesh, A. B. Ali, G. Aarti, Verification languages, in: Industrial Elec-
tronics, CRC Press, 2009.

A. Bunker, G. Gopalakrishnan, S. A. Mckee, Formal hardware specification
languages for protocol compliance verification, ACM Trans. Des. Autom.
Electron. Syst. 9 (1) (2004) 1-32.

A. Molina, O. Cadenas, Functional verification: Approaches and challenges,
Latin American applied research 37 (2007) 65-69.

D. Dempster, M. Stuart, Verification Methodology Manual - Techniques for
Verifying HDL Designs, second edition Edition, Teamwork International
and TransEDA Limited, 2001, iSBN 0-9538-4821-3.

Eda360: The way forward for electronic design, Whitepaper EDA360, Ca-
dence Design Systems, Inc., San Jose, CA, USA, http://www.cadence.
com/eda360 (2010).

Verification Reuse Methodology - essential elements for verification pro-
ductivity gains, Whitepaper, Verisity Design, Inc., http://www.verisity.
com/resources/whitepaper/erm.html (2005).

Open Verification Methodology (OVM), Whitepaper, Mentor Graphics
Corporation and Cadence Design Systems, Inc., http://www.ovmworld.
org (2007).

D. Galpin, C. Driver, S. Clarke, Modelling hardware verification concerns
specified in the e language: an‘experience report, in: AOSD ’09: Proceed-
ings of the 8h ACM international conference on Aspect-oriented software
development, ACM, New York, NY, USA, 2009, pp. 207-212.

H. Shokry, M. Hinchey, Model-based verification of embedded software,
Computer 42 (2009) 53-59.

H. Espinozas; D. Cancila, B. Selic, S. Gérard, Challenges in combin-
ing SysML and MARTE for model-based design of embedded systems,
in:. ECMDA-FA 09: Proceedings of the 5th European Conference on
Model Driven Architecture - Foundations and Applications, Springer-
Verlag, Berlin, Heidelberg, 2009, pp. 98-113.

M. Vax, Where oop falls short of hardware verification needs, in: Design
and Verification Conference and Exhibition (DVCon), San Jose, CA, 2010.

S. Clarke, E. Baniassad, Aspect-Oriented Analysis and Design: The Theme
Approach, 1st Edition, Addison-Wesley, NJ, 2005.

OMG, A UML profile for MARTE: Modeling and analysis of real-time
embedded systems, beta 2, ptc/08-06-09. http://www.omgmarte.org/
Documents/Specifications/08-06-09.pdf (June 2008).

24

[20]

[21]

[25]

[26]

[27]

[28]

D. Robinson, Aspect-oriented Programming with the e Verification Lan-
guage - A Pragmatic Guide for Testbench Developers, Morgan Kaufmann,
MA, USA, 2008.

D. Grose, From contract to collaboration - delivering a new approach to
foundry, in: 47th Annual Design Automation Conference, San Diego, US,
2010.

H. Foster, Redefining verification performance, Online; Accessed 8 Novem-
ber. http://blogs.mentor.com/verificationhorizons/blog/2010/08/
08/redefining-verification-performance-part-2/ (2010).

M. Hamid, Writing efficient testbenches, Tech. Rep. XAPP199, Xilinx Cor-
poration, v1.1 (May 2010).

L.-T. Wang, Y.-W. Chang, K.-T. T. Cheng (Eds.), Electronic Design Au-
tomation: Synthesis, Verification, and Test, Systems on Silicon; Morgan
Kaufmann, 2009.

Cadence Design Systems, Online; Accessed 8 February 2010. http://www.
cadence.com/.

S. Iman, S. Joshi, The e Hardware Verification Language, Kluwer Acad-
emic, Norwell, MA, USA, 2004.

IEEE Computer Society, IEEE std 1647-2008; IEEE standard for the func-
tional verification language e., Standard IEEE Std 1647-2008, IEEE, NY,
USA (August 2008).

W. E. McUmber, B. H. C. Cheng, UML-based analysis of embedded sys-
tems using a mapping to VHDL, in: HASE ’99: The 4th IEEE International
Symposium on High-Assurance Systems Engineering, IEEE Computer So-
ciety, Washington, DC, USA, 1999, pp. 56—63.

Verisity Design, Inc, e Language Reference Manual, online; Accessed
8th February 2010; http://www.ieeel647.org/downloads/prelim e_
lrm.pdf (February 2002).

