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Abstract

Dpi is a distributed version of the pi-calculus, in which processes are explicitly
located, and a migration construct may be used for moving between locations. We
argue that adding a recursion operator to the language increases significantly its
descriptive power. But typing recursive processes requires the use of potentially
infinite types.

We show that the capability-based typing system of Dpi can be extended to
co-inductive types so that recursive processes can be successfully supported. We
also show that, as in the pi-calculus, recursion can be implemented via iteration.
This translation improves on the standard ones by being compositional but still
requires co-inductive types and comes with a significant migration overhead in our
distributed setting.

Key words: dpi-calculus, recursion, implementation using replication, recursive
and coinductive types

1 Introduction

The pi-calculus, [1], is a well-known formal calculus for describing, and
reasoning about, the behaviour of concurrent processes which interact via
two-way communication channels. Dpi, [2], is one of a number of extensions
in which processes are located, and may migrate between locations, or sites,
by executing an explicit migrate command; the agent goto k. P , executing at
a site l, will continue with the execution of P at the site k. This extension
comes equipped with a sophisticated capability-based type system, and a co-
inductive behavioural theory which takes into account the constraints imposed
by these types, [3,2]. The types informally correspond to sets of capabilities,
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and the use which a process may make of an entity, such as a location or a
channel, depends on the current type at which the process owns the entity.
Moreover this type may change over time, reflecting the fact that processes
may gradually accumulate capabilities over entities. Types thus indicate the
rights some process owns over those entities.

The most common formulations of the pi-calculus use iteration to describe
repetitive processes. Thus

∗c ? (x) d ! 〈x〉
represents a process which repeatedly inputs a value on channel c and outputs
it at d. An alternative would be to use an explicit recursion operator, leading
to definitions such as

rec Z. c ? (x) d ! 〈x〉Z
But it has been argued that explicit recursion is unnecessary, because it offers
no extra convenience over iteration; indeed it is well-known that such a re-
cursion operator can easily be implemented using iteration; see pages 132–138
in [1].

However the situation changes when we move to the distributed world of Dpi:
a replicated process is tied to the location where it is started whereas a recur-
sive process can perform its recursive calls anywhere. In Section 2 we demon-
strate that the addition of explicit recursion leads to powerful programming
techniques; in particular it leads to simple natural descriptions of processes
for searching the underlying network for sites with particular properties.

Unfortunately this increase in descriptive power is obtained at a price. In order
for these recursive processes to be accommodated within the typed framework
of Dpi, we need to extend the type system with co-inductive types, that is
types of potentially infinite depth.

The purpose of this paper is to

• demonstrate the descriptive power of recursion when added to Dpi;
• develop a system of co-inductive types which extend the already existing

type system for Dpi and support recursive processes;
• prove that at the cost of significant migration costs recursion in Dpi can

still be implemented by purely iterative processes, in the absence of network
failures.

In Section 2 we describe the extension to Dpi, called recDpi, and demonstrate
the power of recursion by a series of prototypical examples. This is followed in
Section 3 with an outline of how the co-inductive types are defined, and how
the typing system for Dpi can be easily extended to handle these new types.
The translation of recursive processes into iterative processes is explained in
Section 5, and we give the proof of correctness in Section 6. This requires the
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use of a typed bisimulation equivalence to accommodate the typed labelled
transition system for recDpi.

The paper relies heavily on existing work on Dpi, and the reader is referred
to papers such as [3,2] for more introductory work on the semantics of Dpi
and its typing system.

2 The language recDpi

The syntax of recDpi is given in Figure 1, and is a simple extension of that
of Dpi; the new constructs are highlighted in bold font. As usual it assumes a
set of names, ranged over by letters such as a, b, c, k, l, . . ., and a separate set
of variables, ranged over by x, y, z, . . .; to handle recursive processes we use
another set of recursion variables, ranged over by X, Y, Z, . . . The values in the
language include identifiers, that is names or variables, and addresses, of the
form u@w; intuitively w stands for a location and u a channel located there.
In the paper we will consider only closed terms, where all variables (recursion
included) are bound.

The most important new construct is that for typed recursive processes,
rec (Z : R). P ; as we shall see the type R dictates the requirements on any site
wishing to host this process. We also have a new construct here [x] P , which
allows a process to know its current location. We will see in example 2 how
this new construct is useful for the description of recursive processes: with-
out here [x], a generic recursive process would indeed have no way to assert in
which location it is triggered. For non-recursive processes, it is always possi-
ble to encode this self-localisation by using the name or variable of the last
location the process migrated to.

Example 1 (Searching a network). Consider the following recursive process,
which searches a network for certain values satisfying some unspecified predi-
cate p:

Search , rec Z : S. test ? (x)if p(x) then goto home. report ! 〈x〉
else neigh ? (y) goto y. Z

When placed at a specific site such as k, giving the system

kJSearchK,

the process first gets the local value from the channel test. If it satisfies the test
the search is over; the process returns home, and reports the value. Otherwise
it uses the local channel neigh to find a neighbour to the current site, migrates
there and launches a recursive call at this new site. �
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Fig. 1 Syntax of recDpi

M, N ::= Systems
lJP K Located Process
M |N Composition
(new e : E) M Name Creation
0 Termination

P, Q ::= Processes
u ! 〈V 〉P Output
u ? (X : T) P Input
goto v. P Migration
if u1 = u2 then P else Q Matching
(newc c : C) P Channel creation
(newloc k : K) P Location creation
P |Q Composition
stop Termination
∗P Iteration
here [x] P Location look up
rec (Z : R). P Recursion
Z Recursion variable

We refrain from burdening the reader with a formal reduction semantics for
recDpi, as it is a minor extension of that of Dpi. However in Section 5 we
give a typed labelled transition system for the language, the τ -moves of which
provides our reduction semantics; see Figure 12. For the current discussion we
can focus on the following rules:

(lts-here)

kJhere [x] P K τ−→ kJP [k/x]K
(lts-iter)

kJ∗P K τ−→ kJ∗P K | kJP K
(lts-rec)

kJrec (Z : R). P K τ−→ kJP{rec (Z:R). P/Z}K

The first simply implements the capture of the current location by the con-
struct here. The second states that the iterative process at k, kJ∗P K can spawn
a new copy kJP K, while retaining the iterated process. This means that every
new copy of this process will be located in k. The final one, (lts-rec), im-
plements recursion in the standard manner by unwinding the body, which is
done by replacing every free occurrence of the recursion variable Z in P by
the recursive process itself. This takes an explicit τ -reduction just like the rule
(lts-iter).

Example 2 (Self-locating processes). We give an example to show why the
construct here is particularly interesting for recursive processes. Consider the
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system kJQuestK where

Quest , rec Z : R. here [x] (newc ans) neigh ? (y : R)
(ans ? (news) . . . | goto y. req ! 〈data, ans@x〉Z)

After determining its current location x, this process generates a new local
channel ans at the current site k and it finds a neighbour via the local chan-
nel neigh. It then sets up a listener on ans to await news and, concurrently,
it migrates to his neighbour, poses a question there via the channel req, and
fires a new recursive call, this time at the neighbouring site. The neighbour’s
request channel req requires some data, and a return address, which in this
case is given via the value ans@x.

Note that at runtime the occurrence of x in the value proffered to the channel
req is substituted by the originating site k. After the first three steps in the
reduction of the system kJQuestK, we get to

(new ans)
kJneigh ? (y : R) ( goto y. req ! 〈data, ans@k〉Quest | ans ? (news) . . . )K

If k’s neighbour is l, this further reduces to (up to some reorganisation)

(new ans) kJans ? (news) . . .K | lJQK
| (new ans′) lJneigh ? (y : R) ( goto y. req ! 〈data, ans′@l〉Quest

| ans′ ? (news) . . . )K

with Q some code running at l to answer the request brought by Quest.

The here construct can also be used to write a process initialising a doubly
linked list starting from a simply linked one. We assume for this that the cells
are locations containing two specific channels: n to get the name of the next
cell in the list, p for the previous. The initial state of our system is

l0Jn ! 〈l1〉K | l1Jn ! 〈l2〉K | . . .

and we run the following code in the first cell of this network to initialise the
list:

rec Z : R. n ? (n′) here [p′] (n ! 〈n′〉 | goto n′. (p ! 〈p′〉 |Z))

�

Now we need to look more closely at the types, like R, involved in the recur-
sive construct. They serve to indicate the capabilities required by a recursive
process to run.
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Fig. 2 Recursive pre-types

Base Types: B ::= int | bool | unit . . .
Local Channel Types: A ::= r〈U〉 | w〈T〉 | rw〈U, T〉
Location Types: K ::= loc[u1 : A1, . . . , un : A1], n ≥ 0 | µY.K | Y
Value Types: V ::= B | A | (Ã)@K
Transmission Types: T, U ::= (V1, . . . , Vn), n ≥ 0

3 Co-inductive types for recDpi

There is a well-established capability-based type system for Dpi, [2], which
we can adapt to recDpi. This adaptation will be as smooth as possible: we
will present co-inductive types and proofs about them in a form really close
to what is done in standard Dpi.

3.1 The Types

In this type system local channels have read/write types of the form r〈U〉,
w〈T〉, or rw〈U, T〉 (meaning that values are written at type T and read at
type U on a channel of that type), provided the object types U and T “agree”,
as will be explained later. Locations have record types, of the form

loc[u1 : A1, . . . , un : An]

indicating that the local channels ui may be used at the corresponding type Ai.

However it turns out that we need to consider infinite location types if we want
to allow some recursive behaviours. To see this consider again the searching
process Search from Example 1. Any site, such as k, which can support this
process needs to have a local channel called neigh from which values can be
read. These values must be locations, and let us consider their type, that is the
object type of neigh. These locations must have a local channel called test, of
an appropriate type, and a local channel called neigh; the object type of this
local channel must be in turn the same as the type we are trying to describe.
Using a recursion operator µ, this type can be described as

µY.loc[test : r〈Tt〉, neigh : r〈Y〉]

which will be used as the type S in the definition of Search; it describes precisely
the requirements on any site wishing to host this process.

The set of recursive pre-types is given in Figure 2, and is obtained by adding
the operator µY.K and the variable Y as constructors to the type forma-
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tion rules for Dpi. Following [4] we can associate with each recursive pre-
type T a co-inductive pre-type denoted Tree(T), which takes the form of a
finite-branching, but possibly infinite, tree whose nodes are labelled by the
type constructors. The co-inductive approach simplifies greatly reasoning over
types: for instance, the expected equality is indeed the equality of those pos-
sibly infinite trees and it is much more difficult to define when unfolding is
involved (unfolding the recursion can be insufficient to obtain two identical
types). The advantage of using this approach increases further when we will
develop the full theory of subtyping.

To give an example of tree pre-type, Tree(S) is the infinite regular tree we can
represent with the following graph:

loc

test

r〈·〉

Tt

neigh

r〈·〉

Definition 3 (Contractive and Tree pre-type). We call a recursive pre-type
S contractive if for every µY.S′ it contains, Y can only appear in S′ under an
occurrence of loc. In the paper we will only consider contractive pre-types.

For every contractive S we can define Tree(S), the unique tree satisfying the
following equations:

• recursive pre-types are unwound Tree(µY.S′) = Tree(S′{|µY.S′/Y|})
• Tree(·) is homomorphic on any other construct; for instance

Tree(r〈U〉) = r〈Tree(U)〉

We call Tree(S) the tree pre-type associated with the recursive pre-type S. �

Note that Tree(S) is defined only when the recursive pre-type S is contractive.
This condition ensures that types of the form µY.Y are avoided: we expect
our types to bring some piece of information about how the name or variable it
is attached to can be used, and such a type would not bring any information.

To make clearer the distinction between tree pre-types and recursive pre-types,
we slightly modify the notation and fonts of types. So the recursive pre-type

loc[test : r〈Tt〉]
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Fig. 3 Dpi subtyping rules

(sub-base)

base <: base

(sub-tuple)

Ci <: C′
i

(C̃) <: (C̃′)

(sub-chan)

T2 <: T1 <: U1 <: U2

w〈T1〉 <: w〈T2〉
r〈U1〉 <: r〈U2〉
rw〈U1, T1〉 <: r〈U2〉
rw〈U1, T1〉 <: w〈T2〉
rw〈U1, T1〉 <: rw〈U2, T2〉

(sub-hom)

A1 <: A2

K1 <: K2

A1@K1 <: A2@K2

(sub-loc)

Ai <: A′
i, 1 ≤ i ≤ n

loc[u1 : A1, . . . , un : An, . . . , un+p : An+p] <: loc[u1 : A′
1, . . . , un : A′

n]

corresponds to the tree pre-type

loc[test : r〈Tt〉] .

To go from pre-types to types, we need to get rid of meaningless pre-types
like rw〈r〈〉, int〉, which would be the type of a channel on which integers are
written but channels are read. If a channel of such type were to be allowed, a
system could rightfully contain a process sending an integer on that channel
and another process expecting on that same channel some data of type r〈〉:
when trying to use that data as a channel, the system would perform a runtime
error.

