
A Theory of System Behaviour in the Presence of
Node and Link Failure

Adrian Francalanza a, Matthew Hennessy b

aImperial College, London SW7 2BZ, England
bUniversity of Sussex, Brighton BN1 9RH, England.

Abstract

We develop a behavioural theory of distributed programs in the presence of failures such
as nodes crashing and links breaking. The framework we use is that of Dπ, a language in
which located processes, or agents, may migrate between dynamically created locations. In
our extended framework, these processes run on a distributed network, in which individual
nodes may crash in fail-stop fashion or the links between these nodes may become perma-
nently broken. The original language, Dπ, is also extended by a ping construct for detecting
and reacting to these failures.

We define a bisimulation equivalence between these systems, based on labelled actions
which record, in addition to the effect actions have on the processes, the effect on the actual
state of the underlying network and the view of this state known to observers. We prove
that the equivalence is fully abstract, in the sense that two systems will be differentiated if
and only if, in some sense, there is a computational context, consisting of a surrounding
network and an observer, which can see the difference.

Key words:
distributed calculi, node and link failure, reduction barbed congruence, labelled transition
systems, bisimulation

1 Introduction

It is generally accepted that partial failures are a major factor for precluding lo-
cation transparency in distributed settings such as wide-area networks, [4], large
computational infrastructures which may even span the globe. Because of this, var-
ious location-aware calculi have arisen in the literature to model the behaviour of
distributed programs in the presence of failures [2,1,26], and to study the correct-
ness of algorithms is such a setting [21,25,24,14]. The purpose of this paper is to:

Preprint submitted to Elsevier Science 2 January 2008

• formalise a simple framework, a distributed process calculus, for describing
computations over a distributed network in which individual nodes and links
between the nodes are subject to failure
• use this framework to develop a behavioural theory of distributed systems in

which these failures are taken into account.

Our point of departure is Dπ [20], a simple distributed version of the standard π-
calculus [27], where the locations that host processes model closely physical net-
work nodes. Ignoring the type system developed for Dπ, which is orthogonal to the
issues addressed here, we consider the following three abstract server implementa-
tions as motivation:

server ⇐ (ν data)

 l[[req?(x, y).data!〈x, y〉]]

| l[[data?(x, y).y!〈 f (x)〉]]



servD ⇐ (ν data)

 l[[req?(x, y).go k1.data!〈x, y〉]]

| k1[[data?(x, y).go l.y!〈 f (x)〉]]



servD2Rt ⇐ (ν data)



l


req?(x, y).(νsync)


go k1.data!〈x, sync〉

| go k2. go k1. data!〈x, sync〉

| sync?(x).y!〈x〉





| k1


data?(x, y).

 go l. y!〈 f (x)〉

| go k2. go l. y!〈 f (x)〉






The three systems server, servD and servD2Rt implement a server that accepts a
single request for processing on channel req at location l with two arguments, x the
value to be processed and y the return channel on which to return the result of the
processing. A typical client for these servers would have the form l[[req!〈n, ret〉]],
sending the name n as the value to be looked up and ret as the return channel.

Every server forwards the request to an internal database hidden from the client,
denoted by the scoped channel data, which processes the value using an unspecified
function f (x). The three implementations differ by where the internal database is
located and how it is handled. More specifically, server holds the database locally at
l and carries out all the processing there; in contrast, servD and servD2Rt distribute
the database remotely at location k1. The latter two server implementations also
differ by how the remote database is accessed: servD accesses the database using
the direct route from l to k1; servD2Rt forwards the service requests along two
concurrent routes, that is the direct one from l to k1 and an indirect route using an

2

intermediary node k2 and non-deterministically selects one of two results if both
routes are active.

Intuitively, these three server implementations are not equivalent because they ex-
hibit distinct behaviour in a setting with node and link failure. For instance, if node
k1 fails, servD and servD2Rt may not be able to service a client request whereas
server would continue to work seamlessly. Moreover, servD and servD2Rt are
also distinct because if the link between l and k1 breaks, servD may block and not
serve a request while servD2Rt would still operate as intended. Despite the fact
that these three implementations are qualitatively different, it is hard to distinguish
between them in Dπ theories such as [18].

In this paper, we develop a behavioural theory that tells these three systems apart.
We use extended Dπ configurations of the form Σ .N where Σ is a representation of
the current state of the network, and N consists of the systems such as those we have
just seen, that is software executing in a distributed manner over Σ. Here Σ records
the set of nodes in the network, their status (whether they are alive or dead), and
their connectivity (the set of symmetric links between these nodes). This results in
a succinct but expressive framework, in which many of the phenomena associated
with practical distributed settings, such as routing algorithms and ad-hoc network
discoveries, can be examined.

The corresponding behavioural theory takes the form of (weak) bisimulation equiv-
alence, based on labelled actions

Σ . N
µ
−→ Σ′ . N′ (1)

where the label µ represents the manner in which an observer, also running on the
network Σ, can interact with the system N. This interaction may not only change
the state of the system, to N′, in the usual manner, but also affect the nature of the
underlying network. For instance, an observer may extend the network by creating
new locations or otherwise induce faults in the network by killing sites or breaking
links between sites, thereby capturing at least some of the reaction of N to dynamic
failures.

It turns out that the definition of the actions in (1) needs to be relatively sophisti-
cated: although the system and the observer may initially share the same view of
the underlying network, Σ, interactions quickly give rise to situations in which these
views diverge. More specifically, observers may learn of new nodes in the system
as a result of interaction (scope extrusion), but at the same time, cannot determine
the state of such nodes and the code executing at them either because the newly dis-
covered nodes are completely disconnected or because the observer does not have
enough information to determine a route which leads to these nodes. As a result,
in (1) above, the network representation Σ needs to somehow record the actual full
state of the underlying network, together with the observer’s partial view of it.

3

Table 1. Syntax of typed DπF

Types

T, U, W ::= ch | loc[S, C] S ::= a | d C, D ::= {u1, . . . , un}

Processes

P,Q ::= u!〈V〉.P | u?(X).P | ∗ u?(X).P | if v=u then P else Q | 0 | P|Q | (ν n :T)P

| go u.P | kill | break u | ping u.P else Q

Systems

M,N,O ::= l[[P]] | N|M | (ν n :T)N

The paper is organised as follows: Section 2 introduces our language, DπF, its re-
duction semantics and a corresponding contextual equivalence, based on the notion
of reduction barbed congruence of Honda et al [22]. In Section 3 we present an
initial definition of actions for DπF, based on the general approach of [19]. The
resulting bisimulation equivalence can be used to demonstrate equivalences be-
tween systems, but we show, by a series of examples, that it is too discriminating.
In Section 4 , we revise the definition of these actions, by abstracting from internal
information present in the action labels, and demonstrate, through a series of exam-
ples, that the resulting bisimulation equivalence corresponds, in some sense, to the
contextual equivalence defined earlier in Section 2. Finally, in Section 5, we state
and prove the main result of the paper, that is that the refined bisimulation is indeed
fully abstract with respect to aforementioned contextual equivalence; this means
that two systems will be differentiated by the bisimulation equivalence if and only
if, in some sense, there is a computational context, consisting of a network and an
observer, which can see the difference. Section 6 concludes with an overview of
related work and future directions.

