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On Event-Based Middleware
for Location-Aware Mobile Applications
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Abstract—As mobile applications become more widespread, programming paradigms and middleware architectures designed to
support their development are becoming increasingly important. The event-based programming paradigm is a strong candidate for the
development of mobile applications due to its inherent support for the loose coupling between components required by mobile
applications. However, existing middleware that supports the event-based programming paradigm is not well suited to supporting
location-aware mobile applications in which highly mobile components come together dynamically to collaborate at some location. This
paper presents a number of techniques including location-independent announcement and subscription coupled with location-
dependent filtering and event delivery that can be used by event-based middleware to support such collaboration. We describe how
these techniques have been implemented in STEAM, an event-based middleware with a fully decentralized architecture, which is
particularly well suited to deployment in ad hoc network environments. The cost of such location-based event dissemination and the

benefits of distributed event filtering are evaluated.

Index Terms—Distributed systems, middleware, publish subscribe, event-based communication, mobile computing, collaborative and

location-aware applications, wireless ad hoc networks.

1 INTRODUCTION

MERGING pervasive and mobile computing applications

comprise large numbers of interacting components
distributed over large geographical areas. Examples include
context-aware intelligent transportation systems [1], [2] and
city-wide information systems [3], [4]. Middleware to
support such applications must deal with the increased
complexity that arises from such scale, from the geographi-
cal dispersion of components, and from the spontaneously
changing connections between components.

Such mobile applications can be characterized as colla-
borative in the sense that mobile entities use a wireless
network to interact with other mobile entities that have
come together at some common location. Examples might
include tourists visiting the same site or vehicles traveling in
the same direction. Having come together in some area,
collaborative entities establish connections with other colla-
borative entities dynamically, temporarily forming a group
that has a common goal. The members of such a group may
even travel together for a period of time, as in the case of a
group of tourists coming together and deciding to participate
in a guided tour or a group of vehicles traveling in the same
direction forming a convoy to improve driver safety and
reduce fuel consumption [5], [6]. Although these collabora-
tive applications may use infrastructure networks, they will
often use ad hoc networks [7] since these are immediately
deployable in arbitrary environments and support
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communication without the need for a separate infrastruc-
ture. For pervasive and mobile computing as well as sentient
computing [8], this collaborative style of application allows
loosely coupled, highly mobile components to communicate
and collaborate in a spontaneous manner anywhere and at
any time. In many cases, such applications will be deployed
in situations where wireless network infrastructure might be
available. For example, museums may deploy wireless local
area networks and proposals exist for large-scale deploy-
ment of wireless access infrastructure along roads such as the
Vehicle Infrastructure Integration initiative in the United
States [9]. However, we argue that such applications cannot
rely on the presence of such infrastructure: Tourist attrac-
tions such as national parks or archaeological sites are
unlikely to have such infrastructure and cost mitigates
against ubiquitous wireless infrastructure being deployed on
every road. Moreover, there are many collaborative mobile
applications that will never be able to avail of such
infrastructure such as coordination of Unmanned Aerial
Vehicles (UAVs) or autonomous military vehicles deployed
in hostile environments.

In principle, event-based communication [10], [11] is well
suited to such mobile applications [12], [13], [14], [15] since
it naturally accommodates a dynamically changing popula-
tion of interacting entities and the dynamic reconfiguration
of the connections between them. Event-based communica-
tion supports asynchronous interconnections between
components and is particularly useful where communica-
tion relationships among components are dynamically and
frequently reconfigured during the lifetimes of the entities.
The event-based communication model supports a one-to-
many or many-to-many communication pattern that allows
one or more entities to react to a change in the state of
another entity. Event notifications, or simply events, contain
the data representing the change to the state of the sending
entity. They are propagated from the generating entities,
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called the producers, to the receiving entities, called the
consumers. Events typically have a name and may have a
set of typed attributes whose specific values describe the
specific change to the producer’s state. A particular
consumer may only be interested in a subset of the events
produced in the system. Event filters provide a means to
control the propagation of events. Ideally, filters enable a
particular consumer to specify the exact set of events in
which it is interested [15]. Essentially, a consumer’s event
filters are matched against the events received by the
middleware and only events for which the matching
produces a positive result are subsequently delivered to
the consumer application [16].

Unfortunately, existing research on event-based middle-
ware for wireless networks, such as [10], [12], [13], [17], [18],
[19] has mainly focused on what may be termed nomadic
applications. These applications are characterized by the
fact that mobile entities make use of the wireless network
primarily to connect to a fixed network infrastructure, such
as the Internet, but may suffer periods of disconnection
while moving between points of connectivity. Such applica-
tions typically employ infrastructure networks [7]. Much of
this work has concentrated on handling disconnection
while entities move from one access point to another,
whereas relatively little work has addressed the distinct
requirements of collaborative mobile applications, espe-
cially those that use ad hoc networks. For event systems to
support collaborative mobile applications, they must enable
collocated producers and consumers to be able to discover
each other. Producers need to be able to advertise the events
they intend to generate independently of their location and
consumers must be able to subscribe to events persistently.
Consumers must also be able to discover events of interest
and to eventually deliver them at the relevant locations.

In this paper, we present a number of techniques that can
be used by event-based middleware to support collabora-
tion in location-aware mobile applications including loca-
tion-independent announcement and subscription, location-based
event filtering, and location-dependent delivery of events.

Location-independent announcement allows producers
to advertise the (types of) events that they produce and
have these advertisements persist while moving location.
Likewise, consumers use location-independent subscription
to subscribe to events allowing them to receive events of
interest wherever they move. Such announcements and
subscriptions are persistent in that they apply transparently
to all locations independently of the specific location at
which they have been issued and are vital to enabling the
delivery of subsequently disseminated events at any
location and while entities are moving. For example, an
ambulance providing an emergency vehicle warning
service while rushing to an accident site may use a
location-independent announcement to persistently adver-
tise this service while responding to an emergency call.
Other vehicles may use a location-independent subscription
to subscribe to this service, enabling them to receive
emergency vehicle warning events every time their respec-
tive journeys intersect that of an ambulance. In contrast,
mobile consumers using event-based middleware for
nomadic applications, such as Elvind [18], register their

interest in events with proxy servers that maintain
permanent connections to producers and store the sub-
scription information. This style of subscription requires
consumers to explicitly connect to specific proxy servers
and a consumer wishing to move is required to disconnect
from the server prior to moving and to reconnect to the
same server from its new location.

Event filters define the specific subset of events in which
a consumer is interested. Our approach to event filtering
allows producers and consumers to define location-based
filters that may use the actual entity location when applying
a filter. Producers may define filters that describe a
geographical area surrounding their location. These filters
bound the geographical scope in which events are to be
disseminated and move location with a migrating producer.
For example, an ambulance might use a filter to define a
circular scope surrounding its location in order to bound
event dissemination of an emergency vehicle warning
service. Consumer filters may include event attributes that
refer to the current consumer location or to the location of
the event producer. These filters may, therefore, exploit
location in addition to the meaning of events in order to
describe the exact subset of events in which a consumer is
interested. For example, a vehicle might define a filter that
compares its location to the location of an ambulance so that
events of an emergency vehicle warning service only match
as long as the ambulance is driving toward the vehicle.
Furthermore, filters are distributed in that they can be
applied either at the producer side or at the consumer side.
For example, an ambulance might define the scope of an
emergency vehicle warning service while a vehicle might
define a filter for matching further constraints of these
events. Nomadic applications, on the other hand, usually
use event filters that do not evaluate location, allowing
consumers to access the same subset of events regardless of
their point of connectivity [10], [12], [13], [17], [18], [19].

Event propagation is location dependent in that events
generated by a particular producer will only be delivered
by consumers currently residing in a specified geographical
area. Consumers may deliver a particular set of events at
some location and subsequently deliver a different set of
events at another location; they may deliver events
generated by one producer and then deliver events
generated by another producer at a different location. For
example, a vehicle may deliver emergency vehicle warning
events generated by a certain ambulance at some stage of its
journey and subsequently deliver emergency vehicle warn-
ings generated by another ambulance at a different location.

Significantly, this concept of location-dependent event
delivery allows a consumer to deliver events at the location
where they are relevant and while it or indeed the event
producer is moving. In contrast, Elvin4 proxy servers
forward events to connected consumers and store events
while a disconnected consumer is moving. However, the
same set of events is expected to be delivered to a specific
consumer whether or not it has moved location.

This paper describes these techniques and their imple-
mentation in STEAM, an event-based middleware for
collaborative pervasive and mobile applications with an
inherently distributed architecture. It outlines how STEAM



MEIER AND CAHILL: ON EVENT-BASED MIDDLEWARE FOR LOCATION-AWARE MOBILE APPLICATIONS 411

supports these techniques with a fully distributed discovery
mechanism for dynamic discovery of locations (and events)
of interest. We have also realized several prototypical
collaborative application scenarios derived from relevant
areas, including search and rescue, gaming, and especially
transportation, to evaluate the proposed techniques. The
evaluation demonstrates the feasibility of accommodating
representative scenarios from the target category of appli-
cation and illustrates the trade-off of this support by
assessing the cost of location-based event dissemination as
well as the latency imposed by location-dependent event
delivery in STEAM. As system scale is a defining
characteristic of collaborative pervasive and mobile appli-
cations, we have also assessed the benefits of distributed
location-based event filtering demonstrating that using
distributed filters further accommodates large-scale colla-
borative applications as well as the geographical dispersion
of application components. This is achieved by significantly
reducing the potentially large number of events to be
delivered while limiting the number of filters being applied
at a particular location and balancing the computational
load of filter matching between the nodes in a system.