This is then avoided using a notion of subtype, and demanding that, in types
of the form rw〈U, T〉, T must be a subtype of U.

In Figure 3 we give the standard set of rules which define the subtyping relation
used in Dpi; a typical rule, an instance of (sub-chan), takes the form

T <: U <: U′

rw〈U, T〉 <: r〈U′〉

However here we interpret these rules co-inductively, [4,5]. Formally they give
rise to a transformation on relations over tree pre-types. If R is such a relation,
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then Sub(R) is the relation given by:

Sub(R) = {(base, base)}
∪ {((C̃), (C̃′)) if (Ci, C

′
i) is in R for all i}

∪ {(w〈T1〉, w〈T2〉) if (T2, T1) is in R}
∪ {(r〈U1〉, r〈U2〉) if (U1, U2) is in R}
∪ {(rw〈U1, T1〉, r〈U2〉) if (T1, U1) and (U1, U2) are in R}
∪ {(rw〈U1, T1〉, w〈T2〉) if (T2, T1) and (T1, U1) are in R}
∪ {(rw〈U1, T1〉, rw〈U2, T2〉) if (T2, T1),

(T1, U1) and (U1, U2) are in R}
∪ {(A1@K1, A2@K2) if (A1, A2) and (K1, K2) are in R}
∪ {(loc[u1 : A1, . . . , un+p : An+p], loc[u1 : A′

1, . . . , un : A′
n])

if (Ai, A
′
i) is in R for all i ≤ n}

Note that Sub is a total monotonic function from relations to relations. We can
easily see the intuition in the definition of this function: every case corresponds
to one rule, even if a set of rules are grouped together, like in (sub-chan)
gathering all the different cases for the separate read and write capabilities.
Then, if the hypotheses of any rule of Figure 3 are in R the conclusion is in
Sub(R).

Now that the function Sub is defined, we can use it to define the notion of
subtyping on the tree pre-types and consequently obtain the notion of types.

Definition 4 (Subtyping and types). We define the subtyping relation be-
tween tree pre-types to be the greatest fixpoint of the function Sub, written
νSub. For convenience we often write T <: T ′ to mean that (T , T ′) is in νSub.

Then a tree pre-type is called a tree type if every occurrence of rw〈U, T〉 it
contains satisfies T <: U.

Finally this is lifted to recursive pre-types. A pre-type T from Figure 2 is
called a recursive type if Tree(T) is a tree type. �

3.2 Theory of tree types

Now that we have defined a notion of tree types out of recursive pre-types,
we want to prove some properties of subtyping over these types. For this, the
co-inductive definition of subtyping gives rise to a natural co-inductive proof
method, the dual of the usual inductive proof method used for sub-typing in
Dpi.

This proof method works as follows. To show that some element, say a, is in
the greatest fixpoint of any function f it is sufficient to give a set S such that
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• a is in S;
• S is a postfixpoint of f , that is S ⊆ f(S).

From this it follows that S is a subset of the greatest fixpoint of f , which
therefore contains the element a.

Most of the proofs will also rely on the fact that Sub is “invertible”: we will
often consider some pair (T1, T2) in some Sub(R) and deduce the possible
forms of T1 and T2 since only one of the cases of the definition of Sub can
apply.

Of course, since tree types are defined coinductively, equality must be defined
as the greatest fixpoint of a function, the following total one:

Eq(R) = {(base, base)}
∪ {((C̃), (C̃′)) if (Ci, C

′
i) is in R for all i}

∪ {(w〈T1〉, w〈T2〉) if (T1, T2) is in R}
∪ {(r〈U1〉, r〈U2〉) if (U1, U2) is in R}
∪ {(rw〈U1, T1〉, rw〈U2, T2〉) if (T1, T2) and (U1, U2) are in R}
∪ {(A1@K1, A2@K2) if (A1, A2) and (K1, K2) are in R}
∪ {(loc[u1 : A1, . . . , un : An], loc[u1 : A′

1, . . . , un : A′
n])

if (Ai, A
′
i) is in R for all i ≤ n}

So the notion of equality given by the greatest fixpoint of this function uses
the main “handle” we have on tree types: it is intuitively checking that the
“heads” of the terms are identical and that the “tails” are also equal. From
now on, we will write T1 = T2 when (T1, T2) is in νEq.

With this notion of equality, we show now how to prove a simple and funda-
mental property, namely the fact that νSub is a partial order, so that we have
reflexivity, antisymmetry and transitivity.

Lemma 5 (Partial order). <: is partial order on tree types.

Proof. Let us first prove that νSub is reflexive, namely that for any tree type
T , T <: T .

For this, let us consider the relation

R = {(T , T) | T is a type} ∪ νSub

We prove that R is a postfixpoint of Sub.

Let us take a pair in R. If this pair is of the form (T , T), we reason on the
form of T .

• base then (T , T) is obviously in Sub(R).

10



• r〈U0〉 then, since (U0, U0) is in R, (T , T) is in Sub(R).
• rw〈U0, T0〉 then, by well-formedness of T , we know that T0 <: U0 so (T0, U0)

is in R. Of course, so are (T0, T0) and (U0, U0), which implies that (T , T) is
in Sub(R).

• The remaining cases are similar.

If the pair is in νSub, we know that it is also in Sub(νSub) which is included
in Sub(R), which concludes the proof of reflexivity.

We now prove that νSub is antisymmetric, namely that for any tree types T1

and T2, T1 <: T2 and T2 <: T1 imply T1 = T2.

Consider the relation R over types defined by:

R = {(T1, T2) | T1 <: T2, T2 <: T1}

We show that this is a postfixpoint of Eq.

For this let us consider two types T1 and T2 such that (T1, T2) is in R. Then
we reason by cases on T1 <: T2: (T1, T2) ∈ Sub(νSub) implies that one of the
cases of the definition of Sub must apply. We give here only typical examples:

• T1 = T2 = base then (T1, T2) is obviously in Eq(R);
• T1 = (C̃1) and T2 = (C̃2) with C1

i <: C2
i for all i; then T2 <: T1 implies also

that C2
i <: C1

i for all i which means that (C1
i , C

2
i ) are also in R; this entails

that (T1, T2) is in Eq({(C1
i , C

2
i )}) ⊆ Eq(R) by monotonicity of Eq;

• T1 = rw〈U′
1, T

′
1〉 and T2 = r〈U′

2〉 is impossible because T2 6<: T1.
• The remaining cases are similar.

This proves that R is included in Eq(R), from which we can conclude that
νSub is antisymmetric.

And finally, we prove that νSub is transitive, namely that for any tree types
T1, T2 and T3, T1 <: T2 and T2 <: T3 imply that T1 <: T3.

For this, let us write Tr for the function Tr(R) = R∪ (R◦R). Then, what we
want to prove can be formulated as

Tr(νSub) ⊆ νSub

for which we can use the coinduction proof principle. It is sufficient to prove
that

Tr(νSub) ⊆ Sub(Tr(νSub)) (1)

i.e. that Tr(νSub) is a postfixpoint of Sub.
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For this, let us consider a pair (T1, T3) in Tr(νSub). By definition of Tr this
implies that either (T1, T3) is in νSub, in which case it is easy to establish
that it is also in Sub(Tr(νSub)) because νSub ⊆ Tr(νSub) implies that νSub =
Sub(νSub) ⊆ Sub(Tr(νSub)), or else there exists some type T2 such that (T1, T2)
and (T2, T3) are in νSub. So we proceed by a case analysis on the form of
T1 <: T2. We give here only typical examples:

• T1 = (C̃1) and T2 = (C̃2) with C1
i <: C2

i : then T2 <: T3 implies that T3 must
also be of the form (C̃3) with C2

i <: C3
i . So for all i, (C1

i , C
3
i ) is in Tr(νSub)

which implies that (T1, T3) is indeed in Sub(Tr(νSub)).
• T1 = rw〈U′

1, T
′
1〉 and T2 = rw〈U′

2, T
′
2〉 with T ′

2 <: T ′
1 <: U′

1 <: U′
2. Then

T2 <: T3 implies that T3 must be of one of the following forms: r〈U′
3〉, w〈T ′

3〉
or rw〈U′

3, T
′
3〉. In any case we have T ′

3 <: T ′
2 <: U′

2 <: U′
3 or at least the

relevant part of that inequation whenever T ′
3 or U′

3 is not defined. Therefore
we know that Tr(νSub) contains the relevant pairs among (T ′

3, T
′
1), (T ′

1, U
′
1)

and (U′
1, U

′
3). So we can conclude that (T1, T3) is in Sub(Tr(νSub)).

With the order <: on types come a notion of compatibility of types, and a
meet relation.

Definition 6 (Compatible types). Suppose two types T1 and T2. We say that
they are compatible, written T1 ↓ T2 whenever there exists some type T such
that T <: T1 and T <: T2. We say that they are upward-compatible, written
T1 ↑ T2 whenever there exists some type T such that T1 <: T and T2 <: T .

The meet relation and its dual, the join relation, are relations over triples
of types. To define meet, we proceed as for the subtyping relation, namely by
defining a function the greatest fixpoint of which will be our relation. But meet
and join must be defined at the same time since we have to deal with con-
travariance in our types. So we define a function MeetJoin over a set of triples
either of the form u(T1, T2, T3) or t(T1, T2, T3), where the Ti are tree types. We
give in Figure 4 the definition of the function MeetJoin. All the individual
clauses in this definition are inherited from the standard rules in Dpi: differ-
ent cases correspond to the join of two read-write types, to take into account
incompatibilities of types. Those cases are explicitly disjoint thanks to com-
patibility conditions, stating for instance that the join of two types rw〈U1, T1〉
and rw〈U2, T2〉 are of the form rw〈·, ·〉 as soon as U1 ↑ U2 and T1 ↓ T2. Those
conditions would be automatically obtained in the greatest fixpoint of that
function. We keep them to emphasise the distinction between the different
cases.

We will write T1 u T2 = T3 for types T1, T2 and T3 such that u(T1, T2, T3) is in
νMeetJoin.
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Fig. 4 MeetJoin definition

MeetJoin(R) =
{u(base, base, base)}

∪ {u((C̃), (C̃′), (C̃′′)) if u(Ci,C
′
i,C

′′
i ) is in R for all i}

∪ {u(r〈U1〉, r〈U2〉, r〈U3〉) if u(U1,U2,U3) is in R}
∪ {u(w〈T1〉,w〈T2〉,w〈T3〉) if t(T1, T2, T3) is in R}
∪ {u(r〈U1〉,w〈T2〉, rw〈U1, T2〉) if T2 <: U1}
∪ {u(w〈T1〉, r〈U2〉, rw〈U2, T1〉) if T1 <: U2}
∪ {u(rw〈U1, T1〉, r〈U2〉, rw〈U3, T1〉) if u(U1,U2,U3) is in R and T1 <: U3}
∪ {u(rw〈U1, T1〉,w〈T2〉, rw〈U1, T3〉) if t(T1, T2, T3) is in R and T3 <: U1}
∪ {u(r〈U1〉, rw〈U2, T2〉, rw〈U3, T2〉) if u(U1,U2,U3) is in R and T2 <: U3}
∪ {u(w〈T1〉, rw〈U2, T2〉, rw〈U2, T3〉) if t(T1, T2, T3) is in R and T3 <: U2}
∪ {u(rw〈U1, T1〉, rw〈U2, T2〉, rw〈U3, T3〉)

if t(T1, T2, T3), u(U1,U2,U3) are in R and T3 <: U3}
∪ {u(A1@K1,A2@K2,A3@K3) if u(A1,A2,A3) and u(K1,K2,K3) are in R}
∪ {u(loc[u1 : A1, . . . , un : An, v1 : B1, . . .], loc[u1 : A′

1, . . . , un : A′
n, w1 : B′

1, . . .],
loc[u1 : A′′

1, . . . , un : A′′
n, v1 : B1, . . . , w1 : B′

1, . . .])
if u(Ai,A

′
i,A

′′
i ) is in R for all i ≤ n}

∪ {t(base, base, base)}
∪ {t((C̃), (C̃′), (C̃′′)) if t(Ci,C

′
i,C

′′
i ) is in R for all i}

∪ {t(r〈U1〉, r〈U2〉, r〈U3〉) if t(U1,U2,U3) is in R}
∪ {t(w〈T1〉,w〈T2〉,w〈T3〉) if u(T1, T2, T3) is in R}
∪ {t(rw〈U1, T1〉, r〈U2〉, r〈U3〉) if t(U1,U2,U3) is in R and T1 <: U1}
∪ {t(rw〈U1, T1〉,w〈T2〉,w〈T3〉) if u(T1, T2, T3) is in R and T1 <: U1}
∪ {t(r〈U1〉, rw〈U2, T2〉, r〈U3〉) if t(U1,U2,U3) is in R and T2 <: U2}
∪ {t(w〈T1〉, rw〈U2, T2〉,w〈T3〉) if u(T1, T2, T3) is in R and T2 <: U2}
∪ {t(rw〈U1, T1〉, rw〈U2, T2〉, r〈U3〉)

if U1 ↑U2, t(U1,U2,U3) is in R, T1 6 ↓ T2, T1 <: U1 and T2 <: U2}
∪ {t(rw〈U1, T1〉, rw〈U2, T2〉,w〈T3〉)

if T1 ↓ T2, u(T1, T2, T3) is in R, U1 6 ↑ U2, T1 <: U1 and T2 <: U2}
∪ {t(rw〈U1, T1〉, rw〈U2, T2〉, rw〈U3, T3〉)

if T1 ↓ T2, U1 ↑U2, u(T1, T2, T3), t(U1,U2,U3) are in R,
T1 <: U1 and T2 <: U2}

∪ {t(A1@K1,A2@K2,A3@K3) if t(A1,A2,A3) and t(K1,K2,K3) are in R}
∪ {t(loc[u1 : A1, . . . , un : An, v1 : B1, . . .], loc[u1 : A′

1, . . . , un : A′
n, w1 : B′

1, . . .],
loc[ui1 : A′′

i1
, . . . , uip : A′′

ip
])

if Ak ↑A′
k for all k in {ij}, Ak 6 ↑ A′

k for all k not in {ij},
t(Aij ,A

′
ij

,A′′
ij

) is in R for all ij}

We still need to show that the greatest fixpoint of this function actually gives
us operators with the properties we expect. The first of these properties is the
fact that our rules define a partial function, since it is not immediate because
meet is defined as a relation over triples of tree types.