2 The language

We assume a set of variables V, ranged over by x, y, z, . . . and a separate set
of names, N, ranged over by n,m, . . . , which is divided into locations, L,
ranged over by l, k, . . . and channels, C, ranged over by a, b, c, Finally we
use u, v, . . . to range over the set of identifiers, consisting of either variables and
names.

The syntax of DπF is given in Table 1, where the main syntactic category is that
of systems, ranged over by M,N; these are essentially a collection of located pro-
cesses, or agents l[[P]], but there may also be occurrences of typed scoped names,
(ν n : T)N. Our syntax is based on the language Dπ, [20], which comes endowed

4

with a rich type system for regulating access control. Since this is orthogonal to
our concerns we ignore this type system. Instead we use a very simple notion of
type, which simply records the proposed use of an identifier. Thus, if n is used as
a channel in N, then T is simply ch; however if it is a location then T = loc[S, C]
records it’s status S, whether it is alive a or dead d, and the set of locations C to
which it is linked, {l1, . . . , ln}. Note that these T should not be considered as static
types; in particular, as a computation proceeds, the status and connectivity of loca-
tions may change. Another change from the original Dπ is that we do not speficy the
location where a channel can be used; here a channel can be used at any location.

The syntax for agents, P,Q, is an extension of that in Dπ. There are input and output
on channels; here V is a tuple of identifiers, and X a tuple of distinct variables, to be
interpreted as a pattern. We also have the standard forms of parallel, replicated in-
put, local declarations, a test for equality between identifiers and an asynchronous
migration construct. As we shall see once we introduce the reduction semantics of
this language, migration under failure assumes a different semantics from that in the
original Dπ, but its characteristic asynchrony is still preserved in our language. Pro-
cesses are also extended with a a conditional ping construct, l[[ping k.P else Q]], in
the style of [2,1,26], branching to l[[P]] or l[[Q]] depending on the accessibility of k
from l. It acts as a form of perfect failure detector [5], the implementation of which
typically necessitates tighter synchronisation between locations. Despite this appar-
ent limitation 1 , the ping construct still describes the asynchrony between network
failure and failure discovery/detection as two distinct and independent events. To-
gether, the ping and asynchronous migration operations give a programming level
of abstraction close an idealised form of the IP/ICMP layers in the Internet protocol
suite[23]. The semantics of new location process is also different from that of Dπ,
since it is subject to restrictions imposed by the present state of the network as well.
In particular, new locations can only short-circuit paths of connections between lo-
cations but cannot provide a new path for two unreachable nodes. Finally, we have
two new constructs to simulate failures in the style of [26]; l[[kill]] kills the location
l, while k[[break l]] breaks the link between l and k, if it exists. We are not really
interested in programming with these last two operators. Nevertheless, when we
come to consider contextual behaviour, their presence will mean that the behaviour
will take into account the effects of dynamic failures.

We relegate the standard notions of free and bound occurrences of both names
and variables to the appendix (see Section A) and assume the associated concepts
of α-conversion and substitution; see [27,17] for similar definitions. It is worth
emphasising that location names, and indeed identifiers, may occur in types, and
this must be taken into account when these concepts are defined. Furthermore, we

1 The user can always program a weaker form of failure detector from the present ping
which may non-deterministically give false unreachability branchings like an unreliable
failure detector [5]. The programming of such a construction will become clearer once we
introduce the reduction rules.

5

will assume that channel communication is well-sorted (for any output a!〈V〉.P and
input a?(X).Q on any channel a, we have |V | = |X|) that all system terms are closed,
that is they have no free occurrences of variables.

Network representations: Reductions of systems are defined with respect to a
network representation, ∆, describing the current state of the network. Intuitively
∆ records the set of locations in existence, whether they are alive or dead, and any
live links between them.

Definition 1 (Link sets) Any binary relation L over the set of locations L is
called a linkset. We use dom(L) to denote its domain, that is the collection of
locations l such that 〈l, k〉 ∈ L, for some k.

A linkset is meant to represent both location liveness and a collection of symmetric
links between locations. Specifically we write L ` l : alive whenever 〈l, l〉 ∈ L and
L ` l↔k whenever

• 〈l, k〉 ∈ L
• or 〈k, l〉 ∈ L.

The reflexive interpretation of link-sets expresses liveness and at the same time
permits the smooth handling of the degenerate case of a process moving from a site
l to l itself.

Definition 2 (Components) A subset K of a linkset L is called a component, if
all locations in K are mutually accessible; that is, using the obvious notation, L `
k1↔

∗ k2 for every k1, k2 ∈ K . Every location l ∈ dom(L), generates a component:

[l]L = {〈k1, k2〉 ∈ L |L ` l↔∗ k1 or L ` l↔∗ k2}

In the special case where every location l ∈ dom(L) is alive, that is L ` l : alive,
then it is easy to check that every linkset can be partitioned into components. For
one can verify that

• L =
⋃

l∈dom(L)[l]L
• [l1]L ∩ [l2]L , ∅ implies [l1]L = [l2]L.

Components, will play an essential role in Section 4

Definition 3 (Network representation) A network representation, ∆, is any tuple
〈N ,L〉 where

• N is a set of names, divided into loc(N), location names, and chan(N), channel
names
• L ⊆ loc(N)×loc(N) is a linkset representing both the set of live locations, some-

times refered to as the liveset of ∆ and the set of connections between locations.

6

Notation: For convenience we use ∆N , and ∆L to denote the individual compo-
nents of a network representation ∆, and we use the following notation for extract-
ing information from ∆:

• ∆ ` l : alive whenever ∆L ` l : alive.
• ∆ ` l↔k if ∆L ` l↔k.
• ∆ ` k! l if ∆ ` l↔k, ∆ ` l : alive and ∆ ` k : alive.

Thus ∆ ` k! l not only means that is there a link between k and l but both ends of
the link are alive; we will refer to this as a live link.

To update network representations we use the following:

• Extending a network: ∆ + n : T is only defined when n is fresh to ∆; if T is ch,
this simply adds n to the channel component of ∆N . But if it is the location type
then in addition to adding n to the location component of ∆N , it needs to add
in the new links determined by the location type T, and possibly update liveness
information in ∆L for n. Formally we have

∆ + a :ch = 〈∆N∪{a}, ∆L〉

∆ + k :loc[a, {l1, . . . ln}] = 〈∆N∪{k}, ∆L∪{〈li, k〉}∪{〈k, k〉}〉

∆ + k :loc[d, {l1, . . . ln}] = 〈∆N∪{k}, ∆L∪{〈li, k〉}〉

• location killing: ∆ − l is always defined; it simply removes l from the liveset of
∆, if it is there:

∆ − l = 〈∆N , ∆L \ {〈l, l〉}〉

• link breaking: this operation, ∆ − l↔ k is also always defined; it removes from
∆L any representation of the link between l and k:

∆ − l↔k = 〈∆N , ∆L \ {〈l, k〉, 〈k, l〉}〉

Reduction semantics: A configurations consists of a pair ∆.N, where every free
name in N occurs in the name component of ∆. We define reductions to take place
between such configurations; thus they take the form of a binary relation

∆ . N −→ ∆′ . N′ (2)

where ∆ and ∆′ in (2) are network representations. The novelty of these judgements
arises from the fact that certain nodes may not be interconnected, and indeed some
may not be alive.