The remainder of the paper is structured as follows:
Section 2 surveys related work. Section 3 presents the
techniques for supporting location-aware event-based
applications in highly dynamic mobile computing environ-
ments. Section 4 describes how these techniques have been
realized in STEAM. Section 5 presents our evaluation of this
work outlining the benefits of distributed event filtering
and the cost of location-based event dissemination. Finally,
Section 6 concludes this paper by summarizing our work.

2 RELATED WORK

Middleware supporting event-based communication has
been developed by both industry [20], [21] and academia
[10], [12], [22], [23]. Most such middleware assumes that the
components comprising an application are stationary and
that a fixed network infrastructure is available. Existing
research on event-based middleware for mobile computing
has mainly focused on supporting nomadic applications
using wireless data communication based on the infra-
structure network model [10], [12], [13], [17] [18], [19].
Recently, some authors [24] have begun to address the
distinct requirements of collaborative mobile applications
or of supporting event-based communication in ad hoc
networks characterized by the absence of shared infra-
structure. For example, application components using an
ad hoc network cannot rely on the use of access points when
discovering peers in order to establish connections to them.
Event messages can neither be routed through access points
nor rely on the presence of intermediate components that
may apply event filters or enforce nonfunctional attributes
such as ordering policies and delivery deadlines.

For example, JEDI [12] allows nomadic application
components to produce or consume events by connecting
to a logically centralized event dispatcher that has global
knowledge of all subscription requests and events. JEDI
provides a distributed implementation of the event dis-
patcher consisting of a set of dispatching servers that is
interconnected through a fixed network. Nomadic entities

may move using the moveOut and moveIn operations. The
moveOut operation disconnects the entity from its current
dispatching server, allowing it to move to another location
and then to use the moveIn operator to connect to another
dispatching server. The source dispatching server buffers
all relevant information while an entity is disconnected and
forwards it upon reconnection. Mobile Push [17] provides a
similar approach to supporting nomadic application com-
ponents in which entities do not use the event service while
moving. In addition, it allows mobile application compo-
nents to access the event service infrastructure through
wireless connections while moving. However, like JEDI,
this approach relies on the presence of a separate event
service infrastructure.

Elvin4 [18] represents event-based systems that support
mobility through the use of a proxy server maintaining a
permanent connection to the event server on behalf of
nomadic client components. The proxy server stores events
while a client is temporarily disconnected and clients can
specify a time to live for each subscription to prevent large
numbers of events being stored indefinitely. Clients must
explicitly connect to a proxy server using a URL and must
reconnect to the same proxy server each time they reconnect
to the event system.

Although these middleware services support mobility,
their main goal is to handle disconnection while an entity
moves from one access point or event broker to another. In
contrast, STEAM accommodates a changing set of colla-
borative entities coming together at a location and supports
communication between these entities without relying on a
separate event service infrastructure.

2.1 Exploiting Location in Event Dissemination

Rebeca [19] allows nomadic clients to access a network of
event routing brokers through local brokers. Local brokers
act as access points and allow clients to disconnect from
their current network broker and reconnect at the network
broker to which they wish to relocate in a way similar to the
approaches described above. However, in addition to
handling disconnection, Rebeca also promotes a form of
location awareness. Nomadic clients are explicitly aware of
changes to their location and are able to exploit their current
location when filtering events. Such location-aware clients
can move while remaining connected to the same local
broker, and use event filters with myloc attributes that
denote their current location. The values for such attributes
are drawn from an application-specific set of locations, for
example, describing the rooms in a house, the places in a
city, or the (coarse-grained) coordinates of a GPS system.
Current values are maintained by local brokers and are
updated whenever a client moves. Much like STEAM’s
consumer-defined filters, which may include event attri-
butes that refer to the current consumer location, this form
of location-dependent filtering supports location awareness
on the consumer side of an application. However, it does
not provide for producer filters that bound the geographical
area in which events are to be disseminated and move
location with a migrating producer, which are essential for
the techniques presented in this paper. This focus on
supporting location awareness on the consumer side as well
as its dependence on a broker infrastructure enables Rebeca
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to support location awareness in nomadic applications
rather than providing for location-aware collaborative
applications. Moreover, Rebeca also proposes a separate
abstraction that enables applications to explicitly localize
the relationships between static entities. Using such scopes,
applications can group the entities in a system so that
producers restrict the dissemination of their events to
consumers within the same scope. The purpose of this
abstraction is to handle heterogeneity and provide a means
for integrating membership policies possibly in applications
that are based on wireless sensor networks [25].

ToPSS [26] supports location awareness by extending its
centralized filtering engine with a location matching engine.
The filtering engine mediates event dissemination and
maintains content-based subscriptions while the location-
matching engine maintains location information for sta-
tionary and mobile producers and consumers. Location
information is expressed as latitude/longitude/altitude
tuples and the location-matching engine receives periodic
updates of the location of mobile entities. The filtering
engine forwards events to consumers with matching
subscriptions if they are located within a certain distance
from the producer. The relevant distance is defined by the
consumers as part of their subscriptions. Mobile entities
connect to and interact through the filtering engine and use
the location-matching engine for filtering events based on
the locations of mobile producers and mobile consumers.
For example, ToPSS has been used for a friend-finder
application in which mobile users specify a mobile friend
about whom they wish to be notified when in close
proximity. Hence, ToPSS supports applications in which
the geographical scope of interest is defined by the
consumer and is solely based on distance to the producer,
rather than applications where proximity is defined by
producers as surrounding geographical areas. Also, as with
Rebeca, ToPSS depends on infrastructure, the centralized
filtering and location matching engines, that needs to be
accessible by the producers and consumers in a system,
which prevents it from supporting collaborative entities.

The recent work of Frey and Roman [24] is the most
closely related to ours in that it also provides an approach to
supporting collaborative event-based applications for ad
hoc networks. Their work allows location to be used to
describe both the areas in which subscriptions and events
are relevant and also. separately, the areas in which the
producers and consumers of events should be located for
corresponding events to be delivered. In contrast to our
approach, their system allows events to be delivered to
subscribers even when they are not located within the area
to which the producer has specified they are relevant,
mitigating the ability of the middleware to use location-
independent announcements to filter events. Moreover, the
dual use of an event’s area of relevance and the producer’s
location to determine whether or not to deliver events
introduces additional communication overhead. An extra
round of direct communication between the producer and
subscriber is needed before delivering matched events that
depend on the producer’s location.

2.2 Alternatives to Event-Based Middleware for
Collaboration

While the focus of our work is on techniques to support
collaborative mobile applications that use event-based
communication, we note that a number of other paradigms
have also been extended to support such applications as
exemplified by various extensions to the tuple space
paradigm. As discussed by Schelfthout [27], the tuple space
paradigm differs from the event paradigm in that it is
inherently coupled in space (as entities must know which
tuple space to access) and decoupled in time (collaborating
entities do not need to be present at the same time).
Conversely, event-based middleware is inherently de-
coupled in space (entities do not need to know where other
entities are) and coupled in time (entities usually need to be
present at the time when a message is sent).

The most influential of tuple space system supporting
mobility is Linda in a Mobile Environment (Lime) [28], [29],
which is also explicitly designed for use in an ad hoc
network. Lime caters for physical mobility of hosts and
logical mobility of agents (i.e., runtime migration of soft-
ware components) by having a tuple space attached to each
mobile entity. Entities then collaborate by transiently
sharing their tuple spaces, creating a “global virtual data
structure” [28]. While tuples from connected nodes can be
accessed based on pattern matching, thereby providing a
form of subject or content filtering, there is no concept of
location-dependent filtering nor a concept of location-
independent announcement allowing the producer of some
relevant information to be identified.

EgoSpaces [30] is one of the many extensions of Lime
and introduces the concept of a view that allows nodes to
specify from which other nodes tuples are gathered. To
offer higher level coordination support, the concept of
views was extended to include reactions, which specify
actions that are automatically performed in response to
specified changes in a view. EgoSpaces allows receivers to
choose from which nodes the data are coming and this can
be defined on location. Tuples on the Air (TOTA) [31]
allows the definition of tuples that are automatically
disseminated by copying them to connected nodes accord-
ing to an application-specific rule and propagation may be
restricted based on distance (e.g., number of hops). Finally,
Limone [32] is another Lime-inspired system designed for
use over ad hoc networks. In Limone, each agent maintains
strict control over its local data and defines an acquaintance
policy that governs the agents with which it will interact. As
can be seen, largely because of their focus on maintaining a
shared tuple space as a central abstraction, these systems
lack the support for spontaneous discovery and collabora-
tion with unknown peers facilitated by location-indepen-
dent announcement and location-dependent event delivery.

3 LocATION-AWARE EVENT-BASED MIDDLEWARE

Event-based middleware to support pervasive and mobile
applications in which collaboration between nearby entities
is intrinsic must deal with the increased complexity that
arises from a potentially large number of interacting entities,
from their geographical dispersion, and from the sponta-
neously changing connections between them. Mobile entities
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Fig. 1. Supporting collaboration using event types and proximities.

that comprise this style of application characteristically
move together and apart over time. Sets of such entities
typically come together at a certain location to communicate
and collaborate, move apart, and then come together with
other entities at a different location to collaborate there.
Hence, these entities are more likely to interact when they are
in close proximity. For example, a vehicle is interested in
receiving emergency vehicle warnings from an ambulance
only when the ambulance is within close proximity.
Similarly, tourists participating in a guided tour are most
interested in information about a specific site once they have
arrived at its location. This means that the closer event
consumers are located to a producer the more likely they are
to be interested in the events that it produces. Significantly,
this implies that events are likely to be most relevant within a
certain geographical area surrounding a producer. This
section presents techniques that can be used by location-
aware event-based middleware to support such collabora-
tion allowing entities representing real-world objects cur-
rently located within the same geographical area to discover
and deliver events at the location where they are relevant.