13



Lemma 7 (Meet is a function). For any types T1, T2, T3 and T4, T1 u T2 = T3

and T1 u T2 = T4 implies T3 = T4.

Proof. Of course, we have to prove this result for both meet and join. Let us
consider the relation R over types defined by:

R = {(T3, T4) |
∃T1, T2 such that T1 u T2 = T3, T1 u T2 = T4

or such that T1 t T2 = T3, T1 t T2 = T4}

and we show that this is a postfixpoint of Eq.

Let us consider T3 and T4 such that T3 R T4, and we write T1 and T2 for the
corresponding two types. We reason on the possible cases for T1 u T2 = T3 or
T1 t T2 = T3. We see here some typical examples.

• baseu base = base; then the only possible T4 is base, so (T3, T4) is obviously in
Eq(R).

• (C̃1) u (C̃2) = (C̃3) with C1
i uC2

i = C3
i for all i; then the only possible T4 is

of the form (C̃4) with C1
i u C2

i = C4
i , so (C3

i , C
4
i ) also are in R. So

(T3, T4) ∈ Eq({(C3
i , C

4
i )}) ⊆ Eq(R) .

• loc[u1 : A1, . . . , un : An, v1 : B1, . . .] t loc[u1 : A′
1, . . . , un : A′

n, w1 : B′
1, . . .] =

loc[ui1 : A′′
i1
, . . . , uip : A′′

ip ] then we know that T4 must be of the form
loc[ui1 : A′′′

i1
, . . . , uip : A′′′

ip ] because the set of indices {ij} is determined
by the compatibility of the types Ai and A′

i; this means that (A′′
ij
, A′′′

ij
) are

in R for every ij, so

(T3, T4) ∈ Eq({(A′′
ij
, A′′′

ij
)}) ⊆ Eq(R) .

So we have then proved that the relation νMeetJoin defines a function from
couples of types to types.

Of course, we want to prove that the meet operator we defined is indeed a
meet. This means that we want to prove that the meet of two types is a subtype
of each of them, and that any common subtype is also a subtype of the meet.
To write these proofs more conveniently, first notice that u is symmetric over
its two arguments since the definition of the function MeetJoin is symmetric
over the first two components of triples.

Lemma 8 (Meet is a subtype). For any types T1, T2 and T3 such that T1uT2 =
T3, we have T3 <: T1 and T3 <: T2.
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Proof. We need to prove this result and its dual about t at the same time.
For this, let us consider the relation

R = {(T 1, T 2) | ∃T 3 such that T 2 u T 3 = T 1 or T 1 t T 3 = T 2} ∪ νSub

We now prove that this relation is a postfixpoint of Sub.

Let us consider (T 1, T 2) in R. If that pair comes from the νSub part of R, we
know that it is in Sub(νSub) ⊆ Sub(R). Otherwise, let us write T 3 the type
proving that (T 1, T 2) is in R. We reason on the proof of T 2 u T 3 = T 1 or of
T 1 t T 3 = T 2. Let us start with T 2 u T 3 = T 1. We give here only some typical
examples.

• T 1 = T 2 = T 3 = base, then (T 1, T 2) is obviously in Sub(R).

• T i = C̃i, with C2
j uC3

j = C1
j for all j. Then, for all j, C1

j R C2
j , which implies

that (T 1, T 2) is in Sub(R).
• If the triple is u(r〈U2

0〉, w〈T 3
0 〉, rw〈U2

0, T
3
0 〉) we know that T 3

0 <: U2
0 so (T 3

0 , U2
0)

is in R. Moreover, since <: is a partial order, we know that U2
0 <: U2

0. These
two hypotheses allow us to conclude that (rw〈U2

0, T
3
0 〉), r〈U2

0〉) is in Sub(R).
• If the triple is u(rw〈U2

0, T
2
0 〉, r〈U3

0〉, rw〈U1
0, T

2
0 〉) we know that U2

0 u U3
0 =

U1
0 so (U1

0, U
2
0) is in R and that T 2

0 <: U1
0 so (T 2

0 , U1
0) is in R. We also

know that T 2
0 <: T 2

0 . These three hypotheses allow us to conclude that
(rw〈U1

0, T
2
0 〉, rw〈U2

0, T
2
0 〉) is in Sub(R).

• If the triple is u(loc[ui : A2
i , vj : B2

j ], loc[ui : A3
i , wk : B3

k], loc[ui : A1
i , vj :

B2
j , wk : B3

k]), we know that (A1
i , A

2
i ) are in R and so are (B2

j , B
2
j) by reflex-

ivity. So (T 1, T 2) is in Sub(R).

The different cases for T 1 t T 3 = T 2 are similar.

So we have proved that R is a subset of νSub, from which the result follows.

Lemma 9 (Meet is the greatest subtype). For any types T1, T2, T3 and T such
that T1 u T2 = T3, T <: T1 and T <: T2, we have T <: T3.

Proof. Let

R = {(T , T 3) | ∃T 1, T 2 such that T <: T 1, T <: T 2, T 1 u T 2 = T 3}
∪{(T 3, T) | ∃T 1, T 2 such that T 1 <: T , T 2 <: T , T 1 t T 2 = T 3}
∪νSub

We now prove that R is included in νSub.

Let us consider a pair in R. We have three possible cases. Let us first suppose
this pair is of the form (T , T 3), with the corresponding types T 1 and T 2. We
reason on T 1 u T 2 = T 3. As usual, we give some typical cases.
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• (C̃1) u (C̃2) = (C̃3) then T <: T 1 implies that T is of the form (C̃) and for
each i, we have Ci <: C1

i , Ci <: C2
i and C1

i u C2
i = C3

i , which means that,
for each i, (Ci, C

3
i ) is in R. Consequently (T , T 3) is in Sub(R).

• r〈U1
0〉 u w〈T 2

0 〉 = rw〈U1
0, T

2
0 〉 then T <: T 1 implies that T can only be of the

form r〈U0〉 or rw〈U0, T0〉 with U0 <: U1
0. Similarly, T <: T 2 implies that T

can only be of the form w〈T0〉 or rw〈U0, T0〉 with T 2
0 <: T0. By combining

those two constraints, we know it must of the form rw〈U0, T0〉 with U0 <: U1
0

and T 2
0 <: T0. By well-formedness of T we also know that T0 <: U0. Which

means that (T , T 3) is in Sub(νSub) ⊆ Sub(R).
• r〈U1

0〉 u rw〈U2
0, T

2
0 〉 = rw〈U3

0, T
2
0 〉, then T <: T 2 implies that T is of the form

rw〈U0, T0〉 with U0 <: U2
0 and T 2

0 <: T0. We also have that U0 <: U1
0. Of

course, we have that U1
0 u U2

0 = U3
0, so (U0, U

3
0) is in R. As so is (T 2

0 , T0)
and (T0, U0) by well-formedness of T , (T , T 3) is in Sub(R).

• loc[ui : A1
i , vj : B1

j ]uloc[ui : A2
i , wk : B2

k] = loc[ui : A3
i , vj : B1

j , wk : B2
k], which

implies that A1
i uA2

i = A3
i for all i. The fact T is a common subtype of T 1

and T 2 implies that it must be of the form loc[ui : Ai, vj : B4
j , wk : B5

k, xl : B6
l ]

with Ai <: A1
i and Ai <: A2

i for all i, and with B4
j <: B1

j and B5
k <: B2

k.
This implies that (Ai, A

3
i ), (B4

j , B
1
j) and (B5

k, B
2
k) are in R. So (T , T 3) is in

Sub(R).

For the second case, let us now suppose that the pair is of the form (T 3, T),
with the corresponding types T 1 and T 2. We reason on T 1 t T 2 = T 3.

• rw〈U1
0, T

1
0 〉 t rw〈U2

0, T
2
0 〉 = r〈U3

0〉 which implies that U1
0 t U2

0 = U3
0 and

T 1
0 6 ↓ T 2

0 . If T was of the form w〈T0〉 or rw〈U0, T0〉, T 1 <: T and T 2 <: T

would imply T0 <: T 1
0 and T0 <: T 2

0 , which would contradict the fact that
those two types are incompatible. So T must be of the form r〈U0〉, with
U1

0 <: U0 and U2
0 <: U0 which means that (U0, U

3
0) is in R and (T , T 3) in

Sub(R).

The last case is that the pair is in νSub, which means that it is obviously in
Sub(R).

So we have proved that R is a subset of νSub, which finishes our proof.

To prove the main result about the meet operator on tree types, namely the
existence of partial meets, we need to develop a bit further the theory of tree
types with a notion of subtree at a position in a type.

Definition 10 (Subtree). We define the subtree at position p of a tree type
T , written T |p, as:

• T |ε = T ;
• base|p is not defined when p is not ε;
• r〈U〉|rp = U|p;
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• w〈T〉|wp = T |p;
• rw〈U, T〉|rp = U|p;
• rw〈U, T〉|wp = T |p;
• (V1, . . . ,Vn|ip = Vi|p;
• loc[. . . , u : U, . . .]|up = U|p;

Definition 11. We say that a given position p in a tree type is covariant
whenever there is an even number of “write” branches chosen (the number
of w in p) along p. Otherwise we say that it is contravariant.

Lemma 12 (Correspondence of position in subtypes). Suppose that p is a
shared position of two tree types T1 and T2 (namely T1|p and T2|p are defined).
If T1 <: T2 then:

• T1|p <: T2|p when p is a covariant position;
• T2|p <: T1|p when p is a contravariant position.

Proof. We prove this result by an induction on the length of p.

When p = ε, the result is direct.

Suppose that p is p′x with |x| = 1. By our induction hypothesis, we know that

• T1|p′ <: T2|p′ when p′ is a covariant position.
• T2|p′ <: T1|p′ when p′ is a contravariant position.

Let us assume that p′ is covariant. We reason on T1|p′ <: T2|p′ . Among the
possible cases, we can have T1 = r〈U1〉 and T2 = r〈U2〉 which implies that x
must be r, so p is covariant and that U1 <: U2. Whenever they are of the
form, T1 = rw〈U′

1, T
′
1〉 and T2 = w〈T ′

2〉 we can induce that x must w since the
position p must be a common one. We also obtain that T ′

2 <: T ′
1, and that p is

contravariant, which is the expected result.

Every other case is similar.

The major property of the meet operator is given by the following lemma.
This lemma is again proved by using that approach of coinductive proofs.

Theorem 13 (Partial meets). The set of tree types, ordered by <:, has partial
meets. That is T1 ↓ T2 implies T1 and T2 have a meet.

Proof. This proof is performed in two stages: building a type candidate and
checking that this candidate is the meet. The candidate is defined by positions:
we write PT1uT2 the set of positions p such that:
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• T1|p and T2|p are defined;
• if p′ is a covariant prefix of p, T1|p′ ↓ T2|p′ ;
• if p′ is a contravariant prefix of p, T1|p′ ↑ T2|p′ .