The rules governing the reductions (2) are given in Tables 2, 3 and 4; note that ev-
ery rule depends on the requirement that l, the location of the activity, is currently

7

alive; this is the intent of the predicate ∆ ` l : alive. Table 2 gives the standard
rules for local communication, and the management of replication, matching and
parallelism, derived from the corresponding rules for Dπ in [20]. The communica-
tion rule (r-comm) depends on a standard notion of substitution Q{V/X}, the details
of which we omit. Intuitively the value V is matched against the pattern X, and the
resulting substitution is applied to Q. Of course if V does not match X a runtime
error occurs, but these could be eliminated by the use of a simple, and standard,
type system.

The rules in Table 3 are more interesting. Rules (r-go) and (r-ngo) state that a mi-
gration is successful depending on the accessibility of the destination; migration is
asynchronous in the sense that code at the source location still migrates, irrespec-
tive of the destination’s accessibility. Similarly, (r-ping) and (r-nping) are subject to
the same condition for the respective branchings; they however have a more syn-
chronous flavour to them since the branching outcome is visible at the testing loca-
tion. Ping may also be seen as a form of perfect failure detector [5]; note however
that l[[ping k.P else Q]] yields partial information about the state of the underly-
ing network. More precisely, it can only determine that k is inaccessible, but does
not give information on whether this is caused by the failure of node k, the ab-
sence of the link l↔ k, or both; see Example 4. The rules (r-kill), (r-brk) make the
obvious changes to the current network. Finally (r-newc) and (r-newl) regulates the
generation of new names. We consciously choose not to express name generation
as a (reversible) structural rule since, in practice, this would require some form of
resource acquisition and initialisation which may not be reversible; for similar rea-
sons (r-fork) is not structural since we interpret it as thread spawning. But perhaps
a stronger justification for our design choice is given by (r-newl), describing the
launching of new location. In this case, location creation cannot be reversed and
recreated because creation depends on the current state of the network which may
change during computation. More specifically, in l[[(ν k :loc[a, C]) P]] the location
l requests to generate a new (live) location k, with connections to the locations men-
tioned in C. But the ability to establish these connections depends on the existing
connectivity of the the parent location l. There are a number of reasonable possi-
bilities as to what to do in this situation: we felt it was most realistic to establish a
connection from the new location k to the parent l, and in addition, to only establish
connections to those locations in C which are accessible from the parent l via a se-
quence of live links; see Example 5. Note also that we do not have a reduction rule
for launching new dead locations; one can easily be added, but there is no reason
why any such new locations should ever be generated.

Finally, in Table 4 we have an adaptation of the standard contextual rules, which
allow the basic reductions to occur in evaluation contexts. The rule (r-str) allows
reductions up to a structural equivalence, in the standard manner, using the identi-
ties in Table 5. The only non-trivial identities in Table 5 are (s-flip-1) and (s-flip-2),
where the types of the successively scoped locations need to be changed if they
denote a link between them, thus avoiding unwanted name capture. The operations

8

Table 2. Local Reduction Rules for DπF

Assuming ∆ ` l :alive

(r-comm)

∆ . l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ ∆ . l[[P]] | l[[Q{V/X}]]

(r-rep)

∆ . l[[∗a?(X).P]] −→ ∆ . l[[a?(X).(P| ∗ a?(X).P)]]

(r-fork)

∆ . l[[P|Q]] −→ ∆ . l[[P]] | l[[Q]]

(r-eq)

∆ . l[[if u=u then P else Q]] −→ ∆ . l[[P]]

(r-neq)

∆ . l[[if u=v then P else Q]] −→ ∆ . l[[Q]]
u , v

Table 3. Network Reduction Rules for DπF

Assuming ∆ ` l : alive

(r-go)

∆ . l[[go k.P]] −→ ∆ . k[[P]]
∆ ` k! l

(r-ngo)

∆ . l[[go k.P]] −→ ∆ . k[[0]]
∆ 0 k! l

(r-ping)

∆ . l[[ping k.P else Q]] −→ ∆ . l[[P]]
∆ ` k! l

(r-nping)

∆ . l[[ping k.P else Q]] −→ ∆ . l[[Q]]
∆ 0 k! l

(r-kill)

∆ . l[[kill]] −→ (∆ − l) . l[[0]]

(r-brk)

∆ . l[[break k]] −→ (∆ − l↔k) . l[[0]]

(r-newc)

∆ . l[[(ν c :ch) P]] −→ ∆ . (ν c :ch) l[[P]]

(r-newl)

∆ . l[[(ν k :loc[a, C]) P]] −→ ∆ . (ν k :loc[a, D]) l[[P]]
D = {m ∈ C ∪ {l} |∆ ` l!∗m}

9

Table 4. Contextual Reduction Rules for DπF

(r-str)

N′ ≡ N ∆ . N −→ ∆′ . M M ≡ M′

∆ . N′ −→ ∆′ . M′

(r-ctxt-rest)

∆ + n : T . N −→ ∆′ + n : U . M

∆ . (ν n : T)N −→ ∆′ . (ν n : U)M

(r-ctxt-par)

∆ . N −→ ∆′ . N′

∆ . N|M −→ ∆′ . N′|M

Table 5. Structural Rules for DπF

(s-comm) N|M ≡ M|N

(s-assoc) (N|M)|M′ ≡ N|(M|M′)

(s-unit) N|l[[0]] ≡ N

(s-extr) (ν n :T)(N|M) ≡ N|(ν n :T)M n < fn(N)

(s-flip-1) (ν n :T)(νm :U)N ≡ (νm :U)(ν n :T)N n < fn(U), m < fn(T)

(s-flip-2) (ν l :T)(ν k :U)N ≡ (ν k : U−l)(ν l : T+k)N l ∈ fn(U)

(s-inact) (ν n :T)N ≡ N n < fn(N)

T − l and T + l have the obvious definitions:

T − l =

T if T = ch
loc[S, C \ {l}] if T = loc[S, C]

T + l =

T if T = ch
loc[S, C ∪ {l}] if T = loc[S, C]

The rules (r-ctxt-par) and (r-ctxt-rest) allow reductions to occur under contexts; note
that the latter is somewhat non-standard, but as reductions may induce faults in the
network, it may be that the status and connectivity of the scoped (location) name n
is affected by the reduction, thereby changing T to U. Also in the former it is worth
remarking, that since the reduction semantics is only defined on configurations, the
free names of M are guaranteed to occur in ∆.

This completes our exposition of the reduction semantics. At this point, we should
point out that in a configuration such as ∆ .N, contrary to what we have implied up
to now, ∆ does not give a completely true representation of the network on which
the code in N is running; the type information associated with scoped locations
encodes parts of the network ∆ that is hidden from the observer.