3.1 Inherently Distributed Event Service

Event-based middleware for collaborative applications
should enable entities that have come together at a certain
location to communicate and collaborate through wireless
connections even in the absence of any local network
infrastructure, in particular by supporting ad hoc as well as
infrastructure networks. Due to the characteristics of ad hoc
networks, such an event service must be inherently
distributed since it cannot rely on any service infrastructure.
It cannot depend on logically centralized or intermediate
components that are typically hosted by such an infra-
structure. For example, it cannot rely on a well-known
intermediate event broker to connect producers and
consumers as has been proposed by SIENA [33] to support
nomadic applications. Moreover, the characteristics of
collaborative applications, where entities come together to
collaborate, move apart, and then come together with other
entities at a different location, preclude dependency on
broker nodes interconnecting such locations of collabora-
tion across an ad hoc network. For example, it cannot rely
on dynamically elected cooperating directories as have been

proposed to support scalable service discovery for service-
oriented architectures based on ad hoc networks [34].
Hence, event-based middleware for collaborative applica-
tions must employ concepts that can support such an
inherent distribution, including event types and proximi-
ties, instead of centralized components.

3.1.1 Event Types and Proximities

An implicit event-based programming model, i.e., one that
does not make the present of other entities or event brokers
explicit to application programmers [11], is naturally suited
for applications in ad hoc environments. It allows produ-
cers to publish events of specific event types and consumers
to subscribe to events of a particular type rather than having
to subscribe at another entity or at an intermediate, as is
required by peer-based and mediator-based event models
[11]. Producers may publish events of several event types
and consumers may subscribe to one or more event types.
To accommodate collaborative applications, we propose an
implicit event model that supports geographical scopes
allowing producers to explicitly disseminate events to
nearby consumers. Producers associate the type of event
they intend to generate, or raise, with a geographical area,
called the proximity, within which events of this type are to
be disseminated. Consumers can receive events of some
type if (and only if) they are located inside a proximity in
which events of this type are being raised. For example, an
ambulance may define a proximity, whose size may depend
on its speed and prevailing road conditions, for its
emergency vehicle warning events. Other vehicles will only
receive these events when located within this proximity
relative to the ambulance.

Proximities may be of arbitrary shape and may be defined
as nested and overlapping areas. Nesting allows a large
proximity to contain a smaller proximity subdividing the
large area. Fig. 1 depicts two event types associated with
overlapping proximities of different shape and illustrates
that multiple consumers may reside inside a proximity.
Proximity, and Proximityy have been defined for
Event_type, and Event_typeg, respectively. Consumers that
have subscribed will be delivered these events if they reside
inside the appropriate proximity. Note that consumers
located inside these areas but which are only interested in
other event types will not be delivered events of either type.
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3.1.2 Supporting Mobility

Collaborative entities can be either stationary or mobile and
interact based on their geographical location. This implies
that the middleware, as well as the entities hosted by a
particular node, are aware of their geographical location at
any given time, for example, by using an appropriate
location service to determine the current geographical
location of the node. A location service for outdoor
applications, such as context-aware transportation systems
and city-wide information systems, may exploit a GPS
satellite receiver to provide latitude and longitude coordi-
nates. One for indoor applications may exploit tag-based
location mechanisms, such as [35], [36].

Proximities can be either stationary or mobile since they
may be defined by both stationary and mobile event
producers. The proximity definition below shows that this
notion of proximity is defined by the area covered, which is
described as a geometric shape with associated dimensions
and a reference point that is relative to this shape, and by a
“naval” location used to associate the area with the real
world. The reference point of a stationary proximity is
attached to a naval represented by a fixed point in space
whereas the reference point of a mobile proximity is
mapped to a moving naval, which is characteristically
represented by the location of a specific mobile producer.
Hence, a mobile proximity moves with the location of the
producer to which it has been attached. For example, a
platoon of vehicles traveling in the same direction might
interact in a mobile proximity that might have been
attached to a naval defined by the position of the leading
vehicle and moving with its location.

Proximity = Area (Shape, Dimensions
Reference Point) ,Naval}

3.2 Location-Independent Announcement and
Subscription

Location-independent announcement allows producers to
advertise their events and have these advertisements persist
while moving location. As summarized in Fig. 2, a producer
using location-independent announcement specifies an
event type/proximity pair to associate a specific event type
with a certain proximity. That producer may then generate
events of the announced type until it is unannounced and
have them delivered to interested consumers within the
proximity. Likewise, consumers use location-independent
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subscription to subscribe to events allowing them to receive
events of interest whenever they move into a proximity in
which such events are being generated. Fig. 2 shows that
consumers simply subscribe to event types in order to have
the middleware deliver location-relevant events to them
until they unsubscribe. Significantly, consumers subscribe to
event types only. They do not need to subscribe to specific
proximities; rather, they implicitly subscribe to all the
proximities that have been associated with a specific event
type by any producer. This enables them to receive events of
interest generated inside any proximity in which they are
present. Such announcements and subscriptions are persis-
tent in that they apply transparently to all locations
independently of the specific location where they have been
issued. Announced event types and proximities apply to all
locations that a migrating producer might visit and con-
sumers may move from one proximity to another without
reissuing a subscription when entering the new proximity.
Announcements specify both the functional and non-
functional attributes of the events to be generated by some
producer. The definition below shows that an event type
consists of a subject and content representing its functional
attributes, as well as of a self-describing attribute list
representing its nonfunctional attributes. The subject
defines the name of a specific event type and the content
defines the names and types of a set of associated
parameters. The attribute list may include a variety of
attributes ranging from context used for additional filtering,
such as geographical location, to temporal validity, to
delivery semantics, such as event priority, delivery dead-
line, and delivery order. Producers and consumers must
use a common vocabulary defined by the application to
agree on the names of the event types. Event types that have
the same subject must have an identical content structure,
ie., the set of parameter names and types must be
consistent, and must have an identical list of attributes:

Event Type = {Subject, Content,
Attribute_List}

In principle, either a consumer or a producer may define
a proximity. Consumers might wish to define proximities
that describe their interest in events published in certain
areas depending on their (current) activities. For example, a
migrating consumer might define its scope of interest
according to its actual travel speed. Producers, on the other
hand, might wish to define proximities describing the
scopes inside which their events are raised.
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However, we believe that, in many collaborative applica-
tions, the semantics of disseminating events depends on the
producer, and therefore, it is the producer that would
define proximities. A producer may assess its local
conditions, which likely apply to all consumers within its
vicinity, and may define, based on application requirements
and these circumstances, an appropriate proximity. For
example, a traffic light propagating its status to approach-
ing vehicles (see also the “Informed Driver” [37] and the
“Cooperative Intersection Collision Avoidance System” [38]
initiatives for applications that depend on such interaction)
defines its proximity based on the location of the next traffic
light and on the local speed limit. This enables each traffic
light in an urban environment to define a proximity that is
tailored according to its local conditions (and thereby to the
conditions of passing vehicles), ensuring that vehicles
suitably receive the light changes that are relevant at their
current location. Irrelevant information, for example, a
change to the state of a light at the far end of town, is being
filtered and vehicles are prevented from having to adjust
their filters to the prevailing conditions, such as a change to
the speed limit, along their journeys. Nevertheless, we
admit the possibility of applications in which consumers
might wish to determine their proximities. A vehicle
exceeding the local speed limit, for example, a police car
on a call, may require a larger scope for receiving a traffic
light’s status compared to an “ordinary” vehicle traveling
within the speed limit. However, location-independent
announcement currently supports proximities defined by
producers only, while support for proximities defined by
consumers remains for future work.

3.3 Location-Dependent Event Delivery

Event propagation is location dependent in that events
generated by a particular producer are only delivered by
consumers currently residing in the appropriate geographi-
cal area. Producers announce proximities to specify the
locations at which their events are relevant. Consumers
discover these areas of interest and subsequently deliver
events at the locations where they are relevant. Mobile (and
stationary) consumers transparently discover the proximi-
ties and ultimately the events of interest that are available at
their current location regardless of the dynamics of the
producers, i.e.,, whenever they enter a proximity or a
proximity (attached to some mobile producer) arrives at
their location. Consumers then deliver these events for as
long as they reside inside the proximity.

Consumers may deliver a particular set of events at some
location and subsequently deliver a different set of events at
another location. They may deliver events generated by
some set of producers and then deliver events generated by
another set of producers at a different location. This implies
that a subscription to a specific event type applies to all
proximities, where such events are generated. A single
subscription may result in events of a particular event type
raised by different producers in multiple proximities being
delivered over time. Hence, the set of events received by a
consumer at a certain time depends on its movements as
well as on the movements of producers and proximities. For
example, a vehicle may deliver status events generated by a
certain traffic light at some intersection and subsequently

deliver status events generated by another traffic light at the
next intersection.

Significantly, location-dependent event delivery exploits
the announcement concept to support mobility and enable
consumers to discover proximities (and events) rather than
producers. This provided a notion of anonymity in which
entities are anonymous to each other but known by the
middleware.

3.4 Location-Based Event Filtering

An event system consists of a potentially large number of
producers [18], [22], [39], all of which produce events
containing different information. As a result, the number of
events propagated in an event-based system may be very
large. However, a particular consumer may only be
interested in a subset of the events propagated in the
system or even within its current locality. Event filters
provide a means to control the propagation of events.
Ideally, filters enable a particular consumer to receive only
the exact set of events in which it is interested. Events are
matched against the filters and are only delivered to
consumers that are interested in them, i.e., for which the
matching produced a positive result.

Location-based event filtering is a distributed approach
to filtering that allows an application to define multiple
event filters, which may use the actual location of a
producer or a consumer, and to apply them at both the
producer side and the consumer side. Producer-side filters
may describe a proximity surrounding a producer’s
location and consumer-side filters may include event
attributes that refer to the current consumer location or to
the location of the event producer.