We write TT1uT2 for the candidate and we define the construction at the posi-
tion p for p ∈ PT1uT2 by cases on the form of T1|p and T2|p and the variance
of p. We consider here only typical cases:

r〈T r
1 〉 and r〈T r

2 〉 The node of TT1uT2 at position p is defined to be r〈·〉. Whether
p is covariant or contravariant, pr is a common position of T1 and T2 and the
condition of compatibility between the types r〈T r

1 〉 and r〈T r
2 〉 is kept between

the types r〈T r
1 〉 and r〈T r

2 〉, so pr must be in PT1uT2 .
rw〈T r

1 , Tw
1 〉 and r〈T r

2 〉 when p is covariant The candidate must be of the
form rw〈·, Tw

1 〉 at position p; the compatibility between T1 and T2 ensures
that T r

1 and T r
2 must also be compatible which implies that pr is in PT1uT2 .

rw〈T r
1 , Tw

1 〉 and r〈T r
2 〉 when p is contravariant The candidate must be of

the form r〈·〉 at position p and, as in the previous case, pr must be in PT1uT2 .

loc[~u(1) : ~U(1), ~u(2) : ~U(2)], loc[~u(1) : ~U(3), ~u(4) : ~U(4)] and p covariant We de-

fine TT1uT2|p as loc[~u(1) : ~·, ~u(2) : ~U(2), ~u(4) : ~U(4)]. Notice that pu
(1)
i must be

in PT1uT2 for all i.

loc[~u(1) : ~U(1), ~u(2) : ~U(2)], loc[~u(1) : ~U(3), ~u(4) : ~U(4)], p contravariant We de-

fine TT1uT2|p as loc[~u(1) :~·]. Notice that pu
(1)
i must be in PT1uT2 for all i.

TT1uT2 is thus defined at all the positions in PT1uT2 . We remark that PT1uT2 is
closed by prefix and that all the nodes are given a type construction. Moreover,
for each child expected by such a node, we have either directly defined it or
checked that its position was in PT1uT2 . These different cases therefore define
a tree pre-type.

To ensure that this is indeed a type, we must check that every rw〈U, T〉 it
contains are such that T <: U. For every rw〈U, T〉 appearing in one part
of TT1uT2 directly coming from either T1 or T2, the result is obvious. Otherwise,
we define the relation R thus:

R = {(T , TT1uT2|p), (TT1uT2|p , T1|p), (TT1uT2|p , T2|p)
| p ∈ PT1uT2 covariant, T type and subtype of T1|p and T2|p}

∪ {(TT1uT2|p , T), (T1|p , TT1uT2|p), (T2|p , TT1uT2|p)
| p ∈ PT1uT2 contravariant, T type, supertype of T1|p and T2|p}

∪ νSub

We prove that R ⊆ νSub by showing that R ⊆ Sub(R+) where R+ is the
transitive closure of R. From this it will be easy to conclude that R+ ⊆
Sub(R+) and, consequently, that R ⊆ νSub.

Let us consider some (T , TT1uT2|p), (TT1uT2|p , T1|p) and (TT1uT2|p , T2|p) in R. We
reason on the forms of T1|p and T2|p, exactly as in the definition of TT1uT2|p.
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Let us study some typical example: T1|p = rw〈T r
1 , Tw

1 〉 and T2|p = r〈T r
2 〉 when

p is covariant0. TT1uT2|p must have the form rw〈·, Tw
1 〉 and pr must be in the

set PT1uT2 . Since T is a common subtype of T1|p and T2|p, it must be of the
form rw〈T r, Tw〉 with T r <: T r

1 , T r <: T r
2 and Tw

1 <: Tw. So we can con-
clude that (T r, TT1uT2|pr) is in R, from which we deduce that (T , TT1uT2|p) is
in Sub(R+). To get that (TT1uT2|p , T1) is in Sub(R+), we need to have the three
pairs (T1|pw , TT1uT2|pw) = (Tw

1 , Tw
1 ), (TT1uT2|pw , TT1uT2|pr) and (TT1uT2|pr , T r

1 )
in R+. The first is in νSub. The second comes from T common subtype
of T1 and T2: Tw

1 <: Tw <: T r R TT1uT2|pr) so Tw
1 R+ TT1uT2|pr). Finally,

the third comes from the fact that pr must be in PT1uT2 . The reasoning to
prove that (TT1uT2|p , T2|p) is also in Sub(R+) is similar.

The fact that R is included in νSub entails that for every p such that TT1uT2|p
is of the form rw〈·, ·〉, we know some subtype, either some T or some T1|p,
depending on the variance of p.

Finally, we need to show that TT1uT2 is indeed the meet of T1 and T2. We obtain
this result by considering the relation R defined by:

R = {u(T1|p , T2|p , TT1uT2|p) | p ∈ PT1uT2 is covariant}
∪ {t(T1|p , T2|p , TT1uT2|p) | p ∈ PT1uT2 is contravariant}

and proving that this is a post-fixpoint of MeetJoin. This verification is auto-
matic from the definition of TT1uT2 .

3.3 Theory of recursive types

Notice that all the properties we mentioned deal with tree types, because all
the proofs rely on coinductive techniques. But, in the end, the types we want
to use in our terms are recursive, since we want to be able to denote them
with the recursive operator µ. So we need to prove that all the properties we
considered on tree types can be lifted up to recursive types.

For this, we define notions of subtyping and meet on recursive types by using a
set of rules of the form Σ ` T1 <: T2 or Σ ` T1uT2 = T3. The intuition is that
the manipulation of regular trees relies on normal operations with unfolding
rules and some “memory”, Σ, to record which subterms have already been
“seen”.

The termination of the proofs we will give on those recursive types will be
based on the following notion of subterms.
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Fig. 5 Subtyping rules

(sr-ax)

Σ, T1 <: T2 ` T1 <: T2

(sr-base)

Σ ` base <: base

(sr-tuple)

Σ ` Ci <: C′
i

Σ ` (C̃) <: (C̃′)

(sr-chan)

Σ ` T1 <: T2 <: U1 <: U2

Σ ` w〈T2〉 <: w〈T1〉
Σ ` r〈U1〉 <: r〈U2〉
Σ ` rw〈U1, T2〉 <: r〈U2〉
Σ ` rw〈U1, T2〉 <: w〈T1〉
Σ ` rw〈U1, T2〉 <: rw〈U2, T1〉

(sr-hom)

Σ ` A1 <: A2

Σ ` K1 <: K2

Σ ` A1@K1 <: A2@K2

(sr-loc)

Σ ` Ui <: U′
i, 0 ≤ i ≤ n

Σ ` loc[u1 : U1, . . . , un : Un, . . . , un+p : Un+p] <: loc[u1 : U′
1, . . . , un : U′

n]
(sr-lrec)

Σ, µt1.T1 <: T2 ` T1{µt1.T1/t1} <: T2

Σ ` µt1.T1 <: T2

(sr-rrec)

Σ, T1 <: µt2.T2 ` T1 <: T2{µt2.T2/t2}
Σ ` T1 <: µt2.T2

Definition 14 (Subterm). The set of subterms of a recursive type T is defined
as the least set satisfying the following equations:

SubTerms(base) ={base}
SubTerms(r〈U0〉) ={r〈U0〉} ∪ SubTerms(U0)

SubTerms(w〈T0〉) ={w〈T0〉} ∪ SubTerms(T0)

SubTerms(rw〈U0, T0〉) ={rw〈U0, T0〉} ∪ SubTerms(U0) ∪ SubTerms(T0)

SubTerms(loc[ui : Ai]) ={loc[ui : Ai]} ∪
⋃
i

SubTerms(Ai)

SubTerms(µY.K) ={µY.K} ∪ SubTerms(K{µY.K/Y})
SubTerms(A@K) ={A@K} ∪ SubTerms(A) ∪ SubTerms(K)

SubTerms((C̃)) ={(C̃)} ∪
⋃
i

SubTerms(Ci)

Note that the set of subterms of a given term is always finite even if the defi-
nition for the recursion operator is a simple unfolding, since every subsequent
unfolding after the first one will not add any new term to the set.
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Fig. 6 Meet inference rules

(meet-ax)

Σ,T1 u T2 = T3 ` T1 u T2 = T3

(meet-tuple)

Σ ` Ci u C′
i = C′′

i

Σ ` (C̃) u (C̃′) = (C̃′′)
(meet-base)

Σ ` base1 u base2 = base3
base1 = base2 = base3

(meet-chan)

Σ ` U1 u U2 = U3

Σ ` T1 t T2 = T3

Σ ` rw〈U1,T1〉 u rw〈U2,T2〉 = rw〈U3,T3〉
T3 <: U3

(meet-hom)

Σ ` A1 u A2 = A3

Σ ` K1 u K2 = K3

Σ ` A1@K1 u A2@K2 = A3@K3

(meet-loc)

Σ ` Ui u U′
i = U′′

i

Σ ` loc[(ui : Ui)i; (vj : Vj)j ] u loc[(ui : U′
i)i; (wk : Wk)k]

= loc[(ui : U′′
i )i; (vj : Vj)j ; (wk : Wk)k]

(meet-rec-1)

Σ, µY.T′
1 u T2 = T3 ` T′

1{
µY.T′

1/Y} u T2 = T3

Σ ` µY.T′
1 u T2 = T3

(meet-rec-2)

Σ,T1 u µY.T′
2 = T3 ` T1 u T′

2{
µY.T′

2/Y} = T3

Σ ` T1 u µY.T′
2 = T3

(meet-rec-3)

Σ,T1 u T2 = µY.T′
3 ` T1 u T2 = T′

3{
µY.T′

3/Y}
Σ ` T1 u T2 = µY.T′

3

So to define subtyping on these terms, we keep all the rules we had in Figure 3,
and we add a few rules for unfolding, which is adding terms to the memory, and
axioms for when a given statement has already been seen. The rules we obtain
look like the ones, in [6], in the Dpi setting. We do exactly the same thing
for the definition of u and t to put them also in the purely recursive setting
in Figures 6 and 7. In those rules, the different missing cases of the definition
of the operators on channel types are obtained as degenerate instances of the
given rules.

Of course, now that we have given two sets of rules to define what should
be the same relations, we need to formally prove that they coincide on their
common domain, namely the recursive types. This is the role of the following
two propositions.
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Fig. 7 Join inference rules

(join-ax)

Σ,T1 t T2 = T3 ` T1 t T2 = T3

(join-tuple)

Σ ` Ci t C′
i = C′′

i

Σ ` (C̃) t (C̃′) = (C̃′′)
(join-base)

Σ ` base1 t base2 = base3
base1 = base2 = base3

(join-chan-rw-rw-r)

Σ ` U1 t U2 = U3

Σ ` rw〈U1,T1〉 t rw〈U2,T2〉 = r〈U3〉
T1 <: U1 T2 <: U2

U1 ↑ U2 T1 6 ↓ T2

(join-chan-rw-rw-w)

Σ ` T1 u T2 = T3

Σ ` rw〈U1,T1〉 t rw〈U2,T2〉 = w〈T3〉
T1 <: U1 T2 <: U2

U1 6 ↑ U2 T1 ↓ T2

(join-chan-rw-rw-rw)

Σ ` U1 t U2 = U3

Σ ` T1 u T2 = T3

Σ ` rw〈U1,T1〉 t rw〈U2,T2〉 = rw〈U3,T3〉
T1 <: U1 T2 <: U2

U1 ↑ U2 T1 ↓ T2

(join-hom)

Σ ` A1 t A2 = A3

Σ ` K1 t K2 = K3

Σ ` A1@K1 t A2@K2 = A3@K3

(join-loc)

Σ ` Ui t U′
i = U′′

i

Σ ` loc[(ui : Ui)i; (un+i : Un+i)i; (vj : Vj)j ]
tloc[(ui : U′

i)i; (un+i : U′
n+i)i; (wk : Wk)k] = loc[(ui : U′′

i )i]

Ui ↑ U′
i

Un+i 6 ↑ U′
n+i

(join-rec-1)

Σ, µY.T′
1 t T2 = T3 ` T′

1{
µY.T′

1/Y} t T2 = T3

Σ ` µY.T′
1 t T2 = T3

(join-rec-2)

Σ,T1 t µY.T′
2 = T3 ` T1 t T′

2{
µY.T′

2/Y} = T3

Σ ` T1 t µY.T′
2 = T3

(join-rec-3)

Σ,T1 t T2 = µY.T′
3 ` T1 t T2 = T′

3{
µY.T′

3/Y}
Σ ` T1 t T2 = µY.T′

3

Proposition 15 (Recursive subtyping is tree subtyping). For any two recur-
sive types T1 and T2, Tree(T1) <: Tree(T2) if and only if ∅ ` T1 <: T2.

Proposition 16 (Recursive type meet is infinite tree meet). For any three
recursive types T1, T2 and T3, Tree(T1) u Tree(T2) = Tree(T3) if and only if
∅ ` T1 u T2 = T3.
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The proofs for these two propositions are really similar, as one would expect,
so we give only the proof of the second one, which is slightly trickier.