10

Example 4 (Syntax and Reductions) Let ∆ represent the network 〈{l, a}; {〈l, l〉}〉
consisting of a channel a and a live node l and M1 the system

(ν k2 :loc[a, ∅]) (ν k1 :loc[d, {l, k2}]) (l[[a!〈k2〉.P]] | k2[[Q]])

Here M1 has two new locations k1, k2, where k1 is dead and linked to the existing
node l and k2 is alive linked to k1. Although ∆ only contains one node l, the located
process l[[a!〈k2〉.P]] (as well as k2[[Q]]) is running on a network of three nodes,
two of which, k1, k2 are scoped, that is not available to other systems. We can
informally represent this implicit network by

d dt� �- -
l k1 k2

where the nodes ◦ and • denote live and dead nodes respectively. Note that the same
network could be denoted by the system N1

(ν k1 :loc[d, {l}]) (ν k2 :loc[a, {k1}]) (l[[a!〈k2〉.P]] | k2[[Q]])

Note also that the two systems are structurally equivalent, M1 ≡ N1, through
(s-flip-2). As a notational abbreviation, in future examples we will omit the status
annotation a in live location declarations and simply denote location types of the
form loc[a, C] as C; so for example system N1 would be given as

(ν k1 :loc[d, {l}]) (ν k2 : {k1}) (l[[a!〈k2〉.P]] | k2[[Q]])

If O is an observer defined as

l[[a?(x).ping x.ok!〈〉 else Nok!〈〉]]

then the configuration ∆ . N1|O can reduce in two steps to

∆ . N1|O −→ · −→ (ν k1 :loc[d, {l}]) (ν k2 : {k1}) (l[[P]] | k2[[Q]] | l[[Nok!〈〉]])

The rules (r-comm), (r-str) and (s-extr) are used for the first reduction involving com-
munication and subsequent scope extrusion of k2 on channel a at l, and (r-nping) for
the second reduction involving the ping test by the observer on the newly discovered
location k2; when describing derivation of reductions we generally do not mention
the use of contextual rules of Table 4.

This example highlights the fact that even though the observer has taken the nega-
tive branch when pinging k2, it can only deduce that k2 is unreachable from the host
location, l; it cannot infer anything else about location k2 in terms of its status, its
connections to other locations, and the code residing there, k2[[Q]] .

The inability of observers to discover the full extent of the structure of the implicit
network of a system and to interact with code located at inaccessible locations, as
seen in Example 4, constitutes a major difficulty in developing a theory for this
language. This will be discussed in more detail in Section 3 and Section 4.

11

Example 5 Consider the system launchNewLoc defined by

l3[[a!〈l1〉]] | l3[[a?(x).(νk : {x, l2, l4, l5})P]]

running on a network ∆ consisting of five locations l1, . . . , l5, all of which are alive
except l4, with l2 connected to l1 and l3, and l3 connected to l4. Diagrammatically
this is easily represented as:

d d t

d d

- -� �

A
A
AU

A
A
AK

l1

l2 l3 l4

l5

Formally describing ∆ is slightly more tedious:

• ∆N is {a, l1, l2, l3, l4, l5}

• ∆L is given by {〈l1, l1〉, 〈l2, l2〉, 〈l3, l3〉, 〈l5, l5〉︸ ︷︷ ︸
live locations

, 〈l1, l2〉, 〈l2, l3〉, 〈l3, l4〉︸ ︷︷ ︸
live links

}.

When we apply the reduction semantics to the configuration ∆ . launchNewLoc,
the rule (r-comm) is used first to allow the communication of the value l1 along a,
that is

∆ . launchNewLoc −→ ∆ . l3[[(νk : {l1, l2, l4, l5})P{l1/x}]]

We highlight that the communication instantiates the variable x in the type of k to l1.
At this point (r-newl) can be used to launch the declaration of k to the system level.
However, when launched, k turns out to be connected only to {l1, l2, l3} because:

• the location from where the new location k is launched, that is l3, is automatically
connected to k
• l1 and l2 are reachable from the location where k is launched, namely l3; we have
∆ ` l3!

∗ l1 and ∆ ` l3!
∗ l2.

• l4 and l5 are not accessible from l3; l4 is dead and thus it is not accessible from
any other node; l5 on the other hand, is completely disconnected.

So the resulting configuration is:

∆ . (ν k : {l1, l2, l3}) l3[[P{l1/x}]]

The network ∆ of course does not change, but if we focus on the system l3[[P{l1/x}]],
we see that it is running on the implicit network represented by:

12

d d t

d dd

- -� �

A
A
AU

A
A
AK

�
�
��

�
�
��

-�

Q
Q

Q
Qs

Q
Q

Q
Qk

l1

l2 l3 l4

l5k

Reduction Barbed Congruence: We borrow the framework of [18] to define
a variant of a contextual equivalence, originally proposed in [22], to be able to
compare the behaviour of arbitrary systems M and N running on the same network
∆, denoted as:

∆ |= M � N (3)

We first require some preliminary definitions.

Definition 6 (Typed Relation) A typed relation over systems is a family of binary
relations between systems, R, indexed by network representations. We write ∆ |=
M R N to mean that systems M and N are related by R at index ∆, that is M R∆ N,
and moreover ∆ . M and ∆ . N are valid configurations.

The definition of our equivalence hinges on what it means for a typed relation to be
contextual, which must of course take into account the presence of the network.

First let us define what kinds of observing systems are allowed to run on a given net-
work. The intuition of a valid observer system O in a distributed setting ∆, denoted
as ∆ `O O, is that O originates from some live location , fresh to the observed
system, migrates to any location in loc(∆N) to interact with (observe) processes
there and then returns back to the originating fresh location  to compare its
observations with other observers. Our formal definition will not actually mention
this fresh home location , as we leave it to the observer itself to both generate
and manage it. But a major consequence of this view of observers is that, in view
of the reduction rule (r-ngo), observing code can never reach dead locations; this
constraint is reflected in the following formal definition of ∆ `O O.

Definition 7 (Observers) ∆ `O O is the least relation which satisfies:

• ∆ `O l[[P]] if fn(P) ⊆ ∆N and ∆ ` l : alive
• ∆ `O (ν n :T)N if (∆ + n :T) `O N
• ∆ `O M | N if ∆ `O M and ∆ `O N

These observers are the main ingredient of the following definition of contextuality.

13

Definition 8 (Contextual typed relations) A typed relation R over configurations
is contextual if:

(Parallel Systems)

• ∆ |= M R N and ∆ `O O implies ∆ |= M|O R N|O and ∆ |= O|M R O|N

(Network Extensions)

• ∆ |= M R N and n fresh to ∆ implies ∆+n :T |= M R N

Definition 9 (Reduction barbed congruence) First we define the adaptation of
the other standard relations required to define reduction barbed congruence.

Barb Preserving: ∆ . N ⇓a@l denotes an observable barb exhibited by the configu-
ration ∆.N, on channel a at location l. Formally, it means that ∆.N −→∗ ∆′ .N′

for some ∆′ . N′ such that N′ ≡ M|l[[a!〈V〉.Q]] and ∆ ` l : alive. Then, we say a
typed relation R over configurations is barb preserving whenever ∆ |= N R M
and ∆ . N ⇓a@l implies ∆ . M ⇓a@l.