3.4.1 Distributing Location-Based Filters

Location-based event filtering allows an application to
specify multiple event filters, each of which may apply to
a different attribute of a specific event. Such filters may be
combined and a particular event is only delivered to a
consumer if all filters match. Combining filters is beneficial
to the precision of filtering allowing a consumer to define
the subset of events in which it is interested using multiple
criteria, including not only the meaning of an event, but also
criteria such as time and geographical location. Event
filtering at both the consumer and the producer side
implies that a relatively small number of filters are applied
on a specific node compared to traditional approaches in
which an arbitrarily large number of filters are evaluated
sequentially on a node hosting an event broker or a
producer. For example, considering that applications often
consist of more consumers than producers [10], [39],
applying the filters defined by many consumers on a single
(producer) node, may result in significant computational
load for that node. This is in contrast to a distributed
approach, where filtering can be shared between many
nodes, thereby lightening the load of individual nodes.
Distributing event filters allows mobile devices, which
typically have limited computational resources, to concur-
rently evaluate the filters that apply to a particular event.
The computational load of filter matching can therefore be
distributed between several mobile devices.
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Fig. 3. Mobile devices hosting the inherently distributed architecture of the STEAM middleware.

3.4.2 Defining Location-Based Filters

Location-based event filtering supports three classes of
event filters: subject filters, content filters, and proximity filters.
Subject filters match the subject of events and allow a
consumer to specify the event type in which it is interested.
As shown below, subject filters can be defined by giving the
name of the relevant event type. Content filters contain a
filter expression that can be matched against the values of
the parameters of an event. As shown below, content filters
may consist of an arbitrary number of self-describing filter
terms. Each term specifies the parameter to which it applies
along with an operator and a value representing the second
operand. These filter terms are matched against the relevant
parameters of an event either in a conjunctive or a
disjunctive manner, thus defining whether all or at least
one of the terms that comprise a filter must be true for the
filter to match. These filter expressions can contain equality,
magnitude, and range operators, as well as consumer local
information, such as the consumer’s geographical location.
Proximity filters define the geographical scope within
which certain events are relevant and correspond to the
proximities that producers may announce. As shown
below, proximity filters specify the area and naval of a
proximity and may be defined as either stationary or
mobile. Proximity filters bound event dissemination and
serve as the basis for location-dependent event dissemina-
tion and delivery. They act as implicit event filters and use
location information to determine whether or not to deliver
an event to a particular consumer.

Subject Filter={Subject}

Filter Term={Content Parameter Name,
Operator,Value}

Content Filter=

(Conjunctive | Disjunctive),

Filter Term, [Filter Term], ...}

Proximity Filter={ (Stationary | Mobile),
Area (Shape,Dimensions,
Reference Point), Naval}

Event filtering based on geographical context enhances
the ability of a system to accommodate the dynamically

changing population of mobile entities by dividing the
system into bounded geographical scopes. An entity
entering a proximity causes other entities in the same area
to reconfigure, i.e., to update routing and subscription
information, without affecting entities residing outside the
area. Consequently, location-based filtering bounds the
propagation range of events and of event filters. In
particular, location-based filtering limits the forwarding of
events and of filters to a confined geographical area.

4 THE STEAM EVENT SERVICE

The STEAM event-based middleware implements the
techniques introduced in the previous section using group
communication. STEAM provides location-aware event
dissemination for collaborative pervasive and mobile
applications running on mobile devices that interact
through IEEE 802.11b-based ad hoc wireless local area
networks [7], [40]. Depending on the application areas in
which they are used, such portable computing devices may
range from handheld devices, such as personal digital
assistants, to notebook computers. This section outlines the
architecture and most important implementation techni-
ques used by STEAM.

4.1 Inherently Distributed Service Architecture

The STEAM event service is based on an inherently
distributed architecture in which the middleware is
exclusively collocated with the application components
and does not depend on any separate centralized or
intermediate components. As illustrated in Fig. 3, the
architecture essentially consists of four key components
that reflect the main features of the event service. The Event
Service Nucleus (ESN) implements STEAM’s application
programming interface and therefore is explicitly exposed
to applications. The event service nucleus can be regarded
as STEAM’s central component since it interconnects the
remaining components and because it provides a filter
engine that applies and maintains the various event filters
that producers and consumers may define. The event
service nucleus exploits a Proximity-based Group Commu-
nication Service (PGCS) to disseminate events depending
on the locations of the relevant producers to consumers. The
Proximity Discovery Service (PDS) provides the means for
potentially mobile entities to persistently announce and
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Fig. 4. Location-based event dissemination. (a) Single-hop event dissemination. (b) Multihop event dissemination.

subscribe to events and eventually to discover events of
interest. The discovery mechanism uses location informa-
tion to map proximities to the subscriptions of its
consumers and as a result, manages the proximity groups
that are relevant at its current location. This implies that the
proximity discovery service is responsible for maintaining a
consistent notion of the relationship between proximity
groups and subscriptions at any given time while consider-
ing the migration of entities and indeed of proximities.
STEAM depends on a Location Service (LS) to supply
geographical location information. The current location
service uses GPS-based sensor data to compute the current
geographical location of the mobile device and provides
this location information to the middleware and to
producers and consumers hosted by the device.

Fig. 3 illustrates the fact that every mobile device has
identical STEAM capabilities. The middleware may supporta
variable number of consumers and producers on each mobile
device, thereby allowing individual devices to both produce
and consume events. The event type and proximity informa-
tion announced by producers are exploited by the PDS to
establish communication relationships between mobile enti-
ties rather than to optimize event routing as suggested by
Carzaniga et al. [22]. Subscriptions are used locally to map
consumer interests to the sets of currently available events
being disseminated within the discovered proximities.

As shown below, the operations of the STEAM applica-
tion programming interface reflect the fact that STEAM is
based on an implicit event model as they refer neither to
explicit entities nor to designated components of any kind.
Instead, the operations for announcing and subscribing to
events refer to event types, the former indicating the actual
type and the latter using a subject filter to name the type.

announce (eventType et, proximityFilter pf)

unannounce (eventType et)

subscribe (subjectFilter sf,
deliveryHandler dh,

contentFilter cf)

unsubscribe (subjectFilter sf,
deliveryHandler dh,

contentFilter cf)

raise(event e)

The STEAM application programming interface also
illustrates how producers and consumers specify their
respective event filters. Producers specify their proximity
filters and announce them, together with their event types,
thereby grouping them into associated pairs, while con-
sumers specify both their subject filters and their content
filters together with their delivery handlers. Consumers
may omit content filters, allowing them to express their
interest in events solely using their types, thereby employ-
ing a classic, topic-based subscription mechanism [11].

4.2 Mapping Location onto Process Groups

Group communication [41] has been recognized as a natural
means to support event-based communication models [42].
Groups provide a one-to-many communication pattern that
can be used by producers to propagate events to a group of
subscribed consumers. STEAM’s proximity groups have
been designed to support mobile applications using wire-
less local area networks [43]. To apply for group member-
ship, an application component must first be located in the
geographical area corresponding to the group, and second,
be interested in the group in order to join, i.e., a group is
identified by both geographical and functional aspects. In
contrast, classical group communication defines groups
solely by their functional aspect. STEAM maps event
subject and proximity to the functional and geographical
aspect, respectively, of proximity groups. Furthermore,
proximity groups can be either absolute or relative. An
absolute proximity group is geographically fixed; it is
attached to a fixed point in space and is used to support
stationary proximities. In contrast, a relative proximity
group is attached to a moving point represented by a
specific mobile node and is used to support mobile
proximities. Management of proximity groups is discussed
in detail in the service discovery section below.

4.3 Exploiting Multicast Groups

STEAM allows entities to define geographical scopes
independently of the physical transmission range of their
wireless radio transmitters. This implies that STEAM
supports multihop event dissemination for scenarios in
which proximity exceeds the radio transmission range of
the sender. Fig. 4a outlines a single-hop event propagation
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scenario, where the radio transmission range of the sender
covers the entire scope of the proximity. Event messages are
propagated within this radio transmission range and travel
exactly one hop in order to reach all potentially interested
nodes. Proximity group members recognize the event
messages that are relevant to them and may subsequently
deliver these events. Nodes that are not members of such a
proximity group ignore these event messages.

Fig. 4b shows a multihop event propagation scenario in
which the proximity exceeds the radio transmission range
of the sender. Proximity group member nodes must
forward event messages for them to reach other members
of the group. Similarly to single-hop event dissemination,
group members recognize relevant event messages and
may subsequently deliver these events. However, group
members also forward relevant event messages, thereby
expanding their dissemination range. The maximum
number of hops such event messages may travel to reach
any member of the group is bounded by the proximity.
Nongroup member nodes ignore these event messages and
consequently do not forward them. Multihop event dis-
semination generally increases the range within which
event messages can be propagated but characteristically
imposes additional transmission latency compared to
single-hop transmissions.

STEAM uses a producer’s geographical location and
radio transmission range in conjunction with the proximity
in which specific events are to be published to optimize the
propagation of specific events by transparently determining
whether to use single-hop or multihop messages. STEAM
therefore supports both single-hop and multihop event
dissemination and typically uses cost-efficient single-hop
messages for publishing events in proximities that are likely
to be covered by a producer’s wireless transmission range
and employs multihop messages only when transmitting
events beyond this range.

The current version of STEAM uses a proximity-based
group communication service that is based on IP multicast.
Such multicast-based group communication is naturally
suited to support the one-to-many interaction style of
location-based event dissemination. It allows a consumer
to join a proximity group of interest without having to
explicitly establish a direct communication relationship
with the producer as is the case for unicast-based group
communication. This is especially beneficial for collabora-
tive mobile applications, where mobile entities come
together to dynamically form temporary groups. Exploiting
IP multicast for disseminating messages provides best-
effort delivery semantics, which does not guarantee that
any subscriber will necessarily receive a specific event or an
individual announcement will be received by nearby
devices. The current implementation of STEAM therefore
provides a best-effort event service but has been designed to
use proximity groups that are based on the TBMAC
protocol [44]. Hence, a future version of STEAM will
provide strong guarantees in terms of event delivery
reliability and timeliness.