B. Selic, Personal reflections on automation, programming culture, and
model-based software engineering, Automated Software Engg. 15 (3-4)
(2008) 379-391.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. marc
Loingtier, J. Irwin, Aspect-oriented programming, in: ECOOP’97 - Object-
Oriented Programming, 11th European Conference, no. 1241 in LNCS,
SpringerVerlag, 1997, pp. 220-242.

L. Gomes, J. M. Fernandes, L. Gomes, J. M. Fernandes, Behavioral Model-
ing for Embedded Systems and Technologies: Applications for Design and
Implementation, Information Science Reference - Imprint of: IGI Publish-
ing, Hershey, PA, 2009.

25

[33]

[34]

[35]

G. Allan, D. Robinson, J. Sprott, Learn to do verification with AOP?
we’ve just learned OOP!, in: SNUG -Europe, Synopsys User Group Europe
Proceedings, 2004.

P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. Garcia, N. Ca-
cho, C. Sant’Anna, S. Soares, P. Borba, U. Kulesza, A. Rashid, On the
Impact of Aspectual Decompositions on Design Stability: An Empirical
Study, in: ECOOP 2007 - Object-Oriented Programming, Vol. 4609/2007,
Springer, 2007.

R. J. Walker, E. L. A. Baniassad, G. C. Murphy, An initial assessment
of aspect-oriented programming, in: ICSE ’99: Proceedings of the 21st
international conference on Software engineering, ACM, New York, NY,
USA, 1999, pp. 120-130.

M. Bartsch, R. Harrison, An exploratory study of the effect of aspect-
oriented programming on maintainability, Software Quality Control 16 (1)
(2008) 23—44.

J. Bergeron, E. Cerny, A. Hunter, A. Nightingale, Verification Methodology
Manual for SystemVerilog, 1st Edition, Springer, 2005.

Synopsys, Inc., Vcs verification library, Online; - Accessed 22 October 2010.
http://www.synopsys.com/dw/vcs_verification library.php (2008).

G. Krishna, N. Maddipati, TestBench.in - verification concepts, Online;
Accessed 15 December 2010. http://www.testbench.in/ (2010).

D. K. Tala, Asic world, Online; Accessed 14 December 2010. http://www.
asic-world.com/ (2010).

L. Bening, H. Foster, Principals of Verifiable TRL Design, 2nd Edition,
Kluwer Academic, 2002.

D. L. Parnas, <~ On the criteria to be wused in decomposing
systems into modules, Commun. ACM 15 (1972) 1053-1058.
doi:http: //doi.acm.org/10.1145/361598.361623.

M. Engel, O. Spinczyk, Aspects in hardware: what do they look like?, in:
Proceedings of the 2008 AOSD workshop on Aspects, components, and
patterns for infrastructure software, ACP4IS 08, ACM, New York, NY,
USA; 2008, pp. 5:1-5:6. doi:http://doi.acm.org/10.1145/1404891.1404896.

Y. Hollander, M. Morley, A. Noy, The e language: A
fresh separation of concerns, Technology of Object-Oriented
Languages, International Conference on 0 (2001) 41.
doi:http://doi.ieeecomputersociety.org/10.1109/TOOLS.2001.911754.

A. Carton, C. Driver, A. Jackson, S. Clarke, Model-driven Theme/UML,
Transactions on Aspect-Oriented Software Development VI: Special Issue
on Aspects and Model-Driven Engineering (2009) 238-266.

26

[46]

[50]

[53]

[54]

[55]

[56]

C. Driver, S. Reilly, E. Linehan, V. Cahill, S. Clarke, Managing embedded
systems complexity with aspect-oriented model-driven engineering, ACM
Transactions on Embedded Computing Systems,To appear.

R. Passerone, I. B. Hafaiedh, S. Graf, A. Benveniste, D. Cancila, A. Cuc-
curu, S. Gerard, F. Terrier, W. Damm, A. Ferrari, L. Mangeruca, B. Josko,
T. Peikenkamp, A. Sangiovanni-Vincentelli, Metamodels in Europe: Lan-
guages, tools, and applications, IEEE Design and Test of Computers 26
(2009) 38-53.

F. Lagarde, H. Espinoza, F. Terrier, S. Gérard, Improving UML profile
design practices by leveraging conceptual domain models, in: ASE ’07:
Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering, ACM, New York, NY, USA, 2007, pp.
445-448.