Proof. Let us consider some types T1, T2 and T3, and some Σ′, a set of
“hypotheses” of the forms T′

1 u T′
2 = T′

3 and T′
1 t T′

2 = T′
3, with T′

i a
subterm of Ti. Let us prove that Tree(T′

1) u Tree(T′
2) = Tree(T′

3) implies
Σ′ ` T′

1 u T′
2 = T′

3 and its dual by reasoning on the forms of T′
i. More pre-

cisely, we proceed by induction. Since recursive types are unfold, the sum
of sizes of the types T′

i, written |T′
1| + |T′

2| + |T′
3|, is not decreasing. But

some subterms of Ti are added to Σ whenever unfolding is performed. So,
since the number of subterms of Ti, written |SubTerms(Ti)| is constant, the
number of triples composed of subterms of the Ti that do not appear in Σ,
namely |SubTerms(T1)|×|SubTerms(T2)|×|SubTerms(T3)|−|Σ′|, will decrease.
So the lexicographic order

(|SubTerms(T1)| × |SubTerms(T2)| × |SubTerms(T3)| − |Σ′|, |T′
1|+ |T′

2|+ |T′
3|)

will guarantee that the induction terminates.

• If one of the T′
i is of the form µY.T, and if T′

1 u T′
2 = T′

3 is in Σ′, we apply
the axiom rule (meet-ax). If there is no such statement in Σ′, we apply
rule (meet-rec-i), which means that |SubTerms(T1)| × |SubTerms(T2)| ×
|SubTerms(T3)| − |Σ′, T′

1 u T′
2 = T′

3| is smaller, so we can use the induction
hypothesis to finish.

• If none of the types T′
i is of the form µY.T, then, by definition of Tree(T′

i),
T′

i and Tree(T′
i) have the same head construct. Each case of the definition

of MeetJoin corresponds to one rule in Figures 6 and 7. We consider only
one typical case.
· Σ′ ` r〈T′′

1〉 u r〈T′′
2〉 = r〈T′′

3〉. We know that Tree(T′′
1) u Tree(T′′

2) = r〈T′′
3〉

by definition of MeetJoin. So we can use our induction hypothesis on T′′
i

to get Σ′ ` T′′
1 u T′′

2 = T′′
3, which entails that Σ′ ` r〈T′′

1〉 u r〈T′′
2〉 = r〈T′′

3〉
by rule (meet-chan).

Conversely, let us consider some proof of ∅ ` T1 u T2 = T3. We define the
relation

R = {u(Tree(T′
1), Tree(T′

2), Tree(T′
3)) | ∃Σ′ such that

Σ′ ` T′
1 u T′

2 = T′
3 appears in the proof of ∅ ` T1 u T2 = T3}

∪ {t(Tree(T′
1), Tree(T′

2), Tree(T′
3)) | ∃Σ′ such that

Σ′ ` T′
1 t T′

2 = T′
3 appears in the proof of ∅ ` T1 u T2 = T3}

Let us prove that this relation R is a postfixpoint of MeetJoin. We consider
a triple in R and we reason on the last rule used to reach the corresponding
statement in the proof of ∅ ` T1 u T2 = T3.
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Fig. 8 Well-formed environments

(e-empty)

` env

(e-base)

Γ ` env

Γ, u : base ` env
Γ(u) ↓ base

(e-new-lchan)

Γ ` env

Γ ` w : loc
Γ(u@w) = {Ai}
Γ, u@w : A ` env

d
{Ai} ↓ A

(e-loc)

Γ ` env

Γ, v : loc ` env
Γ(v) ↓ loc

(e-rec)

Γ ` env

Γ, Z : loc[(ui : Ai)], (ui@Z : Ai) ` env
Z 6∈ Γ

• (meet-ax). Then we know that T′
1 u T′

2 = T′
3 can have been introduced

in Σ′ only by a rule (meet-rec-i) higher in that branch of the proof.
Since our types are contractive, we then know that T′

i must be of the form
µY1.µY2 . . . loc[. . .]. So there must be a (meet-loc) corresponding to
that loc[. . .] in the proof under the different (meet-rec-j )s. We write
Σ′′ ` T′′

1 u T′′
2 = T′′

3 the conclusion statement of that (meet-loc). By
definition of the function Tree(T′′

i ) = Tree(T′
i). This means that we can

proceed as in case (meet-loc).
• (meet-loc). Then we have a proof of Σ′ ` U1

′
i u U2

′
i = U3

′
i which means

that every triple u(Tree(U1
′
i), Tree(U2

′
i), Tree(U3

′
i)) are in R which proves

that u(Tree(T′
1), Tree(T′

2), Tree(T′
3)) is in MeetJoin(R).

• (meet-rec-1), with T′
1 = µY.T′′

1. By definition of the function Tree(·),
Tree(T′

1) = Tree(T′′
1{µY.T′′

1/Y}). As in the case (meet-ax) we proceed until
we reach a (meet-loc) and apply the same argument as for (meet-loc).

Even if this establishes an equivalence between the coinductive and the in-
ductive versions of the system for u and <:, we feel that manipulation of the
coinductive types is easier because it is more intuitive, among other things
because we use a notion of equality over tree types instead of an equivalence
that a fixpoint operator would imply. This way, the intuitions coming from
induction on non-recursive types can guide the proof in the coinductive setting.

4 Typing Systems

With these types we can now adapt the typing system for Dpi to recDpi.
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Fig. 9 Typing values

(v-name)

Γ, u : T, Γ′ ` env

Γ, u : T, Γ′ ` u : T′ T <: T′

(v-located)

Γ ` u : T
Γ ` w : loc

Γ `w u : T

(v-channel)

Γ, u@w : A, Γ′ ` w : loc

Γ, u@w : A, Γ′ `w u : A′ A <: A′

(v-meet)

Γ `w u : T1

Γ `w u : T2

Γ `w u : T1 u T2

(v-tuple)

Γ `w ui : Ti

Γ `w (ũ) : (T̃)

(v-base)

Γ ` w : loc

Γ `w u : base
u ∈ base

(v-located-channel)

Γ `v ui : Ai

Γ `w v : K

Γ `w (ũ)@v : (Ã)@K

(v-loc)

Γ ` v : loc
Γ `v ui : Ai

Γ ` v : loc[u1 : A1, . . . , un : An]

Systems and processes typechecking will be performed in typing environments.
These typing environments are lists of elements of the form u : T with u a
name or a variable (in particular it might be a recursion variable) and T its
type or of the form u@w : A with u a name or a variable standing for a channel
located at w. We put some extra constraints on those lists to ensure the well-
formedness of the environments. The rules of formation for environments are
given in Figure 8: we will write Γ ` env whenever Γ is well-formed.

The main idea of those rules is that an environment is well-formed as soon
as the type at which a name or a variable is added to the environment is
compatible with all the types already associated with that name or variable,
namely the meet of all those types. This is useful for the names received
during communications: if you get some name at two different types (through
communication on two different channels), the environment obtained should
be equivalent to the one in which that name is given those two types, namely
we will be able to prove the same statements in the environment containing
only a@k : rw〈〉 and in the one containing separately the two capabilities
a@k : r〈〉, a@k : w〈〉.

Another important idea is the way recursion variables are dealt with in that
setting: we want that the location type given to a recursion variable be such
that the recursive process can safely run in any location of that type. This
entails that, during static typechecking, that type will be useful at every occur-
rence of a recursive call. For this, environments associate a full location type,
namely a type of the form loc[a1 : C1, . . .], to recursion variables whereas they
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Fig. 10 recDpi processes typing system

(t-output)

Γ `w u : w〈T〉
Γ `w V : T
Γ `w P

Γ `w u ! 〈V 〉P

(t-input)

Γ `w u : r〈T〉
Γ,〈X : T〉 @w `w P

Γ `w u ? (X : T) P
(t-go)

Γ `m P

Γ `w goto m. P

(t-stop)

Γ ` env

Γ `w stop
(t-rec)

Γ ` w : R
Γ, 〈〈Z : R〉〉 `Z P

Γ `w rec (Z : R). P

(t-recvar)

Γ ` w : Γ(Z)

Γ `w Z
Γ(Z) = loc[. . .]

(t-match)

Γ `w u : U, v : V
Γ `w Q
and, when Γ,〈u : V〉 @w,〈v : U〉 @w ` env,

Γ,〈u : V〉 @w,〈v : U〉 @w `w P

Γ `w if u = v then P else Q
(t-l-new)

Γ,〈k : K〉 `w P

Γ `w (newloc k : K) P

(t-c-new)

Γ, n@w : A `w P

Γ `w (newc n : A) P
(t-here)

Γ `w P [w/x]

Γ `w here [x] P

(t-rep)

Γ `w P

Γ `w ∗P

(t-par)

Γ `w P
Γ `w Q

Γ `w P |Q

Fig. 11 Typing Systems

(t-nil)

Γ ` env

Γ ` 0

(t-par)

Γ ` M
Γ ` N

Γ ` M |N
(t-proc)

Γ `k P

Γ ` kJP K

(t-new)

Γ,〈n : N〉 ` M

Γ ` (new n : N) M
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associate the simple type loc to every “real” location names and variables.
This also constrains the subtyping of environments.

Indeed, subtyping on types is naturally extended to environments so that we
say Γ <: Γ′ when:

• dom(Γ′) ⊆ dom(Γ);
• for all recursion variable Z defined in Γ′, we have Γ(Z) = Γ′(Z);
• for all name or variable x defined in Γ′, we have

d
Γ(x) <:

d
Γ′(x), x being

possibly of the form u@w.

Note that no subtyping is performed on recursion variable types. Otherwise,
it would break the main property of subtyping: when some environment is
used, some subtype of this environment might be used instead. Note also
that the definition of well-formed environment forces recursion variables to
appear at most once. Since subtyping is disallowed, it would be meaningless.
This coincides with the fact that recursion variables are introduced into the
environment only when type-checking a process of the form rec Z : R. P .

Now that we have formally defined well-formed environments, we can succes-
sively give the typing rules for values, in Figure 9, processes, in Figure 10, and
for whole systems, in Figure 11. Many of those rules are inherited from stan-
dard Dpi ones, so the reader is referred to [3] for more complete explanations
of them. We explain here only the basics of those typing rules and the new
rules we add to accommodate for the recursion construct.

At the system level the judgements take the form Γ ` M , stating that all the
free names of the system M are defined in Γ and that they are used according
to the types they are given in that environment. The main rule in Figure 11
is

(t-proc)

Γ `k P

Γ ` kJP K

which in turn requires a set of inference rules for the judgements Γ `k P
indicating that the process P is well-typed to run at location k. Note that the
rule (t-new) for the typing of systems of the form (new n : N) M can be used
for both channels, when n is some c@k, and locations, where n = k.

At the process level, we have to add some typing rules for the new constructs
we introduced in the language, namely recursions, recursion variables and
location look-ups. The latter is straightforward:

(t-here)

Γ `w P [w/x]

Γ `w here [x] P
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However, for recursive processes like rec Z : R. P , the rules are trickier. As
stated previously, we want the type R to characterise the requirements on a
given location to run the recursive process. Then the natural rule for typing-
checking a recursive call, that is an occurrence of a recursion variable, is given
by:

(t-recvar)

Γ ` w : Γ(Z)

Γ `w Z

The recursive calls will then be safe as soon as we can typecheck the process P
in a location with exactly the set of resources indicated by R available. Pursu-
ing with the analogy of attributing location types to recursion variables, our
idea is to simply use the recursion variable itself as the location in which the
process will be typed. Then the rule for typing recursive processes is

(t-rec)

Γ ` w : R
Γ, 〈〈Z : R〉〉 `Z P

Γ `w rec (Z : R). P

where Γ, 〈〈Z : R〉〉 is a notation extending Γ with the information that Z has
all the capabilities in R:

〈〈Z : loc[u1 : A1, . . .]〉〉 = Z : loc[ui : Ai], u1@Z : A1, u2@Z : A2, . . .

Notice that, to type P at Z, we will really have to consider Z as a value from
the type point of view, but this will be only an artefact of the way typing
proceeds. Z will never be a value in actual terms, this being syntactically
prohibited.

Also note that recursion variables are considered exactly as locations as far as
value typing is concerned. In particular, notice that value typing rules allow
statements of the form Γ ` Z : loc. This is required when typing a process
“at Z”.