Coverage can be defined as the geographical area to which
a particular sender can send messages using either single-
hop or multihop communication. A proximity is said to be

covered if the associated set of nodes is a subset of the nodes
to which event messages can be propagated. Network
partitions may occur in cases where an area defined by a
proximity is not covered by a specific sender. They may
therefore occur in the kind of multihop scenario illustrated in
Fig. 4b, but not in single-hop scenarios where the radio
transmission range covers the whole proximity. Our ap-
proach to message forwarding in which nongroup member
nodes are not expected to designate resources to unrelated
messages may result in a scenario where nongroup member
nodes might help increase coverage or prevent network
partitioning. However, we argue that such a scenario is
unlikely given the nature of collaborative applications and
that depending on the willingness of an unrelated node to
provide additional resources is impractical.

Techniques for preventing message loss due to coverage
limitations must first anticipate a network partition. Such
partition anticipation can be based on a means for detecting
link failure between individual components in ad hoc
networks [45], [46] or on an approach that assesses the
quality of wireless connections to predict their future level
of connectivity [47]. Consumers that are able to anticipate
network partitions can then employ a means to recover
missed events once they reestablish their connections to the
members of a group. Such consumers recover missed events
by requesting a retransmission of previously sent events. A
producer may forward the events it has cached to these
consumers depending on their persistence level.

The design is optimized for delivery of events to
consumers that are expected to be present in the proximity.
This contrasts with approaches used in the so-called delay-
tolerant networks, where the intended receivers of mes-
sages are expected to be uncontactable for extended periods
of time. This leads inevitably to different design decisions
usually based on some notion of “custody” whereby
intermediate nodes take responsibility for each message
until it can be delivered to its intended next hop—an
approach that is exemplified by the Bundle Protocol [48].

4.4 Distributed Hashing

There are two essential issues that need to be addressed when
mapping announcements and subscriptions to proximity
groups. First, an addressing scheme for uniquely identifying
groups is required, and second, a means for producers and
consumers to obtain the correct group identifiers needs to be
provided. An approach to addressing these issues, based on
statically generating a fixed number of unique and well-
known group identifiers, has been described by Orvalho et al.
[49]. Another approach might involve using a centralized
lookup service for generating and retrieving group identi-
fiers. However, neither of these approaches suffices for
applications that need to accommodate a dynamically
changing number of communication groups and depend
on an inherently distributed architecture.

STEAM exploits a decentralized addressing scheme in
which identifiers representing groups are computed from
event type and proximity pairs. Each combination of event
type and proximity (shape dimensions, reference point, and
naval location) is considered to be unique throughout a
system under the assumption that there is no justification
for applications to define multiple identical subject and



MEIER AND CAHILL: ON EVENT-BASED MIDDLEWARE FOR LOCATION-AWARE MOBILE APPLICATIONS 419

Subject Proximity
” ~
” ~
e ~
P N
Type Shape Naval (lat, Ing)
- ~
- - - = ~ ~

Rectangle |Dimension (X, y)| Reference (x, y)

Circle

Radius (r) Reference (x, y)

Fig. 5. Computing group identifiers from event type and proximity pairs.

proximity pairs for different sets of events. A textual
description of such a pair is used as the stimulus for a
hashing algorithm to dynamically generate hash keys that
represent identifiers using node-local rather than global
knowledge. Producers and consumers compute the corre-
sponding group identifier upon discovery of a proximity
and the associated event type and subsequently use these
group identifiers to join groups in which relevant events are
disseminated. This scheme prevents entities that are not
interested in certain events from joining irrelevant groups,
and consequently, from receiving unwanted events even
though they might reside inside the proximity associated
with a group.

This distributed addressing scheme replaces the kind of
centralized approach traditionally used for identifying
peers of interest and therefore represents a key enabling
mechanism for the inherently distributed architecture of
STEAM. It enables mobile devices to recognize proximities
of interest and locally compute proximity group identifiers
from serialized event type and proximity descriptions.

STEAM uses a hashing algorithm that generates 24-bit
group identifiers from variable length character strings.
This algorithm is based on a combination of a hash function
for such stimuli proposed by Preiss [50] and the use of a
hash function multiplier [51] in order to reduce the chance
of collisions. Fig. 5 depicts the structure of the character
strings that describe event type/proximity pairs with
rectangular and circular proximities. Proximity filters are
described by their shapes and by the coordinates that
specify the location of their navals. Note that a mobile
proximity filter always describes its initial naval location
since its actual naval location might change over time,
therefore enabling mobile devices to generate consistent
group identifiers.

Depending on a number of factors, including the quality
of the hash function and the ratio of stimuli to potential
identifiers, this approach might lead to colliding identifiers.
Such collisions occur when there exist stimulus pairs = and
y such that x # y, for which h(z) = h(y). Collisions may
result in different sets of events using the same identifiers.
This does not affect a system provided that such sets are
only used in different geographical scopes, i.e., their
proximity groups do not overlap. Overlapping proximity
groups with colliding identifiers can lead to unwanted
events being received by certain mobile devices. Such
devices can be prevented from delivering unwanted events

to their applications by a runtime-type checking mechan-
ism. Such a mechanism can detect and discard these events.
Hence, colliding group identifiers may lead to additional
use of communication and computational resources, but
will not cause delivery of unwanted events and are in any
case unlikely due to geographical separation.

4.5 Fully Decentralized Service Discovery

The PDS runs on every node that hosts STEAM, regardless of
whether local entities act only as producers or consumers or
as both. The PDS uses beacons to periodically announce
relevant proximities (and the associated event types) on
behalf of the producers. The discovery service announces the
event type and proximity pairs that have been defined by
producers within the scope of the proximity using a well-
known discovery multicast group. This implies that the
location at which these announcements are disseminated can
change when the node migrates and that the set of adjacent
devices is likely to change as well. Moreover, this also
implies that other stationary or mobile devices may need to
forward announcements for them to reach the boundaries of
the proximity. The frequency of the beacons announcing
relevant proximities can be defined depending on the
requirements of specific collaborative applications. A higher
beacon frequency helps in refreshing the PDS more often and
reduces the latency for discovering relevant proximities but
also increases the computational and communication over-
head of the PDS. Senart et al. [52] provide a further
discussion on how to derive the configuration of a proximity
from application requirements.

4.5.1 The Discovery Mechanism

The PDS (Fig. 6) allows its producers to announce and its
consumers to discover relevant proximities and their event
types according to the following discovery mechanisms:

1. Initially, a PDS instance recognizes the proximities
defined by its local producers.

2. EachPDSinstance uses a type repository to maintain a
list describing all proximities that are relevant at its
current location. A specific proximity description is
discarded when the hosting node leaves the geogra-
phical area associated with this proximity description.

3. Each PDS instance periodically broadcasts messages
describing the proximities defined by its local
producers within the proximity relative to its current
location. The broadcast period is configurable on an
application-specific basis.

4. Each PDS instance that receives an announcement
adds a proximity description to its own list if it is
currently located inside the associated geographical
area.

5. Each PDS instance uses a repository to maintain a
list of the subscription by its local consumers.

6. The PGCS is informed whenever a proximity of
interest is added to or discarded from the list of
relevant proximities. This enables the PGCS to join
and leave appropriate proximity groups, and even-
tually, to receive relevant events.

The proximity discovery mechanism essentially com-
prises two algorithms, one for advertising locally defined
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Fig. 6. The mechanism for fully decentralized service discovery.

announcements and another for handling remotely defined
announcements on reception. Both algorithms operate on the
relevant proximity lists of a particular mobile device and
collaborate in order to maintain the relevant locally and
remotely specified proximities. Hence, the relevant proxi-
mity lists are maintained according to geographical rele-
vance and are independent of the set of issued subscriptions.

4.5.2 Advertising Event Types

The algorithm for broadcasting and, to a certain extent,
maintaining event type/proximity pairs on a particular
node periodically traces through all descriptions stored in a
relevant proximity list in order to advertise the proximities
that have been defined by local producers and to verify the
geographical validity of both stationary and mobile
proximities at the node’s current location.

Stationary proximities remain in a list as long as their
scope includes the current location regardless of whether
they have been specified locally or remotely. A proximity is
removed from the list once the node has left the associated
geographical area. Removing a relevant proximity may lead
to a change in the set of events to be delivered to local
consumers. However, the subscriptions of such consumers
remain in the subscription repository.

The dynamics of mobile proximities cause some varia-
tion in the means by which they are maintained and
advertised. Mobile proximities specified by local producers
always (by definition) include the actual location of the
mobile device and migrate together with the device.
Consequently, the migration of a mobile device does not
cause mobile proximities to expire. These proximities can
therefore be advertised without verifying their validity. In
addition to enabling remote nodes to discover mobile
proximities, these advertisements provide a means for
disseminating location updates describing the migration

of mobile devices and their proximities. The naval of every
mobile proximity is therefore updated with the latest device
location prior to it being advertised. The validity of
remotely specified mobile proximities is verified when
updates on their latest locations are received. This prevents
validity checks using cached, and therefore potentially
obsolete (due to migration), location information.

4.5.3 Locating Event Types

The algorithm for handling received advertisements adds
newly discovered event type/proximity pairs to the
relevant proximities list of any mobile device residing
inside the geographical area while proximities whose
geographical areas no longer include the node’s location
are removed from the list. The PGCS is informed of newly
discovered proximities (join) as well as of canceled
proximities (leave) if a matching subscription exists.

Remotely specified event type/proximity pairs are
handled similarly regardless of whether they describe
stationary or mobile proximities. Both stationary and
mobile proximities that are no longer relevant at the current
location are removed from the repository. Mobile proximi-
ties are removed based on their latest naval location,
although it will be recalled that they are identified based
on their initial naval location.