Reduction Closed: A typed relationR over configurations is reduction closed when-
ever ∆ |= N R M and ∆ . N −→ ∆′ . N′ implies ∆ . M −→∗ ∆′ . M′ for some
∆′ . M′ such that ∆′ |= N′ R M′.

Then �, called reduction barbed congruence, is the largest symmetric typed relation
over configurations which is:

• barb preserving
• reduction closed
• contextual.

We leave the reader to check that for each index ∆ the relation �∆ is an equivalence
relation.

As expected, in a setting with both node and link failures one can discriminate more
than in a setting with node failures only. In particular, we were unable to encode a
synchronous move in our calculus, even in the presence of the ping construct which
offers perfect failure detection; we discuss this in the following example.

Example 10 (Synchronous Moves) Consider the construct move k.P else Q which
attempts to migrate P to k from the current destination and if it fails, launches Q
locally; such an intuitive construct is commonly found in distributed computing li-
braries, such as [23] for TCP, and languages for distributed computing, such as

14

[16]. Assuming ∆ ` l : alive, the behaviour of this construct could be defined as

(r-move)

∆ . l[[move k.P else Q]] −→ ∆ . k[[P]]
∆ ` k! l

(r-nmove)

∆ . l[[move k.P else Q]] −→ ∆ . l[[Q]]
∆ 0 k! l

It would be tempting to implement the move construct in our language, considering
l[[mv k.P else Q]] as a macro for

l


(ν a, b)

 go k.(b?().P | go l.a?().go k.b!〈〉)

| a!〈〉 | monitora k.Q





where a, b < fn(P,Q). In essence, our implementation sends P to k as an input
guarded process on the scoped channel b, goes back to the source location, l, to
signal the successful arrival of P at k, by synchronising on the scoped channel a,
and finally goes back to k to release P by outputting on b. This implementation uses
mutual exclusion on the scoped channel a, together with the macro monitora k.Q.
This macro repeatedly tests the accessibility of a location k from the hosting loca-
tion l and launches Q locally at l when k becomes inaccessible. Before it performs
every accessibility test, monitora k.Q synchronizes on the channel a; this ensures
that either k[[P]] or l[[Q]] (but not both) is eventually released, as required. The mon-
itor process, derived from [10,14], which we denote by monitora k.Q is encoded in
our language as:

(ν test :ch)(test!〈〉 | ∗ test?().a?().ping k. (test!〈〉 | a!〈〉) else Q)

Assuming ∆l,k = 〈{l, k}, {〈l, l〉, 〈k, k〉, 〈l, k〉}〉, the construct l[[move k.P else Q]] and
its corresponding implementation l[[mv k.P else Q]] turn out to be observational
equivalent in a framework where only location failure is allowed.

This is however not true in our setting, where link failures may also occur, because
from the contextuality property of � we can conclude

∆l,k |= l[[move k.P else Q]] | l[[break k]] 6� l[[mv k.P else Q]] | l[[break k]] (4)

More specifically, on the right hand side of (4) we can reduce to a state where
b?().P reaches k successfully while go l.a?().go k.b!〈〉 also manages to go back to l
as well, and subsequently synchronises on channel a successfully, thereby blocking
monitora k.Q. Now if at this point, the link l↔k breaks because l[[break k]] reduces,
the residue that has to go back to k to trigger b?().P, that is go k.b!〈〉, cannot reach
k and we end up with a situation where both locations l and k are alive, but both

15

branches P and Q are blocked. This state can never be reached by the configuration
∆l,k . l[[move k.P else Q]] | l[[break k]] on the left hand side, where branching is an
atomic operation 2 .

Example 11 (Distributed Servers) Let ∆ represent the following network:

d
d

d-�

�����1

�����)

PPPPPi

PPPPPq

l

k2

k1

Formally ∆ is determined by letting ∆N be {l, k1, k2, req, ret} and ∆L be
{〈l, l〉, 〈k1, k1〉, 〈k2, k2〉, 〈l, k1〉, 〈l, k2〉, 〈k1, k2〉}.

The distributed server implementations, servD and srvD2Rt, presented earlier in
the Introduction, Section 1, are no longer reduction barbed congruent relative to ∆,
as in this extended setting, the behaviour of systems is also examined in the context
of faulty links. It is sufficient to consider the possible barbs in the context of a client
such as l[[req!〈l, ret〉]] and a fault inducing context which breaks the link l↔k1.

C3 = [−] | l[[req!〈l, ret〉]] | l[[break k1]]

Stated otherwise, if the link l ↔ k1 breaks, srv2Rt will still be able to operate
normally and perform a barb on ret@l; servD, on the other hand, may reach a
state where it blocks since migrating back and forth from l to k1 becomes prohibited
and as a result, it would not be able to emit a barb ret@l. However consider the
alternative remote server srvMtr, defined as:

(ν data)



l


req?(x, y).(νsync)


go k1. data!〈x, sync〉

|monitor k1.go k2.go k1.data!〈x, sync〉

| sync?(x).y!〈x〉





| k1


data?(x, y).

go l. y!〈 f (x)〉

|monitor l.go k2.go l.y!〈 f (x)〉






using a simplified version of the monitor macro of Example 10 which does not
synchronise on the channel a for every test. It is defined as

2 The same situation, that is go k.b!〈〉 not being able to reach k, can also happen in a
setting where only location failure can occur. However, this can only be caused as a result
of k failing, which prohibits any observer from determining whether b?().P was triggered
or not.

16

monitor k.Q⇐ (ν test :ch)(test!〈〉 | ∗ test?().ping k. test!〈〉 else Q)

In order to establish ∆ |= srv2Rt � srvMntr directly from the definition of reduction
barbed congruence, we would need to compare the behaviour of the two systems
relative to all valid contexts. But in the next section we will develop more realistic
methods for establishing such identities.

In the next example we examine the interplay between dead nodes and dead links
and their respective observation. This example exposes some of the complications
we shall encounter when we develop a bisimulation theory for our language.

Example 12 (Network Observations) Let ∆l be the simple network with one live
location l, denoted and depicted as:

∆l = 〈{l, a}, {〈l, l〉}〉 = dd
and consider the following three networks,

∆1 = ∆l + k :loc[d, {l}] = d t� -
l k

∆2 = ∆l + k :loc[d, ∅] = d tl k

∆3 = ∆l + k :loc[a, ∅] = d dl k

These are the implicit networks for the system l[[a!〈k〉]] in the three configurations
∆l . Ni, where Ni are abbreviations for

N1 ⇐ (ν k : loc[d, {l}]) l[[a!〈k〉]]
N2 ⇐ (ν k : loc[d, ∅]) l[[a!〈k〉]]
N3 ⇐ (ν k : loc[a, ∅]) l[[a!〈k〉]]

respectively. As in Example 4, no observer can distinguish between these three
configurations; even though some observer might obtain the scoped name k via
the channel a at l, it cannot determine the difference in the state of the network.
From rules (r-ngo) and (r-nping), we conclude that any attempt to move to or test
k from l, where the observer would be located, will fail. However, such a failure
does not yield the observer enough information to determine the exact nature of
the fault causing the failure: the observer holding k does not know whether the
inaccessibility failure to k was caused by a node fault at k, a link fault between l and
k or both. As we shall see later, we will be able to demonstrate ∆l |= N1 � N2 � N3.