Example 17. Referring back to Example 1 let us see how these rules can be
used to infer Γ `k Search, assuming that Γ knows about locations home, k,
etc. and their channels. So, by (t-rec), this will amount to:

Γ, 〈〈Z : S〉〉 `Z test ? (x)if p(x) then goto home. report ! 〈x〉
else neigh ? (y) goto y. Z

which will start by proving

Γ, 〈〈Z : S〉〉 `Z test : r〈Tt〉
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so, by expanding the notation 〈〈Z : S〉〉 with

S = µY.loc[test : r〈Tt〉, neigh : r〈Y〉]

we get
Γ, Z : S, test@Z : r〈Tt〉, neigh@Z : r〈S〉 `Z test : r〈Tt〉

where we can see that it is simply an axiom. The other judgement to prove
then is

Γ, 〈〈Z : S〉〉 `Z if p(x) then goto home. report ! 〈x〉
else neigh ? (y) goto y. Z

which will amount to proving

Γ, 〈〈Z : S〉〉 `Z goto home. report ! 〈x〉

and
Γ, 〈〈Z : S〉〉 `Z neigh ? (y) goto y. Z

where this second statement is particularly interesting here. In fact, this turns
out as simply:

Γ, 〈〈Z : S〉〉 , y : S `y Z

which is obtained directly because y has type S, exactly what is required to
“run” Z. �

The main new technical property of the type inference system is given by:

Lemma 18 (Recursion Variable Substitution). Suppose that Γ `w rec Z :
R. P . Then Γ `w P{rec Z:R. P/Z}.

Proof. This is done by induction on the proof that P is well-typed. So we
generalise the property we prove into: for any process Q, for any location or
recursion variable v and for any environment Γ if we have Γ `v P and if for
any Γ′ and w such that Γ′ <: Γ and Γ′ ` w : Γ′(Z) we have Γ′ `w Q then
Γ `v P{Q/Z}.

• (t-recvar) so P = Z and we know Γ ` v : Γ(Z). By hypothesis that
implies that Γ `v Q = P{Q/Z}.

• (t-output) so P = u ! 〈V 〉P ′. This implies that Γ `v P ′, on which we can
apply the induction hypothesis. Therefore we have

Γ `v u ! 〈V 〉 (P ′{Q/Z})

which is exactly Γ `v P{Q/Z}.
• (t-input) so P = u ? (X : T) P ′ and Γ,〈X : T〉 @v `v P ′. Since Γ,〈X : T〉 @v

is a subtype of Γ, we know that for any Γ′ and any w such that Γ′ <:
Γ,〈X : T〉 @v and Γ′ ` w : Γ′(Z), we will have Γ′ `w Q. So we can apply the
induction hypothesis to conclude.
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• (t-match) which implies that P = if u = u′ then P1 else P2 and that
we have the following hypotheses: Γ `v u : U, u′ : U′, Γ `v P2 and, if
Γ,〈u : U′〉 @v,〈u′ : U〉 @v ` env, Γ,〈u : U′〉 @v,〈u′ : U〉 @v `v P1. Then, by our in-
duction hypothesis, we know that Γ `v P2{Q/Z}. And since the environment
Γ,〈u : U′〉 @v,〈u′ : U〉 @v is a subtype of Γ then Γ,〈u : U′〉 @v,〈u′ : U〉 @v `v

P1{Q/Z}.
• (t-here) so P = here [x] P ′ and Γ `v P ′[v/x]. By our induction hypothesis we

have Γ `v P ′[v/x]{Q/Z} and P ′{Q/Z}[v/x] = P ′{Q/Z}[v/x] since the two substitu-
tions do not deal with the same objects (recursion variables as terms and lo-
cation variables). So applying (t-here) again gives Γ `v (here [x] P ′){Q/Z}.

• (t-rec) so P = rec Z ′ : R′. P ′ with Γ, 〈〈Z ′ : R′〉〉 `Z′ P ′. Since Γ, 〈〈Z ′ : R′〉〉
is a subtype-environment of Γ we can apply our induction hypothesis on it
to get Γ, 〈〈Z ′ : R′〉〉 `Z′ P ′{Q/Z} which implies that Γ `v P{Q/Z}.

Now we must prove that what we just proved indeed applies to processes of
the form rec Z : R. P . We know that Γ `w rec Z : R. P . This implies that
Γ, 〈〈Z : R〉〉 `Z P . By weakening, we obtain that, for any Γ′ such that Γ′ <: Γ,
Γ′, 〈〈Z : R〉〉 `Z P . So, for any location v such that Γ′ ` v : (Γ′, 〈〈Z : R〉〉)(Z) =
R, we have Γ′ `v rec Z : R. P .

So we can use rec Z : R. P as a “Q” in the previous proof and then conclude.

This in turn leads to:

Theorem 19 (Subject Reduction). Γ ` M and M τ−→M ′ implies that Γ ` M ′.

Proof. This proof heavily relies on the preexisting proof of subject reduction
in Dpi. We simply added two derivation rules (lts-here) and (lts-rec) so
we just have to deal with those two.

• M = kJhere [x] P K and M ′ = kJP [k/x]K. The result is direct since the only
rule to prove that Γ `k here [x] P assumes that Γ `k P [k/x].

• M = kJrec Z : R. P K and M ′ = kJP{rec Z:R. P/Z}K. By the previous lemma
Γ `k rec Z : R. P implies that Γ `k P{rec Z:R. P/Z}. That proves that Γ ` M ′.

5 Implementing recursion using iteration

As in the pi-calculus, the replicated process ∗P can be encoded with re-
cursion by rec Z : R. (Z |P ), for some type R (the type associated with the
location where P is located will do). But the converse is trickier to obtain.
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The problem of implementing recursion using iteration in Dpi, contrary to the
pi-calculus, is that any code of the form kJ∗P K will force every instance of P
to be launched at the originating site k; this is in contrast to kJrec (Z : R). P K
where the initial instance of the body P is launched at k but subsequent
instances may be launched at arbitrary sites, provided they are appropriately
typed.

Nevertheless, at the expense of repeated migrations, we can mimic the be-
haviour of a recursive process using iteration by designating a home base to
which the process must return before a new instance is launched. For example
if home is deemed to be the home base then we can implement our example
kJSearchK using

homeJ∗IterSearchK | kJFireOneK

where

IterSearch , ping ? (l) goto l. test ? (x) if p(x) then goto home. report ! 〈x〉
else neigh ? (y) goto y. FireOne

FireOne , here [l] goto home. ping ! 〈l〉

With this example, we can easily see how the translation will mimic the orig-
inal process step by step: the body of the process is left unmodified, only the
recursion parts are changed, by implementing the recursive call with a few
reductions. FireOne is the “translation” for the recursive calls, which means
going to the home base and firing a new instance. This uses the construct here
to express that action neatly: the translation for recursive calls needs to report
its current location to indeed trigger the new instance in the “proper” context.
When that actual location is obtained, the replicated IterSearch starts off by
migrating there. As we already mentioned, it would be possible to encode the
construct here by annotating the translation of a process by its location, either
the location l for a process lJP K or the location used in the previous goto.

This approach underlies our general translation of recursive processes into
iterative processes, which we now explain. The main characteristic of the ap-
proach we propose here is its compositionality : this means that a recursive
process can be translated into a replicated process independently of the rest
of the “universe”, namely the context in which it is placed. This translation
will thus be applicable on partial systems as well as full systems. To obtain
that compositionality, we will have to dynamically generate the home bases
for iterative processes where, in the example IterSearch, the home base and
the replicated process were already set up. We will also dynamically generate
the channel ping used to provide to a new instance of the process the name of
the location where the recursive call took place. The last thing to do when the
recursion is unwound for the first time is to start the iterative process, which
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means two things: move the code that will be replicated to its home base
and fire the first instance. As we explained with the example, the replicated
code will just have to wait for the name of a location when the recursion is
unwound, go there and behave as the recursive process.

• unrec(rec Z : R. P ) = (newloc homeZ : loc[pingZ : rw〈R〉])
(unrec(Z) |

goto homeZ .
∗pingZ ? (l : R) goto l. unrec(P ))

• unrec(Z) = here [x] goto homeZ . pingZ ! 〈x〉
• unrec(u ! 〈V 〉P ) = u ! 〈V 〉unrec(P ) ; all the other cases are similar.

We stress here two facts:

• the translated processes still require recursive types, for instance for the
channel pingZ : the full theory of recursive types developed in the previous
sections deals with recursive behaviours, even when they are expressed using
replication;

• this translation heavily relies on migration to mimic the original process:
we conjecture that in a Dpi setting where locations or links can fail, like
in [7], it would not be possible to get a reasonable encoding of recursion
into iteration.

We could also give another translation, which would be closer to the one
proposed for the pi-calculus in [1] by:

• closing the free names of recursive processes, and then communicating their
actual values through the channel ping, at the same time as the location;

• creating all the home bases at the top-level of the process, once and for all.

So the translation of a system would start by identifying the set of recursion
variables: let us write this set {Zi}, and their corresponding processes {Pi}
when “rec Zi : Ri. Pi” appear in the system. For any process Pi among those
we will note ñi its set of free names. Then the components of the system are
simply translated the following way:

• nc-unrec(Zi) = here [x] goto homeZi
. pingZi

! 〈x, ñi〉
• nc-unrec(rec Zi : Ri. Pi) = nc-unrec(Zi)
• nc-unrec(u ! 〈V 〉P ) = u ! 〈V 〉nc-unrec(P ); all the other cases are simi-

lar.
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A system M is then translated, as a whole, into the following process:

(new homeZ1) (new pingZ1
) (new homeZ2) (new pingZ2

) . . .
homeZ1J∗pingZ1

? (l : R1, ñ1) goto l. nc-unrec(P1)K |
homeZ2J∗pingZ2

? (l : R2, ñ2) goto l. nc-unrec(P2)K | . . . |
nc-unrec(M)

But, of course, such an approach would not be compositional, as the name
nc-unrec(·) suggests.

Now that we have described our translation, we want to prove that the trans-
lation and the original process are “equivalent”, in some sense. Since we are
in a typed setting, the first property we need to check is the following.

Lemma 20. Γ ` M if and only if Γ ` unrec(M)

Proof. We refrain from burdening the reader with the full proof. Indeed it pro-
ceeds simply by translating the proof of Γ ` M into a proof of Γ ` unrec(M)
and back. For this, remark that the translation of the proofs will rely on a
translation of the environments appearing in the proofs and that those envi-
ronments might contain open recursion variables. So we define a function ϕ
that will perform the translation of the environments by introducing a fresh
name lZi

for every recursion variable Zi. This will accomodate for the fact that
the body of recursive process named Zi is typed “at Zi”, whereas it will be
type-checked in the location name bound by a communication on the channel
pingZi

.

• ϕ(Γ, uij @Zi : Aij) = ϕ(Γ), uij @lZi
: Aij ;

• ϕ(Γ, Zi : Ri) = ϕ(Γ), homeZi
: loc, pingZi

@homeZi
: rw〈Ri〉, lZi

: loc;
• ϕ(Γ, u : A) = ϕ(Γ), u : A whenever none of the previous cases apply.

and we proceed with proving that Γ ` M implies ϕ(Γ) ` unrec(M), by a
simple induction on the proof, so by proving the corresponding result on value
and process typing.

The converse translation can be performed similarly: the only difference is to
associate the type Ri corresponding to Zi in M when translating back lZi

.

We can also show that the behaviours of M and its translation unrec(M)
are closely related. Intuitively we want to show that whenever Γ ` M then
any observer, or indeed other system, which uses names according to the
type constraints given in Γ can not differentiate between M and unrec(M).
This idea has been formalised in [3] as a typed version of reduction barbed
congruence, giving rise to the judgements

Γ |= M ∼=rbc N
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To emphasise that, in those judgements, the mentioned environment is an
observer’s knowledge of the system, and therefore that it might not be possible
to type the system in that environment, we will write this environment Ω and
consider judgements of the form

Ω |= M ∼=rbc N

More generally, equivalences over systems are considered within a given knowl-
edge of the observer. So the objects we handle are composed of an environment
and a system at the same time. For this we define the notion of configuration.

Definition 21 (Configurations). We call configuration a pair composed of an
environment Ω and a closed system M , written Ω � M , such that there exists
an environment Γ, with Γ <: Ω and Γ ` M .

Theorem 22. Suppose Γ ` M . Then Γ |= M ∼=rbc unrec(M).

The proof uses a characterisation of this relation as a bisimulation equivalence
in a labelled transition system in which:

• the states are configurations;
• the actions take the form Ω�M µ−→Ω′�M ′; these are based on the labelled

transitions system given in Figure 12 and 13.

The rules given in the Figures 12 and 13 are mostly reformulation of the LTS
inherited from [3]. In those figures, some transitions are written τ−→β: the “β”
annotation will be explained page 40 and can be ignored for now. The main
rule is (lts-comm) which describes how two processes can communicate: this
supposes that one of the processes involved is writing while the other is reading
on the same channel. Since only those two processes are involved in that
communication, the observer is learning nothing when it is performed: that
is why the environment Ω is left unmodified while this happens. That is also
why the environments in which those two processes perform their actions are
different from Ω: they can communicate together even if the overall observer
is not able to interact with them on that channel.

Definition 23 (Actions). For configurations C of the form (Ω � M), we say
that they can do the following actions:

• C τ−→ C′ or C (ñ:T̃)k.a?V−−−−−−→ C′ if we can prove so with a derivation in the LTS;
• C (ñ)k.a!V−−−−→C′ if there exists some derivation proving C (m̃:T̃′)k.a!V−−−−−−→C′ in the LTS

with (ñ) the names that are both in V and (m̃).