5 EVALUATION

This section evaluates the techniques used by the STEAM
event-based middleware to support collaboration in loca-
tion-aware mobile applications proposed in this paper. The
first experiment assesses the cost of location-dependent
event dissemination, and more specifically, how exploiting
proximity can limit event forwarding without the need for
additional control messages. Note that the costs of
disseminating events are similar to those of disseminating
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announcements as both techniques rely on group commu-
nication for disseminating messages. The experimental
results demonstrate that the costs of location-dependent
event dissemination for stationary entities are comparable
to those for mobile entities and that cost neither depends on
the speed of consumers nor on the speed of the producer.
This evaluation, therefore, demonstrates that using proxi-
mity to bound multicast-based event dissemination is well
suited for highly dynamic networks as it limits the
complexity of the underlying dynamic network topology
without introducing overhead for maintaining dissemina-
tion routes and overlay network structures.

The second experiment aims to assess the benefits of
distributed event filtering. The experimental results demon-
strate that bounding the propagation range of events using
location-dependent filtering can significantly reduce the
potentially large number of events to be delivered in a
collaborative application. A collaborative application sce-
nario has been realized as part of this experiment that uses
real data to simulate interaction between a producer and
consumers. This experiment demonstrates that using dis-
tributed filters significantly reduces the number of events
delivered in a system, thereby accommodating large-scale
collaborative applications while limiting the number of
filters being applied at a particular location and balancing
the computational load of filter matching between the
nodes in a system.

The third experiment assesses the latency imposed by
location-dependent event delivery. The experimental re-
sults show the magnitude of event delivery latency for a
canonical application scenario using location-dependent
filtering and furthermore demonstrates that location-
dependent event delivery based on our approach to
maintaining distributed event filters limits the effect of
varying system scale on the latency of producers raising
and consumers delivering location-dependent events.

Finally, the fourth experiment assesses the accuracy of
location-dependent event dissemination. The experimental
results show that using proximity can limit the effect of
network partitions, even in sparsely populated areas, and
that optimization techniques can be applied to reduce the
cost of location-dependent event dissemination without
compromising event delivery accuracy.

All experiments were conducted by deploying proto-
typical realizations of representative collaborative applica-
tion scenarios. The producers and consumers that comprise
these applications are distributed on between two and four
notebook computers (depending on the specific experi-
ment) running the Microsoft Windows XP operating system
on a 1 GHz Intel Pentium III processor and interact with
other entities using a live ad hoc network using Lucent
Orinoco Gold WiFi (IEEE 802.11b) PCMCIA cards with a
channel capacity of 11 Mbit/s. The third experiment, where
the latency of location-dependent event delivery is assessed,
also hosts producers and consumers on an embedded
machine designed to control a mobile robot. This robot
controller runs the Microsoft Windows XP Embedded
operating system on a 1.3 GHz Intel Celeron M processor
and interacts with other entities using a live IEEE 802.11g
ad hoc network with a channel capacity of 54 Mbit/s. One

or more entities may reside on each machine and the
individual application deployment is further outlined
below for each experiment. The hosting notebook compu-
ters were placed within ad hoc communication reach of
each other, approximately five meters apart, and their
physical location remained stationary. Entity locations and
mobility are simulated throughout these experiments using
the simulated GPS-based location service. The radio
transmission range Ty for each machine was emulated to
be Tgr = 200 meters. This ensures that an entity discards all
communication messages received from entities located
beyond Ty, even though the distance between the physical
locations of their host machines is less than Tg. Multiple
runs, 1,000, were conducted for each latency experiment
and the data collected were averaged over those runs.

5.1 Cost of Location-Dependent Event

Dissemination

The primary measurement of interest in this experiment is a
quantity we refer to as cost. We assign a relative cost to the
dissemination of a single location-dependent event. Cost Cq
describes the number of messages required when propagat-
ing an event from a producer to the consumers residing
within its radio transmission reach Ty and the forwarding
of this message to consumers beyond this range. Hence, cost
depends on the number of connected consumers residing
within a particular proximity Ncp and provides a qualitative
indication of the bandwidth required for disseminating a
location-dependent event (or for disseminating an an-
nouncement) within a proximity range Pr, as shown below.
For example, for a proximity range that exceeds radio
transmission reach (2), the cost of a producer disseminating
an event to three consumers, each of which forwards the
message that describes the event once, is described as 4; one
message sent by the producer and three messages for-
warded by the consumers. In the same scenario, the cost of
a producer disseminating an announcement is also de-
scribed as 4, one message sent by the producer and three
messages forwarded by the consumers. This allows us to
measure the cost independently of the actual frequency of
event publishing while varying a number of application
parameters. These parameters include the migration speed
of the entities, the range of the proximity within which
events are disseminated, and the number of consumers.

Cq=1 iff (Pp <Tg) (1)
Cq=1+Ngp iff (PR > TR) (2)

Note that (2) describes the cost for disseminating a
location-dependent event (or an announcement) to the
consumers in a proximity that is covered. Hence, it outlines
cost for event dissemination to all consumers located in a
proximity if the proximity is covered. In the presence of
network partitions, it describes cost for event dissemination
to the consumers within the producer’s partition.

5.1.1 The Application Scenarios

We have selected and realized two collaborative application
scenarios from the traffic management domain for this
evaluation. ScenarioA models a broken-down car providing
a stationary warning service to vehicles within its vicinity.
This scenario is set on a two-way road with a producer
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acting as the broken-down car disseminating its events to
consumers representing approaching vehicles. These vehi-
cles are randomly distributed on the lanes of the road.
Scenariog models an ambulance providing a mobile
warning service to nearby vehicles for them to yield the
right of way. This scenario is set similarly to the previous
scenario on a two-way road and comprises an ambulance
disseminating its events to a number of randomly dis-
tributed consumers representing vehicles. Both scenarios
include a circular-shaped proximity with a central reference
point that is mapped to the location of the respective
producer and involve a road section of 1,400 meters with
the producer being located at the center of the section. All
consumers move on this road section and their number
defines the saturation of the area. The application scenarios
were deployed in turn on four notebook computers placed
on the sides of a 5 x 5 m?. One machine has been hosting
the producer and the remaining three machines have
accommodated an equal share of the consumers.

5.1.2 Results and Analysis

Fig. 7 (Ax and Agp) shows event dissemination cost as a
function of proximity range Pr for Scenario, and
Scenariop, respectively. The respective proximities define
the set of consumers residing inside the area of interest.
These ranges have been selected to include proximities in
which all consumers can be reached using a single-hop
radio transmission (Pr < Tg) as well as those that require
multihop routing (Pr > Tgr). The largest proximity covers
the whole scenario area enabling all consumers on the road
section to receive events. The results essentially demon-
strate how proximities bound event dissemination cost by

bounding the number of consumers that forward a certain
event. They show a significant difference when comparing
dissemination cost within the single-hop reach to the cost
beyond this range.

Beyond the single-hop range, all results show similar
tendencies of increasing cost with expanding proximities
and rising saturations as every consumer residing inside a
certain proximity forwards events. This illustrates that
exploiting proximity enables STEAM to transparently select
the appropriate protocol when disseminating events.
STEAM uses its cost-efficient single-hop protocol for dis-
seminating events within proximities that are covered by the
producer’s Tr and employs the multihop version only when
transmitting events beyond Tg. Other middleware platforms
[49], [53], [54] typically use either a single-hop protocol with
propagation range limitations or a more expensive multihop
protocol for both short and long-range dissemination.
However, Fig. 7 (Ax and Ag) most significantly illustrates
that the results recorded for Scenario, and Scenariop are
virtually identical. This is consistent with our design that
does not require additional control messages for handling
service mobility, and hence, given the similar configuration,
the dissemination costs for the stationary service scenario,
are comparable to those of the mobile service scenario.

Fig. 7 (Ba and Bg) depicts the event dissemination costs
recorded for Scenarioy and Scenariog, respectively, as a
function of migration speed. These results show the effect of
migration speed, and thus, of a dynamically changing
network topology that reflects entity movement, on dis-
semination cost. Similar results were recorded for
Scenarioy, where mobile consumers deliver events from
a stationary service, and for Scenariop in which a mobile
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Fig. 8. Modeling the intersection. (a) North Circular Road and Prussia Street. (b) Routes and filters.

service provided by an ambulance moving along the road is
being used by stationary consumers representing stopped
vehicles. These results essentially show that the cost is low
within single-hop reach and increases for proximities
expanding beyond single-hop range. Significantly, the
results recorded for Scenario, and Scenariop demonstrate
that event dissemination cost does not depend on the speed
of consumers or on the speed of the producer. This is due to
the fact that STEAM exploits proximities to control multi-
cast-based flooding, and consequently, does not introduce
extra overhead for maintaining routing information that
needs to be updated more frequently with increasing
relative migration speed. Hence, event dissemination cost
is independent of the relative migration speed between
producer and consumers, regardless of whether such
relative migration speed is the result of producer migration,
consumer migration, or the simultaneous migration of
producer and consumer. The study of flooding-based
multicast protocols for ad hoc networks presented by Lee
et al. [54] presents similar conclusions, and hence, argues
that neither the number of transmitted messages nor the
associated delivery ratio is a function of the relative speed
of the interacting entities. Nonetheless, relative migration
speed is an important factor along with the size of a
proximity and the broadcast period for disseminating
announcements that might prevent a possibly fast moving
consumer from detecting a proximity and ultimately from
receiving events of interest. We expect to further evaluate
this issue in a future version of STEAM that supports
collaborative applications with guaranteed quality of
service requirements.