17

3 A partial view labelled transition system for DπF

It would be tempting to define a bisimulation equivalence based on actions of the
form

∆ . M
µ
−→ ∆′ . M′

Here we argue that this would not be adequate, at least if the target is to characterise
reduction barbed congruence.

Example 13 (Partial Views) Let ∆l be the network in which there is only one node
l which is alive, defined earlier in Example 12, and consider the system M1 defined
by

(ν k1 : {l}) (ν k2 : {k1}) (ν k3 : {k1, k2}) l[[a!〈k2, k3〉.P]] | k2[[Q]]

Note that when M1 is running on ∆l, due to the new locations declared, the code
l[[a!〈k2, k3〉.P]] is effectively running on the following implicit network:

d d
d

d
-�

���*

�
���

H
HHj

HHHY

6

?

l k1

k3

k2

(5)

Let us now see to what knowledge of this implicit network can be gained by an
observer O at site l, such as l[[a?(x, y).O(x, y)]], where O(x, y) is a process with free
variables x and y. Note that prior to any interaction, O is running on the network
∆l, and thus, is only aware of the unique location l. By inputting along a, it can
gain knowledge of the two names k2 and k3, thereby evolving to l[[O(k2, k3)]]. Yet,
even though it is in possession of these two names, it cannot discover their status
in terms of liveness of the nodes and links between them and other free locations,
such as k2 ↔ k3, nor can it interact with code residing at any of these locations,
such as k2[[Q]]. This is due to the fact that the observer is not aware of the local
name k1 and thus cannot determine a path to k2 and k3 and discover the full extent
of the sub-network with nodes l, k2 and k3, which can be denoted diagrammatically
as

d
d

d
6

?

l

k3

k2

18

Rather, the observer’s view of the sub-network with nodes l, k2 and k3 looks more
like

d ? ?
l k2 k3

This means that there is now a difference between the actual network being used by
the system, (5), and the observer’s view of that network; the observer has a partial
view of the network. However, the formalism of our current network does not allow
us to represent the differing observer partial view of the network.

A closer inspection of the above example reveals that our requirements for multiple
network views are even more complicated. For instance, the network status infor-
mation relating to the newly discovered nodes k2 and k3 are not necessarily hidden
forever from the observer and may become accessible later through subsequent
interactions. For example, if P and O(k2, k3) stand for

b!〈k1〉.P′ and b?(x).go x.go k2.ping k3.R1 else R2

respectively, the observer can interact on channel b with P, gain the knowledge
of the scoped location k1, determine the live path l! k1 ! k2 and subsequently
discover information such as the liveness of k2 and k3 and the live link k2!k3.

An lts semantics has to record the differences between the network and the ob-
servers view of networks. A new network representation for our specific case there-
fore needs first and foremost, distinguish between observable nodes and unobserv-
able ones such as k2 and k3, but also to keep network status (that is liveness and
connections) relating to the unobservable nodes k2 and k3 that may later become
observable. This requires extra information being recorded in network representa-
tions.

Definition 14 (Effective LinkSet) A linkset L is effective if it satisfies the condi-
tion:

L 0 l : alive implies @k.L ` l↔k

Effective linkset do not represent links where one of the endpoints is dead since
these turn out to be unobservable by the constructs of DπF. The operation

|L| = L \ {〈l, k〉, 〈k, l〉 | L 0 l : alive}

converts any linkset into an effective linkset by removing links with dead endpoints.
For any set of names N ⊆ N we also define the filtering effective linkset oper-
ation

L \ N = {l↔k | l↔k ∈ L ∧ {l, k} ∩ N = ∅}

19

Definition 15 (Effective network representations) An effective network represen-
tation Σ is a triple 〈N ,O,H〉, where:

• N is a set of names, as before, divided into loc(N) and chan(N)
• O is an effective linkset, denoting the live locations and links between them that

are observable by the context
• H is another effective linkset, denoting the live locations and links between them

that are hidden (or unreachable) to the context.

The only consistency requirements are that:

(1) dom(O)⊆ loc(N); the observable live state concerns locations in N
(2) dom(H)⊆ loc(N); the hidden live state concerns locations in N
(3) dom(O)∩dom(H)=∅; live state cannot be both observable and hidden.

Effective network representations embody the notion of observer partial view dis-
cusses above. The intuition is that an observer running on a network representation
Σ knows about all the names in ΣN and has access to all the locations in dom(O); as
a result, it knows the state of every location in dom(O) and the live links between
these locations. The observer, however, does not have access to the live locations
in dom(H). As a result, it cannot determine the live links between them nor can it
distinguish them from dead nodes. Dead nodes are not represented directly in Σ, but
they can be easily seen to be loc(N) \ dom(O ∪H); that is, all the location names
in N that are not mentioned in either O orH . We will refer to them as the deadset
ΣD . We also note that the effective network representation Σ does not represent
live links where either end point is a dead node, since these can never be used nor
observed. Summarising, Σ holds all the necessary information from the observer’s
point of view, that is, the names known, N , the known state, O, and the state that
can potentially become known in future, as a result of scope extrusion,H .

As before, we use notation such as ΣN , ΣO and ΣH to access the fields of Σ and
note that any network representation ∆ can be translated into an effective network
representation Σ(∆) in the obvious manner:

• the set of names remains unchanged, Σ(∆)N = ∆N
• the accessible state and connections, Σ(∆)O, is simply |∆L|
• the hidden state, Σ(∆)H , is simply the empty set ∅, since ∆ does not encode any

live locations inaccessible to the observer.

There is also an obvious operation for reducing an effective network representation
Σ into a standard one, ∆(Σ):

• ∆(Σ)N is inherited directly from Σ.
• ∆(Σ)L is simply ΣO ∪ ΣH

20

We note two properties about the operation ∆(Σ); firstly, it does not represent any
links to and between dead nodes in ∆(Σ)L; secondly, it not longer distinguishes
between accessible and inaccessible states. Whenever we wish to forget about such
distinctions in Σ, we can transform Σ into the Σ(∆(Σ)); this we abbreviate to ↑ (Σ).
For a discussion on how effective network representations allow us to accommodate
the observers view, as discussed in Example 13, see Example 21 below.

We need to generalise the notation developed on page 7 for standard network rep-
resentations ∆ to these effective representations Σ; these were judgements relating
to the system view of the network. In addition, since Σ also describes the observer
partial-view, we define similar notation for this restricted view, and denote such
judgements by `O. Extracting information from effective networks is straightfor-
ward:

Definition 16 (System/Partial-View Information Extraction from Effective Networks)

• Σ ` l : alive whenever ∆(Σ) ` l : alive.
• Σ ` l↔k whenever ∆(Σ) ` l↔k
• Σ ` l!k if Σ ` l↔k and Σ ` l, k : alive.
• Σ `O l : alive whenever ΣO ` l : alive
• Σ `O l↔k whenever ΣO ` l↔k

• Σ `O O whenever


O = l[[P]] and Σ `O l : alive, fn(P) ⊆ ΣN
O = (ν n : T)M and fn(T) ⊆ dom(ΣO), Σ + n : T `O M
O = M|N and Σ `O M, Σ `O N

It is worth pointing out that Σ ` l ↔ k if and only if Σ ` k ! l, because Σ is
an effective linkset and thus only records links between live locations, as stated
earlier in Definition 14. Definition 16 also extends Definition 7 (valid observers)
to effective networks, denoted as Σ `O O: even though valid observers may still
use any known name in ΣN as before, they can now only be located at accessible
locations, that is Σ `O l : alive, and define new locations that are only connected to
accessible locations, that is fn(T) ⊆ dom(ΣO), so as to respect the partial view.