Again we refer the reader to [3] for the following result:

(Γ � M)≈bis (Γ � N) implies Γ |= M ∼=rbc N
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Fig. 12 Labelled transition semantics. Internal actions.

(lts-go)

Ω � kJgoto l. P K τ−→β Ω � lJP K
(lts-split)

Ω � kJP |QK τ−→β Ω � kJP K | kJQK
(lts-iter)

Ω � kJ∗P K τ−→β Ω � kJ∗P K | kJP K
(lts-here)

Ω � kJhere [x] P K τ−→β Ω � kJP [k/x]K
(lts-rec)

Ω � kJrec (Z : R). P K τ−→β Ω � kJP{rec (Z:R). P/Z}K
(lts-l-create)

Ω � kJ(newloc l : L) P K τ−→β Ω � (new 〈l : L〉) kJP K
(lts-c-create)

Ω � kJ(newc c : C) P K τ−→β Ω � (new c@k : C) kJP K
(lts-eq)

Ω � kJif u = u then P else QK τ−→β Ω � kJP K
(lts-neq)

Ω � kJif u = v then P else QK τ−→β Ω � kJQK when u 6= v
(lts-comm)

ΩM � M (ñ:T̃)k.a!V−−−−−−→ Ω′
M � M ′

ΩN � N (ñ:T̃)k.a?V−−−−−−→ Ω′
N � N ′

Ω � M |N τ−→ Ω � (new ñ : T̃) M ′ |N ′

Ω � N |M τ−→ Ω � (new ñ : T̃) N ′ |M ′

ñ ∩ fn(N) = ∅

So we establish Theorem 22 by showing

Γ ` M implies (Γ � M)≈bis (Γ � unrec(M)) (2)

6 Proof of recursion implementability

Let us hint the problems encountered in trying to prove the equation (2) on an
example. For this, let us consider a parameterised server version of our Search
process that would be exploring a binary tree instead of a list:

PSearch , search req ? (x, client)

goto k0. rec Z : S. test ? (y)if p(x, y) then goto client. report ! 〈y〉
else neigh ? (n1, n2) goto n1. Z | goto n2. Z

used in the system ServerJ∗PSearchK. So this sets up a search server, at Server;
but the difference with Search from Example 1 is the fact that the data to
search for in the network is given in the search request on search req, and is
subsequently used as a parameter by the testing predicate p.
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Fig. 13 Labelled transition semantics. External actions.

(lts-out)

Ω ` k : loc
a@k : r〈T〉 ∈ Ω
Ω, 〈V : T〉 @k ` env

Ω � kJa ! 〈V 〉P K k.a!V−−−→ Ω, 〈V : T〉 @k � kJP K
(lts-in)

Ω ` k : loc
a@k : w〈U〉 ∈ Ω
Ω `k V : U

Ω � kJa ? (X : T) P K k.a?V−−−→ Ω � kJP{|V/X|}K
(lts-new)

Ω � M µ−→ Ω′ � M ′

Ω � (new n : T) M µ−→ Ω′ � (new n : T) M ′ n 6∈ µ

(lts-open)

Ω � M (ñ:T̃)k.a!V−−−−−−→ Ω′ � M ′

Ω � (new n : T) M (nñ:TT̃)k.a!V−−−−−−−→ Ω′ � M ′
n 6∈ {a, k}
n ∈ fn(V ) ∪ n(T̃)

(lts-weak)

Ω, 〈n : T〉� M (ñ:T̃)k.a?V−−−−−−→ Ω′ � M ′

Ω � M (n:T,ñ:T̃)k.a?V−−−−−−−−→ Ω′ � M ′
n 6∈ {a, k}
n 6∈ fn(M)

(lts-par)

Ω � M µ−→ Ω′ � M ′

Ω � M |N µ−→ Ω′ � M ′ |N bn(µ) ∩ fn(N) = ∅

Our translation of this process gives the following Dpi code:

IPSearch , search req ? (x, client)
goto k0. (newloc base : loc[ping]) F | goto base. ∗ Inst

Inst , ping ? (k) goto k. test ? (y)
if p(x, y) then goto client. report ! 〈y〉
else neigh ? (n1, n2) goto n1. F | goto n2. F

F , here [l] goto base. ping ! 〈l〉

with Inst an instance of the iterative process, and F the triggering process,
written FireOne in the example in the previous section.

Since IPSearch is replicated, it will generate a new home base for Inst for
every request on search req. This means that, after servicing a number of such
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requests we will end up with a system of the form:

(new base1) (new ping1) (new base2) (new ping2) . . .

ServerJ. . .K . . .

| base1J. . .K | k1
1J. . . F1K | k2

1J. . . F1K | . . .
| base2J. . .K | k1

2J. . . F2K . . . (3)

Of course, this will correspond to the recDpi system:

ServerJ. . .K | k1
1J. . . rec Z. P K | k2

1J. . . rec Z. P K | . . . | k1
2J. . . rec Z. P K . . .

On this example, we can see quite clearly the main difference at runtime
between our translation and the standard but non-compositional one outlined
above on page 32. A translation following that non-compositional approach
would give rise to the following state, corresponding to (3) above:

(new base) (new ping) ServerJ∗search req ? (x, client) goto k0. F(x, client)K
| baseJ∗ping ? (k, x, client) goto k. test ? (y) . . .K
| k1

1J. . . F(x1, client1)K | k2
1J. . . F(x1, client1)K | . . .

| k1
2J. . . F(x2, client2)K . . .

F(x, client) , here [l] goto base. ping ! 〈l, x, client〉

Note that here all the free names used in the recursive process are closed
and the actual parameters are obtained when an instance is called via ping.
But more importantly only one home base is ever created. Thus the loss of
compositionality would allow an easier proof of equivalence, since there is only
one base per recursion variable.

To return to the discussion of compositional translation, we have a recDpi
process containing a number of recursive constructs but the way they are to
be translated to get the Dpi system (3) depends on the system history. That
is why our proof of (2) is based on an extended version of the translation
in which we specify whether a given occurrence of rec Z. P has already been
attributed a home base. If not, it should generate a new one; if it has, then the
actual home base needs to be recorded. In the example, we need to attribute
the same home base to the rec Z. P in every ki

1, and different ones for the
other ki

j.

Let us write unrecP(M) for the translation of M parameterised by P , with P
specifying how each rec Z. P should be translated in M . This parameterisation
identifies each occurrence of rec Z. P by its position in the system or in the
process, in a similar way to positions of subtrees in types (definition 10).

Definition 24 (Occurrence). The occurrence o in a process P or a system
M , written P |o and M |o is defined inductively by:
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• P |ε = P , M |ε = M ;
• (P1 |P2)|1p = P1|p, (P1 |P2)|2p = P2|p, (M1 |M2)|1p = M1|p, (M1 |M2)|2p =

M2|p;
• (if u1 = u2 then P1 else P2)|1p = P |p, (if u1 = u2 then P1 else P2)|2p = P |p;
• every other constructor has only one sub-component so: lJP K|0p = P |p,

((new a : E) M)|0p = M |p, (u ! 〈V 〉P )|0p = P |p, (u ? (X : T) P )|0p = P |p,
etc.

For any occurrence o in a system M , we call system-prefix any prefix o′ such
that M |o′ is a system as opposed to a process.

For a given occurrence o and a given reduction Ω � M µ−→ Ω′ � M ′, we will
call residual of o the occurrences in M ′ of the system or process at o in M , if
it still exists. This is needed to keep track of the recursive processes that are
already translated. For instance, in the system lJgoto k. rec Z. P K, when the
prefix goto is reduced, the occurrence of rec Z. P moves from the position 00
to the position 0 in kJrec Z. P K. The residual is obviously more complex when
recursive processes are unfold: since recursion variables are replaced by a full
process, there can be more than one residual for a given occurrence in the
initial process. The residual of those occurrences is therefore computed using
the position of the recursive calls in the initial process.

Definition 25 (Residual). We call residual of an occurrence o in M after a
transition Ω � M µ−→ Ω′ � M ′ the set of occurrences defined by the following
function:

• Res(ε, Ω � M µ−→ Ω′ � M ′) = {ε}
• Res(1o, Ω � M |N µ−→ Ω′ � M ′ |N) = Res(o, Ω � M µ−→ Ω′ � M ′)
• Res(2o, Ω � M |N µ−→ Ω′ � M ′ |N) = {2o}
• Res(0, Ω � kJa ! 〈V 〉P K k.a!V−−−→ Ω′ � kJP K) = ∅
• Res(00o, Ω � kJa ! 〈V 〉P K k.a!V−−−→ Ω′ � kJP K) = {0o}
• Res(0o, Ω � (new n : T) M (nñ:TT̃)k.a!V−−−−−−−→ Ω′ � M ′)

= Res(o, Ω � M (ñ:T̃)k.a!V−−−−−−→ Ω′ � M ′)
• Res(0o, Ω � (new n : T) M µ−→ Ω′ � (new n : T) M ′)

= {0o | o ∈ Res(o, Ω � M µ−→ Ω′ � M ′)}
• Rés(0, Ω � lJrec (Z : R). P K τ−→ Ω � lJP [rec (Z:R). P/Z]K) = {0o | ∀o, P |o = Z}
• Rés(00o, Ω � lJrec (Z : R). P K τ−→ Ω � lJP [rec (Z:R). P/Z]K)

= {0o, 0o′0o | ∀o′, P |o′ = Z}
• Rés(1o, Ω� M |N τ−→Ω� (new ñ : T̃) M ′ |N ′) = {10mo′ | ∀o′ ∈ Rés(o, ΩM �

M µ−→ Ω′
M � M ′)} where m is the number of names in ñ and µ is either a

reading or a writing

and the other cases are similar.
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For a given system M , the Ps we will consider will be annotated partitions
of a part of occurrences in M . We will write O(nO) for one of the sets in that
partition, annotated by nO. We define the “valid” Ps as:

• if there exists o1, o2 and O such that oi ∈ O(nO) ∈ P then M |o1
= M |o2

=
rec Z : R. P ;

• for any O(nO) ∈ P , we call o the longest common system-prefix of all occur-
rences in O(nO); if we write rec Z. P for the recursive process corresponding
to O then all the free names in P are either free in the whole system or
bound at an occurrence that is a prefix of o; moreover P contains no free
variable.

The intuition is that the various occurrences of rec Z : R. P in a given set in P
will be attributed the same “home-base”. The occurrences of the rec Z : R. P
will be translated by unrec(rec Z : R. P ).

To perform that translation, we need to keep track of the “current” occurrence
within the system.

• if o0 is not in P ,

unreco
P(kJ rec Z : R. P K) =

(new
〈
homeZ{o0} : loc[pingZ{o0}

: rw〈R{o0}〉]
〉
)

homeZ{o0}J∗pingZ{o0}
? (l : R) goto l. unreco00

P∪{{o0}0}(P )K
| homeZ{o0}JpingZ{o0}

? (l : R) goto l. unreco00
P∪{{o0}0}(P )K

| homeZ{o0}JpingZ{o0}
! 〈k〉K

• if o is not in P , but the previous case does not apply because rec Z : R. P
occurs under a prefix,

unreco
P(rec Z : R. P ) = (newloc homeZ : loc[pingZ : rw〈R〉])

(unrec(Z) |
goto homeZ . ∗ pingZ ? (l : R) goto l. unrec(P ))

This will therefore heavily rely on implicit α-conversions.
• if o0 is in P , then it must be in some O in P ;

unreco
P(kJrec Z : R. P K) =

homeZO
JpingZO

? (l : R) goto l. unreco00
P (P )K

| homeZO
JpingZO

! 〈k〉K

• if o is in P , then it must be in some O in P , when the previous case cannot
apply;

unreco
P(rec Z : R. P ) = here [x] goto homeZO

. pingZO
! 〈x〉
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• we write o′ for the occurrence of the binder of the occurrence o of Z; if o′ is
in P , then it must be in some O in P and Z must be “ZO”;

unreco
P(Z) = here [x] goto homeZO

. pingZO
! 〈x〉

• we write o′ for the occurrence of the binder of the occurrence o of Z; if o′ is
not in P :

unreco
P(Z) = here [x] goto homeZ . pingZ ! 〈x〉

• unreco
P(u ! 〈V 〉P ) = u ! 〈V 〉unreco0

P (P ); all the other cases for processes
are similar;

• if o is the longest system-prefix of the occurrences in (Oi) ∈ P , we translate
the system this way, with ni the annotation of Oi in P and oi one occurrence
in Oi:

unreco
P((new e : E) M) =

(new e : E) (new homeZO1
: loc[pingZO1

: rw〈RO1〉])
homeZO1

J∗pingZO1
? (l : RO1) goto l. unrecoi0

P (M |oi0
)K

| homeZO1
JpingZO1

? (l : RO1) goto l. unrecoi0
P (M |oi0

)K
...× n1

| homeZO1
JpingZO1

? (l : RO1) goto l. unrecoi0
P (M |oi0

)K
| homeZO2

J. . .K
...

|unreco0
P (M)

All other cases for system are similar, with the “generation” of all the home-
bases that are required at that occurrence before the inductive case.