5.2 Benefits of Distributed Event Filtering

In this case, the scenario evaluated models the interaction
between vehicles passing through an intersection and the
intersection’s traffic light disseminating its light status. The
scenario has been realized according to the intersection of
North Circular Road (NCR) and Prussia Street (PST),
located in Dublin’s inner city. It is based on real data
gathered by induction loops, which have been provided by
the Dublin City Council, describing vehicle movements and
light status at the intersection over a period of 24 hours.

Fig. 8a illustrates the intersection and outlines how the
traffic flow can be broken up into two distinct phases.
The intersection comprises two approaches: Approach 1
describes the traffic flows arriving from east and west,
whereas approach 2 describes the traffic flows arriving
from north and south. Approach 1 consists of three lanes
and approach 2 consists of four lanes. The traffic light for
both approaches is considered to be located in the center
of the intersection at the stated latitude and longitude. The
cycle time defines the duration for the two approaches to
complete their combined sequence of light changes. The
proportion of the cycle length that is assigned to one
particular approach is called the split. The split between
the phase of approaches 1 and 2 is 45 to 55 percent. The
intersection data were acquired over a period of 24 hours
starting on the 3rd of December 2002 at 6 pm. It consists of a
sequence of records, each describing a cycle duration and
the number of vehicles passing through the intersection on
each individual lane during the cycle.

The setup includes three notebook computers placed five
meters apart, one machine hosting the traffic light and the
other two hosting the vehicles arriving on approaches 1 and
2, respectively. The traffic light raises an event every second
for each approach to disseminate the light status, approach
name, and light location. Vehicles approach the intersection
in their respective lanes at an average speed of 25 miles per
hour (MPH) (the intersection is located in a 30 MPH zone).
Each vehicle follows a predefined route according to its
approach lane simulated by its location service. Fig. 8b
depicts an example route of a vehicle in lane 2 of approach 1.
The available intersection data do not describe the behavior
of an approaching vehicle in terms of queuing; these
indicate the number of vehicles passing the intersection
during a green light sequence. Hence, vehicles are modeled
to reflect this behavior arriving at the intersection in time to
pass the light during a green light sequence.

Fig. 8b also illustrates the use of distributed event filters
in this scenario. The traffic light announces events of type
“Traffic Light” and the associated proximity, which defines
the radius of the area of interest surrounding the traffic
light. The radius has been set to 40 meters to allow for
vehicle breaking distance (16 meters) and update rate (once
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TABLE 1
Results of the Experiment

Approach 1 Approach 2

Lanel Lane2 Lane3 | Lanel Lane2 Lane3 Laned4

Number of | (oo | 3320 | 3728 | 3038 | 1383 | 2802 | 1135
Vehicles

Ne, 469945 | 235093 | 264557 | 210114 | 95743 | 193931 | 78730
Event Filter

Distributed | 4139 | 11905 | 13553 | o436 | 4488 | 8805 | 3543
Event Filter

IRElatise 94.9% | 94.9% | 94.9% | 955% | 953% | 95.5% | 95.5%
Decrease

per second) of the location service. This radius guarantees
that an approaching vehicle receives at least two events
before having to decide whether or not to stop at the light.
Vehicles subscribe to “Traffic Light” events and define a
content filter that matches events on their approach when
they are moving toward the traffic light. This combination
of filters causes vehicles 1 and 4 to discard “Traffic Light”
events as they reside outside the scope of the proximity.
Even though vehicles 2 and 3 are inside the proximity, only
vehicle 2 will deliver “Traffic Light” events. The content
filter of vehicle 3 prevents event delivery since the vehicle is
moving away from the traffic light. The actual proximity
filter and the content filter are shown below. The proximity
filter is stationary and defines the circular-shaped area
while the content filter uses a filter term on the event
attribute describing the location of the traffic light to match
events for approaching vehicles. The realization of these
filters has been discussed in further detail in [55].

//proximity filter of the traffic 1ight
SP_Shape cir = new SP_Circle (proxRadius) ;
SP_ProximityFilter pf = new
SP_ProximityFilter (cir, SP_ABSOLUTE,
navalLoc) ;
//content filter of the vehicle
SC_ConjunctiveContentFilter cf = new
SC_ConjunctiveContentFilter();
cf->addTermPOS (TrafficeLightLoc,
SC_POS_DISTANCE_DECREASES, null) ;

5.2.1 Results and Analysis
This experiment comprises two runs using the same stimuli.
The first run applies distributed events filters as described
above whereas the second run lacks any filters assuming the
communication range of the traffic light’s wireless transmit-
ter to limit event dissemination. As described above, we
assume the radio transmission range to be 200 meters.
Table 1 summarizes the number of vehicles passing
through the intersection on each lane as well as the total
number of events delivered to these vehicles in each
experiment. It also includes the relative decrease of
delivered events between the two experiments. The data
in Table 1 show a substantial reduction, averaging at

around 95 percent, in the number of events delivered to the
vehicles when applying distributed event filters. This is
hardly surprising considering the bounding of the propaga-
tion range and the content filter discarding events once a
vehicle has passed the traffic light. Applying distributed
event filters in experiment 1 causes additional overhead
due to the proximity discovery. The traffic light announces
its proximity by propagating beacons within the proximity
area. Vehicles discover the proximity upon entering the
area on delivering a single beacon message. Assuming this
to be equivalent to delivering an additional event per
vehicle would reduce the relative decrease by approxi-
mately 1.4 percent. However, the overall number of events
delivered would still substantially decrease, on average, by
over 93 percent.

The realization of an application scenario such as this
may also help to illustrate the usability of our middleware
and of its programming abstractions. Our techniques
provide high-level programming abstractions that enable
the realization of a wide range of collaborative applications,
for example, ranging from social services, to traffic manage-
ment applications, to mobile gaming, without depending on
a comprehensive understanding of the underlying middle-
ware. Application programmers rely on their understand-
ing of the specific application requirements to derive
appropriate configurations for our high-level abstraction,
for example, to configure the shape and size of the
proximity of a location-based filter or to define the
dissemination frequency of a location-independent
announcement [52].

5.3 Latency of Location-Dependent Event Delivery

We have realized an application scenario for this evaluation
that models the interaction between a producer disseminat-
ing location-dependent events through a wireless ad hoc
network and one or more consumers delivering these
events. The producer has been deployed on one notebook
computer and the consumers have been hosted by another.
The locations of the notebook computers hosting these
entities have been chosen so that the producer and all
consumers are within transmission range Tg for single-hop
communication and the location-based filter has been
defined to allow event dissemination within this range.
This enables the experiment to assess the latency of
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Fig. 9. Application scenario for assessing the latency of a producer raising a location-dependent event on either a notebook computer or a controller

for a mobile robot.

location-dependent event delivery by illustrating the
performance behavior of producers and consumers when
raising and delivering location-dependent events, respec-
tively. The experiment was repeated to assess the perfor-
mance behavior of producers and consumers hosted on an
embedded controller for a mobile robot. The latency of a
producer deployed on the robot controller interacting with
notebook-based consumers was measured as well as the
latency of a consumer deployed on the robot controller
interacting with a notebook-based producer. Figs. 9 and 10
illustrate the experiment for assessing the performance of a
producer raising a location-dependent event and of a
consumer delivering a location-dependent event, respec-
tively. This enables the experiment to assess the effect of the
underlying computing platform on the latency of location-
dependent event delivery. The latency imposed by a low-
performance notebook computer, whose performance we
consider similar to those of today’s handheld devices, is
compared to the latency of the kind of designated embedded
controller that might be deployed in the stationary and
mobile entities described in our scenarios. The effect of
parameters describing the scale of a system on delivery
latency, including the latency of retrieving and matching
event filters, is measured while excluding the latency of
wireless communication, which is beyond the control of our

techniques. Hence, the conducted measurements have
focused on determining producer latency and consumer
latency of location-dependent event delivery. Producer
latency represents the time for a collaborative application
to invoke the raise operation, and thus, includes processing
(filtering and marshalling) and sending of a location-
dependent event, thereby indicating the throughput of a
producer. The content of the event type used specifies a set
of five parameters, one each of type Integer, Time,
Location, String, and Double. Consumer latency
specifies the time for processing (marshalling and filtering)
a received location-dependent event and for passing it to
the application by invoking the delivery handler. Con-
sumers employ a conjunctive content filter with a filter
expression that consists of a set of filter terms, one of which
is applied to each of the event parameters. The actual values
of these filter terms have been chosen to match all the
disseminated events.

As mentioned above, these measurements have been
conducted as a function of a number of application
parameters, including the numbers of announcements,
subscribers, and subscriptions, which typically describe
the scale of a system. In addition to announcing and raising
events for the purpose of these latency measurements, the
producer announces a number of other event types (and

Notebook Computer (NC)

STEAM
Notebook Computer (NC) @
STEAM

Ad Hoc N—
@ Network S\

STEAM

® Producer @
~—

Robot Controller (RC)

Fig. 10. Application scenario for assessing the latency of a consumer delivering a location-dependent event on either a notebook computer or a

controller for a mobile robot.
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their location-based filters) modeling a scenario in a (large)
system consisting of several event types. This traditionally
imposes extra computational load on producers. Moreover,
the producer disseminates its location-dependent events to
a number of interested consumers, which have subscribed
to these events. Similar to adding announcements, adding
subscribers models the effect of increasing system scale on
producers. And finally, consumers may subscribe to several
event types, causing them to maintain multiple subscrip-
tions and filters. This models the effect of increasing system
scale on consumers.