We can not rely on ∆(Σ) in order to define how the effective network representation
Σ is updated. This has to be done directly; modifying the liveness conditions is
straightforward:

• Σ − l = 〈ΣN , ΣO \ {〈l, k〉, 〈k, l〉 | k ∈ dom(ΣO)}, ΣL \ {〈l, k〉, 〈k, l〉 | k ∈ dom(ΣH)}〉
• Σ − l↔k = 〈ΣN , ΣO \ {〈l, k〉, 〈k, l〉}, ΣH \ {〈l, k〉, 〈k, l〉}〉

However augmenting effective representations is non-trivial, at least in the case of
adding a new live location. In Σ the observable links ΣO and the hidden links ΣH
are separate sets. But suppose we wish to augment Σ with a new location l at type
loc[a, {k1, . . . kn}], which we will denote by Σ+ l : loc[a, {k1, . . . kn}]. The difficulty

21

arises if there is some ki which is observable, that is in dom(ΣO), and some other k j

in dom(ΣH). In this case any unobservable links involving k j, or accessible from k j,
now become observable, via the newly observable link between ki and l, and thence
via the link from l to k j.

It will be convenient to first define a function which returns the set of new links
which have to be added to the observable component of Σ when a fresh name is
added.

Definition 17 (Link types) If Σ is an effective network representation, and n is
fresh to Σ, let lnkO(n : T,Σ) be defined by the following two clauses:

• lnkO(l : loc[a,C],Σ) =

{〈l, k〉 | k ∈ C} ∪ {〈l, l〉} ∪
⋃

k∈C[k]ΣH if C ∩ dom(ΣO) , ∅
∅ if C ∩ dom(ΣO) = ∅

• lnkO(n : T,Σ) = ∅, otherwise

In most cases this is actually empty, but in all cases it returns a linkset which is a
component, as defined on page 6; that is a linkset in which all nodes are mutually
accessible.

With this function we can now define how to augment an effective network repre-
sentation. In the following definitions we assume a and l are fresh to Σ:

• Σ + a : ch = 〈ΣN ∪ {a}, ΣO, ΣH〉
• Σ + l : loc[d, C] = 〈ΣN ∪ {l}, ΣO, ΣH〉

• Σ + l : loc[a, C] =

〈ΣN ∪ {l}, ΣO, H1〉 if C ∩ dom(ΣO) = ∅
〈ΣN ∪ {l}, O2, H2〉 if C ∩ dom(ΣO) , ∅

where H1 = ΣH ∪ {〈l, k〉 | k ∈ C} ∪ {〈l, l〉}
O2 = ΣO ∪ lnkO(l : loc[a, C],Σ)
H2 = ΣH \ lnkO(l : loc[a, C],Σ)

Here the fresh live location l is added to either ΣO or ΣH depending on its links. If
it is not linked to any observable location, C ∩ dom(ΣO) = ∅, then the new fresh
location is not reachable from the context and is therefore added to ΣH . If, on the
other hand, it is linked to an observable location, C∩dom(ΣO) , ∅, then it becomes
observable as well. Moreover, in this case we have to make observable all previ-
ously hidden links now made accessible by the fact that l becomes observable, as
we have explained above; these links, lnkO(l : loc[a, C],Σ), have to be transferred
from ΣH to ΣO. The following example elucidates this operation for extending ef-
fective networks.

Example 18 (Effective Networks and Partial Views) Consider the effective net-

22

work Σ, with six locations l, k1, . . . , k5:

Σ =

〈 N︷ ︸︸ ︷
{l, k1, k2, k3, k4, k5},

O︷︸︸︷
{〈l, l〉},

{〈k1, k1〉, 〈k2, k2〉, 〈k3, k3〉, 〈k1, k2〉, 〈k2, k3〉, 〈k4, k4〉}︸ ︷︷ ︸
H

〉

According to Definition 15, l is the only observable location by the context; lo-
cations k1, . . . , k4 are alive but not reachable from any observable location while
the remaining location, k5, is dead since it is not in dom(ΣO ∪ ΣH). Moreover, the
linkset representing the hidden state, ΣH , can be partitioned into two components,
K1 = {〈k1, k1〉, 〈k2, k2〉, 〈k3, k3〉, 〈k1, k2〉, 〈k2, k3〉} and K2 = {〈k4, k4〉} whereas the
linkset representing the observable state, ΣO, consists of one component, {〈l, l〉}.

The operation Σ + k0 : loc[a, {l}] makes the fresh location, k0, observable in the
resulting effective network, since it is linked to (thus reachable from) the observable
location l. The operations Σ + k0 : loc[a, ∅] and Σ + k0 : loc[a, {k1}] both make
k0 hidden in the resulting network because in both cases k0 is not linked to any
observable nodes: in Σ + k0 : loc[a, ∅] k0 is completely disconnected whereas in
Σ + k0 :loc[a, {k1}] k0 is only linked to the hidden node k1.

Finally, the operation Σ+k0 :loc[a, {l, k1}] affects both ΣO and ΣH . This means that
k0 itself becomes observable, since it is linked to l; but as a side effect, the hidden
components reachable through it, that is [k1]L = K1, becomes observable as well;
here lnkO(k0 : loc[a, {l, k1}],Σ) consists of {〈k0, l〉, 〈k0, k1〉} ∪ {k0, k0} ∪ K1.

Thus, according to the above definition, this updated network translates to:

Σ + k0 :loc[a, {l, k1}] = 〈ΣN ∪ {k0}, ΣO ∪ ({〈k0, l〉, 〈k0, k1〉}) ∪ K1, ΣH \ K1〉

=

〈 N︷ ︸︸ ︷
{l, k1, k2, k3, k4, k5, k0},

{〈l, l〉, 〈k1, k1〉, 〈k2, k2〉, 〈k3, k3〉, 〈k0, k0〉, 〈l, k0〉, 〈k0, k1〉, 〈k1, k2〉, 〈k2, k3〉}︸ ︷︷ ︸
O

, {〈k4, k4〉}︸ ︷︷ ︸
H

〉

Definition 19 (Effective Configuration) A system M subject to an effective net-
work Σ is said to be an effective configurations iff fn(M) ⊆ ΣN .

As stated earlier, in the configuration Σ . M only the information in ΣN and ΣO is
available to an external observer, while the extra information in ΣH is only available
internally to the system M.