E. Linehan, S. Clarke, Modelling e verification language testbenches in
uml 2.0 with theme and marte, Lero Technical Report Series Lero-TR-SPL-
2010-02, Lero - the Irish Software Engineering Research Centre (September
2010).

M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, T. Tourwe, A qual-
itative comparison of three aspect mining techniques, in: Proceedings of the
13th International Workshop on Program Comprehension, IEEE Computer
Society, Washington, DC, USA, 2005, pp.13-22. doi:10.1109/WPC.2005.2.

The Eclipse Foundation, Eclipse modeling project, Online, http://wuw.
eclipse.org/modeling/ (June 2010).

A. Gluska, L. Libis, Shertening the verification cycle with synthesizable
abstract models, in: " DAC ’09: Proceedings of the 46th Annual Design
Automation Conference, ACM, New York, NY, USA, 2009, pp. 454—459.

AMIQ Consulting, DVT - the complete development environment for e and
systemverilog, online; accessed 9 February 2010; http://www.dvteclipse.
com/ (February 2010).

K. Thompson, L. Williamson, Hardware verification with the unified mod-
eling language and vera, in: Proceedings of the Synopsys User Group San
Jose, 2002.

SynaptiCAD, Testbencher pro, http://www.syncad.com/testbencher_
verilog_vhdl_testbench_generator.htm (2010).

SAE Architecture Analysis & Design Language (AADL), Standard, number
AS5506, Revision A (January 2009).

J. Porter, G. Karsai, P. Volgyesi, H. Nine, P. Humke, G. Hemingway,
R. Thibodeaux, J. Sztipanovits, Towards model-based integration of tools

27

[61]

[62]

and techniques for embedded control system design, verification, and imple-
mentation, Models in Software Engineering: Workshops and Symposia at
MODELS 2008, Toulouse, France, September 28 - October 3, 2008. Reports
and Revised Selected Papers (2009) 20-34.

P. Kukkala, J. Riihimaki, M. Hannikainen, T. D. Hamalainen, K. Kronlof,
Uml 2.0 profile for embedded system design, in: DATE ’05: Proceedings of
the conference on Design, Automation and Test in Europe, IEEE Computer
Society, Washington, DC, USA, 2005, pp. 710-715.

R. Ben Atitallah, P. Boulet, A. Cuccuru, J.-L. Dekeyser, A. Honoré, O. Lab-
bani, S. Le Beux, P. Marquet, E. Piel, J. Taillard, H. Yu, Gaspard2 UML
profile documentation, Technical Report RT-0342, INRIA (2007).

URL http://hal.inria.fr/inria-00171137/en/

E. Riccobene, P. Scandurra, S. Bocchio, A. Rosti, L. Lavazza,
L. Mantellini, Systemc/c-based model-driven design’ for. embedded
systems, ACM Trans. Embed. Comput. Syst. 8 (2009) 30:1-30:37.
doi:http://doi.acm.org/10.1145/1550987.1550993.

URL http://doi.acm.org/10.1145/1550987.1550993

A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov, D. Gajski, J. Teich,
Electronic system-level synthesis methodologies, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 28 (10) (2009)
1517 -1530. doi:10.1109/TCAD.2009.2026356.

F. Afonso, C. Silva, N. Brito, S. Montenegro, A. Tavares, Aspect-oriented
fault tolerance for real-time embedded systems, in: ACP4IS ’08: Proceed-
ings of the 2008 AOSD workshop on Aspects, components, and patterns
for infrastructure software, ACM, New York, NY, USA, 2008, pp. 1-8.

S. Gérard, J.-P. Babau, J. Champeau (Eds.), Model Driven Engineering
for Distributed Real-time Embedded Systems, Hermes Science Publishing,
2005.

28

Figure 2

Phase 1 - Modelling

Phase 2 - Composition

Phase 3 —Transformation

Model
Application

Concerns

Model

Crosscutting

Concerns

Apply
Composition
Relationships

[composition

Incomplete]

[model
Incomplete]

Re-factor
Composed
Model

[complete]

View
Composed

Compose with

X
Ay

[selected]

Transform with
[select Tool
another ~—
Mapping]
Elaborate
Model
N

Synthesis with
Tool

Re-factor
Code

[synthesise]