5.3.1 Results and Analysis

Fig. 11 depicts the measured producer latency as a function
of the number of announced event types and associated
location-based filters, i.e., proximity filters, and the number
of subscribed consumers. The ratio of announced event
types to subscriptions has been chosen to reflect scenarios
such as the emergency vehicle warning service and the
traffic light status service, where the proximities of event
types might overlap and services are provided to sub-
scribed vehicles. Producers are hosted on either a notebook
computer or an embedded robot controller. The latency for
raising a location-dependent event on a notebook computer
was found to be approximately 1.8 milliseconds, which is
equivalent to a throughput of just above 550 events per
second. The latencies recorded for subject filter retrieval
and matching (SF rtv + match) and proximity filter retrieval
(PF retrieve) are 1.55 and 1.45 microseconds, respectively.
Marshalling and sending events accounts for the remaining
latency (Other). These experimental results demonstrate
that the latencies for raising location-dependent events and,
in particular, for processing event filters are independent of
the numbers of announced event types and subscribers in a
system. However, increasing the number of proximity
groups in a system also increases the number of obligatory
announcements and is likely to result in the dissemination
of a larger number of events. Such an increase in scale,
while not affecting the local latency of individual producers
or consumers, may impact the dissemination latency of the
broadcast medium where it is shared by multiple proximity
groups. The latency for raising a location-dependent event
on a robot controller was found to be approximately
0.03 millisecond, significantly less compared to the note-
book-based producer latency. While the latencies recorded
at 1.13 and 1.14 microseconds for processing subject filter

and proximity filter, respectively, represent a latency of
about 75 percent compared to that recorded for the
notebook computers, the most significant reduction was
found for the latency for marshalling and sending events,
which can be attributed to the increased ad hoc network
capacity. The comparison of these experimental results
demonstrates the dramatic impact that the communication
and computation resources associated with different de-
vices can have on throughput. We also argue that this
comparison of the performance of the types of devices
supported by STEAM is to be preferred over comparing
STEAM performance with the performance achieved by
other systems with vastly different computing resources
and network characteristics in addition to different applica-
tion requirements and configurations.

Fig. 12 illustrates the recorded consumer latency on a
notebook computer as a function of the number of
subscriptions to other event types maintained by the
consumer. The latencies for retrieving and matching subject
filters, content filters, and proximity filters, as well as the
overall latency for delivering events, are independent of the
varying number of subscriptions. Marshalling and invoca-
tion of the application delivery handler accounts for the
remaining latency (Other). These experimental results
demonstrate that the latencies for delivering location-
dependent events and, in particular, for processing event
filters are independent of the number of subscriptions in a
system. Fig. 12 also illustrates the latency for consumers
hosted on a robot controller, which was found to be
approximately 65 percent compared to the notebook-based
consumer latency and with linear reductions to all latencies
measured. Unlike the producer latency measurements,
these consumer latency measurements exclude latency for
accessing the ad hoc network, and as a result, the shown
latency reduction can be attributed solely to the increase in
computing power rather than to the increase in both
computing power and network capacity.

Some of the latencies outlined in Figs. 11 and 12 are
specific to application parameters. Content filter matching
latency depends on the number of filter terms and on the
type of the parameter to which these terms apply; proximity
filter evaluation latency may vary with the geographical
shape of the proximity area, and passing events to an
application depends on the realization of the delivery
handler. Even though evaluating these application-specific
latencies is straightforward, such an evaluation has been
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omitted as it represents an insignificant contribution in the
context of this paper.

Furthermore, Fig. 11 outlines a scenario in which a
significant number of event types and associated location-
based filters have been announced in the same geographical
area. Up to 40 announcements have been disseminated
concurrently without incurring collisions when computing
the hash-based group identifiers. Each of these announce-
ments comprises a different event type of between 14 and
18 characters in length and the same proximity filter defining
a stationary, circular area with a radius of 200 meters.

5.4 Accuracy of Location-Dependent Event
Dissemination

This experiment is based on five collaborative application

scenarios used to evaluate the accuracy of location-depen-

dent event dissemination under different network condi-

tions. Scenarioy, the broken-down car, and Scenariog, the

approaching ambulance, are taken from Section 5.1 using the
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same proximity configuration, vehicle distribution, and
saturation range. These proximity configuration and satura-
tion range are used for all scenarios in this experiment.
However, the scenarios vary in their entity distributions, and
as a result, in their network conditions. Scenarioc models
the traffic light intersection scenario from Section 5.2 in
which vehicles are randomly distributed on the two
approaches. Scenariop models an augmented reality game,
where a particular player informs nearby players of her
game status. Such players can reside anywhere in the game
space, and hence, are randomly distributed. And finally,
Scenariop models a search and rescue operation, where a
coordinator directs a group of distributed searchers, each
responsible for examining an equal part of the search area.
These searchers are homogeneously distributed in the search
area. Fig. 13 summarizes these five application scenarios
used for assessing the accuracy of location-dependent event
dissemination under different network conditions. The

———

-~ S
~ Proximity ~

N ~—>
/ N\ 4 \
/ \ ’ \
/ \ / \
/ \ / \
1 > @ > J > o= o>
] h - | L < <im
1 ! \ !
\ ! \ /
\ / \ /
\ / \ /
N\ / N\ /
N g N Pe
\\‘_'__// \\__'_.’/
Scenario, Scenariog
///’: ‘:EI\\\ //’ﬁ'o-x;n:tv\\\\ //ﬂ’P’iuXimit:—\\*\
/ [ N Ve - N Ve N
U - \ ’ \ / \
/Proxlmuty | | \ / - - ...\ / \
— | 1 . / . \ / - P - ~ -~ .- \
-E———- o | B Vo - \
T ¥ e R
o] [Ci.]] - { {
\ ] AN AN f
/ / — /
\ [ / \ 7 \ /
(1 V2 \ - Vs N Vs
\\ E| | 7 \\ - e \\ e
o —L—‘/ \__-__',/ \__’_',/
Scenarioc Scenariop Scenariog

Fig. 13. The five collaborative application scenarios used to evaluate the accuracy of location-dependent event dissemination under different

network conditions.
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prototypical realizations of the application scenarios were
deployed, in turn, on four notebook computers as in the first
experiment. One machine has been hosting the producer and
the remaining three machines have accommodated an equal
share of the consumers.

5.4.1 Results and Analysis

Measurements were conducted for all five scenarios
disseminating an event from the pivotal entity to the
entities located inside the proximity ranging from 100 to
700 meters and for saturations 60, 120, 180, and 240.

The first measurement analyzes the impact of network
partitions on the accuracy of event dissemination. It
quantifies the ratio of entities situated within the proximity
that are prevented from receiving the event due to the
network partition. To further increase the probability of
network partitions emerging in this experiment, 20 percent of
all entities are configured to restrain from forwarding
received event messages, thereby, emulating entity failure.
Of the measurements conducted for saturations between 60
and 240, network partitions are found only for saturation 60.
Fig. 14 shows the result for saturation 60 illustrating the
percentage of entities located inside the proximity that did
not receive the event. Only very sparse populations in
scenarios C, D, and E, where entities are distributed over
large parts of the proximity, cause the ad hoc network to
partition and prevent accurate dissemination of location-
dependent events. Moreover, partitions are recorded only
for proximity ranges above 300 meters demonstrating that
location-dependent event dissemination can limit the effect
of the network partitions on the entities in sparsely
populated areas.

The second measurement analyzes the impact of possible
optimization techniques on the accuracy of event dissemina-
tion. These measurements are based on the previously
described configuration, while applying gossip-based mes-
sage forwarding [56] with parameters G(d = 200.0,p = 0.8)

instead of imposing entity failure. These gossip parameters
compel entities outside the single-hop distance of d =
200.0 meters to retransmit messages with a probability of
p = 0.8. Event dissemination for saturations 120, 180, and
240 is found to be accurate in the presence of gossip-based
optimization. All entities situated inside the proximity
received the event even though fewer messages are used
to disseminate the event. Fig. 15 summarizes the reduction to
the cost of event dissemination as a result of applying
gossip-based message forwarding while preserving accurate
delivery. This demonstrates that optimization techniques
can be used in many collaborative application scenarios to
significantly reduce the dissemination cost without compro-
mising delivery accuracy. Note that the relatively high
gossip probability and entity failure rate used in this
experiment have been chosen to demonstrate the effect of
optimizations techniques and network partitions. Discover-
ing ideal gossip parameters and tolerable entity failure rates
for the respective scenarios is considered beyond the scope
of this paper.

6 CONCLUSION

As mobile computing becomes increasingly common and
the event-based communication paradigm is increasingly
adopted for engineering distributed applications, it is
natural that many researchers have considered extensions
to event-based communication models to support mobile
applications. To date, the bulk of this work has addressed
the requirements of what we characterize in this paper as
nomadic mobile applications, i.e., those whose components
move between points of attachment to the network being
used to interact with other static or mobile components.
Such applications are characterized by the use of fixed
network infrastructure. More recently, event-based com-
munication researchers have begun to consider the
requirements of applications composed of collections of
interacting mobile components, which we characterize here
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as collaborative mobile applications. These applications are
characterized by sporadic collaboration between collocated
mobile entities in the possible absence of any fixed network
infrastructure. In this paper, we have introduced a number
of techniques, including location-independent announce-
ment and subscription coupled with location-dependent
filtering and event delivery, that can be used by event-
based middleware to support such applications. In
particular, we have demonstrated that these techniques
can be implemented in a fully decentralized manner and
have shown the benefit of exploiting location to improve
event filtering for this class of applications. We expect
that these techniques will be increasingly incorporated in
future middleware platforms deployed to support colla-
borative mobile applications, for example, in the auto-
motive industry where the emergence of standardized
intervehicle and vehicle-to-roadside communication
(based, for example, on 802.11p) will give the development
of such applications significant impetus in the future.
Other emerging application domains ranging from assisted
living to mobile gaming will likely also benefit from the
availability of such middleware.

While our techniques provide the basis for supporting a
wide range of mobile applications, important work remains
to extend this work to support applications with guaranteed
quality of service requirements in terms of event-delivery
latency and this is the topic of our future work. We intend to
exploit the concept of proximity introduced here as the basis
for performing admission control to allocate the necessary
communication resources for timely event delivery within a
dynamically varying population of mobile components.
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