Notice that, up-to congruence for the order between the different locations
homeZ introduced by the last case of the definition, unreco

P(kJrec Z : R. P K)
when o0 is not in P is equal to unreco

P∪{{o0}1}(kJrec Z : R. P K).

Of course, we extend the notion of residual of an occurrence to the one of
residual of a set P .

We write unrecP(M) for unrecε
P(M). Note that we do not need a special

case for the translation of kJZK since we know that this is an impossible
situation.

To deal with the extra steps introduced by the translation, we will resort to
a proof technique given in [8], namely bisimulation up-to-β. Thanks to this
technique, we restrict the standard property of bisimulation to be proved for
a relation R to C1 R C2 imply that C′1 τ−→∗

β ∼R τ−→∗
β ∼ C′2.

The notion of bisimulation up-to-β is based on the remark that, among the
reductions added by the translation, only the communication on the channel
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ping is “dangerous”, because it could fail if one of the two agents involved
in the communication were absent. Every other step is a so-called β-move,
written τ−→β in the LTS, in Figure 12. Thanks to bisimulations up-to-β we
can focus only on the communication moves. Then we can consider that the
ping-communication (which is a τ -move) in the translation corresponds to the
recursion unwinding in recDpi.

Lemma 26 (unrec() is a bisimulation). Suppose an environment Γ and a
system M . Then Γ ` M implies (Γ � M)≈bis (Γ � unrec(M))

Proof. We will prove that

R = {(Ω � M, Ω � unrecP(M)) | P is valid for M}

is a bisimulation up-to β.

Consider (Ω � M, Ω � unrecP(M)) in R. We know that there must exist
some Γ <: Ω such that Γ ` M . We write here Ω � M µ−→ to express the fact
that there exists some configuration Ω′ � M ′ such that Ω � M µ−→ Ω′ � M ′.

• Ω � M µ−→ Ω′ � M ′. We prove that Ω � unrecP(M) µ−→ τ−→∗
β ∼ Ω′ �

unrecP ′(M ′) for some P ′, more precisely, if µ is an input or output ac-
tion, P ′ is the residual of P after that transition. This proof is done by
induction on the proof of Ω � M µ−→Ω′ � M ′. To get into the induction the
property we prove is the fact that Ωo � M |o

µ−→ Ω′
o′ � M ′|o′ implies that

Ω � unreco
P(M |o)

µ−→ τ−→∗
β ∼ Ω � unreco′

P ′(M ′|o′).
· (lts-go): M |o = kJgoto l. P K. This implies that unreco

P(M |o) is the
system kJgoto l. unreco00

P (P )K optionally with some homeZO
generation

so that the general form is

(new homeZO1
) (new homeZO2

) . . .

homeZO1
J. . .K | . . . | kJgoto l. unreco00

P (P )K

which means that Ωo � unreco
P(M |o) can perform the “matching” move

by some application of rules (lts-new), (lts-par) and (lts-go). The
term it reaches is

(new homeZO1
) (new homeZO2

) . . .

homeZO1
J. . .K | . . . | lJunreco00

P (P )K

which might need some extra β-reductions to become the translation of
M ′|o′ = lJP K because there are different possible cases for the form of P .
If P is of the form rec Z : R. P ′:
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· if o′0, the occurrence for the recursion operator, is in P ′ then it must
be in some set O′ in P ′ and unreco′

P ′(M ′|o′) is

(new homeZO1
) . . . homeZO′ JpingZO′ ! 〈l〉K

| homeZO′ JpingZO′ ? (l : R) goto l. unreco′00
P ′ (P ′)K

but, we will take P ′ to be the residual of P after the move so that
o′0 is in P ′ exactly when o00 was in a set O in P . This implies that
lJunreco00

P (P )K is of the form

lJhere [x] goto homeZO
. pingZO

! 〈x〉K

which reduces by β-moves to homeZO
JpingZO

! 〈x〉K. We also know by
definition of the translation unrecP(M) that at the longest common
system-prefix among occurrences in O is generated the server in the
home-base:

(new homeZO
) homeZO

J∗pingZO
? (l : R) goto l. unreco00

P (P )K

so one β-move generates a new instance of the replicated process

homeZO
JpingZO

? (l : R) goto l. unreco00
P (P )K

which is exactly the system we need. And this new instance can be
placed at o′ by structural congruence, which is included in ∼.

· if o′0 is not in P ′, we know that the translation we will give will be
of the form

(new homeZ{o′0}
: loc[pingZ{o′0}

: rw〈R{o′0}〉])
homeZ{o′0}

J∗pingZ{o′0}
? (l : R) goto l. unreco′00

P ′∪{{o′0}}(P
′)K

| homeZ{o′0}
JpingZ{o′0}

? (l : R) goto l. unreco′00
P ′∪{{o′0}}(P

′)K
| homeZ{o′0}

JpingZ{o′0}
! 〈k〉K

but in that case, we will have o00 not in P so lJunreco00
P (P )K will

be of the form

lJ(newloc homeZ : loc[pingZ : rw〈R〉])
(unrec(Z) |

goto homeZ . ∗ pingZ ? (l : R) goto l. unrec(P ))K

so by using (lts-l-create), (lts-split), (lts-here), (lts-go)
and (lts-iter) this reduces by β-moves into the translation of M ′|o′ .

Otherwise, if P is not of the form rec Z : R. P ′, we know that it cannot
be of the simple form Z, since Z would in that case be a free recursion
variable in the system. So it must be one of the various possible cases
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for processes. If we take the example of a ! 〈V 〉P ′, by simply taking the
residual of P for P ′, we get

unreco′0
P ′ (a ! 〈V 〉P ′) = a ! 〈V 〉unreco′00

P ′ (P ′)

= a ! 〈V 〉unreco000
P (P ′)

= unreco00
P (a ! 〈V 〉P ′) .

· (lts-split), (lts-iter), (lts-l-create), (lts-c-create), (lts-out)
and (lts-in): those rules are similar to the previous case.

· (lts-here): this case is similar because the substitution commutes with
our translation.

· (lts-eq) and (lts-neq): those two rules are slightly different mostly
because some occurrences have no residual by this reduction rules, which
means that a home base might become redundant. For instance, consider
the system M :

kJif u = u then 0 else rec Z. .P K

for which the translation unrecε
{{02}}(M) contains a home-base homeZ

which is not in unrecε
{}(M).

By taking the residual of P for P ′, the sets of occurrences of P that have
an empty residual in P ′ correspond to such “vanished” recursive process.
We can easily prove that a system of the form

(new homeZO1
) (new homeZO2

) . . .

homeZO1
J∗pingZO1

. . .K | . . . |M

in which pingZO1
is not free in M is strongly-bisimilar to

(new homeZO2
) . . . | . . . |M

By a reasoning on the different possible cases for the continuation of the
condition similar to the (lts-go) case, we therefore obtain that the sys-
tem reduces after some extra β-moves and strong-bisimulation, into the
translation of M ′.

· (lts-rec): M |o = kJrec Z : R. P K which reduces to the system M ′|o′ =

kJP{rec (Z:R). P/Z}K. So the translation will depend on whether o0 is in P :
· if o0 is not in P , as we mentionned earlier, unreco

P(M |o) is equal to
unreco

P∪{{o0}(0)}(M |o), so we can restrict our analysis to the other
case;

· if o0 is in O in P , we define P ′ as the residual of P , namely with the
occurrence o0 in P replaced by the occurrences of rec (Z : R). P in
M ′|o′ ; unreco

P(M |o) is of the form

homeZO
JpingZO

? (l : R) goto l. unreco00
P (P )K

| homeZO
JpingZO

! 〈k〉K
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By the rule (lts-comm), this can reduce by a τ move into the sys-
tem homeZO

Jgoto k. unreco00
P (P )K, so by an extra β-move, we reach

kJunreco00
P (P )K. And we want to prove that this system can reduce

in β-moves into unreco′
P ′(kJP{rec (Z:R). P/Z}K). Now, remark that

unreco′′

P ′′(Z) = unreco′′

P ′′(rec Z : R. P )

whenever o′′ is not an occurrence of the form o′′′0 with a system of
the form kJ. . .K at o′′′ and when o′′ is in P ′′. Since both conditions are
fulfilled in our case when considering the residual of P for P ′, we get

unreco′

P ′(kJP{rec (Z:R). P/Z}K) = unreco′

P ′(kJP K)

As in the case for rule (lts-eq), showing the adequation between
this translation and kJunreco00

P (P )K turns out to be a simple case
analysis on the form of P , after considering whether there exists
some occurrence of Z in P or the rest of the system or if this location
homeZO

should be “garbage-collected” by strong bisimulation.
· (lts-comm): M |o = M1 |M2 and there exists some Ω1 and Ω2 such that

Ω1 � M |o1
(ñ:T̃)k.a!V−−−−−−→Ω′

1 � M ′|o′′1 and Ω2 � M |o2
(ñ:Ũ)k.a?V−−−−−−→Ω′

2 � M ′|o′′2. By
our induction hypothesis, we can conclude that, writing P ′ for the residual
of P after the communication move

Ω1 � unreco1
P (M |o1)

(ñ:T̃)k.a!V−−−−−−→ τ−→∗
β ≡ Ω′

1 � unreco′′1
P ′ (M ′|o′′1)

and

Ω2 � unreco2
P (M |o2)

(ñ:Ũ)k.a?V−−−−−−→ τ−→∗
β ≡ Ω′

2 � unreco′′2
P ′ (M ′|o′′2)

which implies

Ω � unreco
P(M |o)

τ−→ τ−→∗
β

≡ Ω � (new ñ : T̃)unreco′′1
P ′ (M ′|o′′1) |unreco′′2

P ′ (M ′|o′′2)
= Ω � (new ñ : T̃)unreco′′

P ′(M ′|o′′)
= Ω � unreco′

P ′(M ′|o′)

these equalities being true with the omission of the extra homeZO
that

might be generated by unreco
P(M |o) for the sake of simplicity. They

would be dealt with properly in the two intermediary steps, keeping the
same conclusion.

· (lts-new), (lts-open), (lts-weak) and (lts-par): we simply apply,
for those rules, the induction hypothesis.

• Ω � unreco
P(M) µ−→ Ω′ � N ′. Here are the different possible cases for the

axiomatic rules in the proof of this reduction.
· (lts-iter) applied on a channel pingZO

: in that case we simply modify
the annotation on O in P from n to n + 1 to accommodate for that new
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instance of the replicated process. That move is then match by an absence
of move in M , because N ′ is still a translation of M .

· (lts-in) and (lts-out) on a channel pingZO
. Then the reduction we

are considering is a communication on that channel. Notice that it is
impossible to have only an input or only an output on a channel pingZO

,
since all those channels have restricted scopes.

Since we have an output prefix on that channel pingZO
, by definition

of the translation it must be due to some rec Z : R. P in M . So we have
Ω � M τ−→ Ω � M ′, that τ corresponding to the recursion unwinding.
By a similar proof as in the matching of a move in M by a move in
its translation, we then show that Ω � N ′ can further reduce into some
Ω � unrecP ′(M ′) for some P ′.

· Otherwise, by definition of the translation, we know that the redex in
unrecP(M) must also exist in M , so Ω�M µ−→Ω′�M ′. By a proof similar
to the previous case, we can therefore show that Ω � unrecP(M) µ−→

τ−→∗
β ≡ Ω′ � unrecP ′(M ′), since the redex reduced in the µ-move is the

same.

As announced, this proves that the implementation of recursion with repli-
cation generates observationnally equivalent processes, under the assumption
that the extra migrations will never fail.

7 Conclusion

In this paper we gave an extension of the Dpi-calculus with recursive processes.
In particular we described why this construct was more suited to program-
ming in the distributed setting, by allowing the description of agents migrating
through network, visiting and interrogating different locations. We also gave a
typing system for this extended calculus, which involved recursive types, dealt
with by using co-inductive proof techniques, and showed that Subject Reduc-
tion remains valid. Finally we showed how to encode our recursive processes
into standard Dpi which uses iteration, by resorting to the addition of extra
migrations in the network, but still using recursive types. The encoding was
proved to be sound and complete, in the sense that the original and trans-
lated processes are indistinguishable in a typed version of reduction barbed
congruence.

It would now be interesting to study the behaviour of recursive processes in a
setting where some parts of the network could fail (either locations or links),
since failures are of major importance in the study of distributed computa-
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tions. We conjecture that in such a setting there is no translation of recursive
processes into iterative ones, which preserve their behaviour.
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