23

Table 6. Operational Rules(1) for DπF

Assuming Σ ` l :alive

(l-out)

Σ . l[[a!〈V〉.P]]
l:a!〈V〉
−−−−−→ Σ . l[[P]]

Σ `O l : alive

(l-fork)

Σ . l[[P | Q]]
τ
−→ Σ . l[[P]] | l[[Q]]

(l-in)

Σ . l[[a?(X).P]]
l:a?(V)
−−−−−→ Σ . l[[P{V/X}]]

Σ `O l : alive, V ⊆ ΣN

(l-in-rep)

Σ . l[[∗a?(X).P]]
τ
−→ Σ . l[[a?(X).(P | ∗a?(X).P)]]

(l-eq)

Σ . l[[if u=u then P else Q]]
τ
−→ Σ . l[[P]]

(l-neq)

Σ . l[[if u=v then P else Q]]
τ
−→ Σ . l[[Q]]

u , v

Our lts for DπF will be defined in terms of judgements over effective configurations
which take the form

Σ . M
µ
−→ Σ′ . M′ (6)

where µ can be an internal action, τ, an input action, (ñ : T̃)l : a?(V) or an output,
(ñ : T̃)l : a!〈V〉, adopted from [19,18]; we also have the novel labels, kill : l and
l= k, denoting external location killing and link breaking respectively.

The transitions between effective configurations (6) are determined by the rules
and axioms given in Table 6, Table 7 and Table 8. Most of the τ-transition rules in
Table 6 and Table 7 are inherited directly from their counterpart reduction rules in
Table 3; notice that instances such as (l-go) and (l-ping) etc. make use of the entire
state of Σ, precisely because they are internal transitions. However transitions which
seek to capture the interaction with an observer can only make use of the (partial-
view) observable information in Σ, that is ñ ⊆ ΣN , Σ `O l : alive and Σ `O l↔ k.
For instance, the new rule (l-halt), for the killing of a location by an observer, is
subject to the side-condition that the location liveness is observable by the context.
There is a similar constraint on (l-disc), the action corresponding to an observer
injecting a link fault in the system. Similarly, in (l-out) and (l-in), which describe
data exchange with the observer, there are constraints on the values exchanged
and the location at which the exchange takes place; these reflect the valid observer
constraints specified earlier in Definition 16.

24

Table 7. Network Operational Rules(2) for DπF

Assuming Σ ` l : alive

(l-kill)

Σ . l[[kill]]
τ
−→ (Σ − l) . l[[0]]

(l-brk)

Σ . l[[break k]]
τ
−→ Σ − (l↔k) . l[[0]]

(l-halt)

Σ . N
kill:l
−−−→ (Σ − l) . N

Σ `O l : alive

(l-disc)

Σ . N
l=k
−→ Σ − (l↔k) . N

Σ `O l↔k, l , k

(l-go)

Σ . l[[go k.P]]
τ
−→ Σ . k[[P]]

Σ ` k! l

(l-ping)

Σ . l[[ping k.P else Q]]
τ
−→ Σ . l[[P]]

Σ ` k! l

(l-ngo)

Σ . l[[go k.P]]
τ
−→ Σ . k[[0]]

Σ 0 k! l

(l-nping)

Σ . l[[ping k.P else Q]]
τ
−→ Σ . l[[Q]]

Σ 0 k! l

(l-newc)

Σ . l[[(ν c :ch) P]]
τ
−→ Σ . (ν c :ch) l[[P]]

(l-newl)

Σ . l[[(ν k :loc[a, C]) P]]
τ
−→ Σ . (ν k :loc[a, D]) l[[P]]

D = {m ∈ C ∪ {l} |Σ ` l!∗m}

The more challenging rules are found in Table 8: they are adaptations of the stan-
dard rules for actions-in-context from [19], extended to deal with the interaction be-
tween scoped location names and their occurrence in location types. For instance,
the rule (l-open) filters the type of scope extruded locations by removing links to
locations that are already dead and that will not affect the effective network Σ; this
is done through the operation T \ ΣD defined as expected:

ch \ {l1, . . . , ln} = ch loc[S, C] \ {l1, . . . , ln} = loc[S, C \ {l1, . . . , ln}]

Recall that ΣD is the set of dead locations in Σ. A side condition is added to (l-
weak), fn(U) ⊆ (dom(ΣO) ∪ {ñ}), limiting the types of imported fresh locations to
only contain locations which are externally accessible since, intuitively, the context
can only introduce fresh locations linked to locations it can access; once again this
reflects the restriction on valid observers specified earlier in Definition 16.

25

Table 8. Contextual Operational Rules(3) for DπF

(l-open)

Σ+n :U . N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Σ′ . N′

Σ . (ν n :T)N
(n:U,ñ:T̃)l:a!〈V〉
−−−−−−−−−−−→ Σ′ . N′

n ∈ V \ {l, a}, U = T \ ΣD

(l-weak)

Σ+n :U . N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Σ′ . N′

Σ . N
(n:U,ñ:T̃)l:a?(V)
−−−−−−−−−−−→ Σ′ . N′

n ∈ V \ {l, a}, fn(U) ⊆ (dom(ΣO) ∪ {ñ})

(l-rest-typ)

Σ+k :T . N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ (Σ+ñ : Ũ) +k :U . N′

Σ . (ν k :T)N
(ñ:Ũ)l:a!〈V〉
−−−−−−−−→ Σ+ñ : Ũ . (ν k :U)N′

k ∈ fn(T̃) \ {l, a}

(l-rest)

Σ+n :T . N
µ
−→ Σ′+n :U . N′

Σ . (ν n :T)N
µ
−→ Σ′ . (ν n :U)N′

n < fn(µ)

(l-par-ctxt)

Σ . N
µ
−→ Σ′ . N′

Σ . N|M
µ
−→ Σ′ . N′|M

Σ . M|N
µ
−→ Σ′ . M|N′

(l-par-comm)

↑ (Σ) . N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Σ′ . N′ ↑ (Σ) . M

(ñ:T̃)l:a?(V)
−−−−−−−−→ Σ′′ . M′

Σ . N|M
τ
−→ Σ . (ν ñ : T̃)(N′|M′)

Σ . M|N
τ
−→ Σ . (ν ñ : T̃)(M′|N′)

The internal communication rule (l-par-comm) also contains subtleties: communi-
cation is defined in terms of the system view (↑ (Σ)) rather than the observer view
dictated by Σ; the intuition is that internal communication can still occur, even at
locations that the observer cannot access. Thus the premises are defined in terms of
the ability to output and input of systems with respect to the maximal observer view,
↑ (Σ). The rules (l-rest) and (l-par-ctxt) should be relatively straightforward. Finally,
(l-rest-typ) is a completely novel rule which filter any links exported in location
types when the other endpoint of the link is still scoped. For brevity, the premise of
this rule exploits the fact that the network Σ+ k1 : loc[S1, C1]+ k2 : loc[S2, C2] can
be also expressed as Σ + k2 : loc[S2, C2 \ {k1}] + k1 : loc[S1, C1 ∪ {k2}] whenever
k1 ∈ C2. The utility of (l-rest-typ) is illustrated in Example 21.

26

Example 20 (Scope Extruding Network Information) Consider the extended net-
work Σ where l and k1 are accessible by the context, that is Σ `O l : alive, k1 : alive.
For the effective configuration Σ . (ν k2 : {k1})l[[a!〈k2〉]] we can derive the transition

Σ . (ν k2 : {k1})l[[a!〈k2〉]]
(k2:{k1})l:a!〈k2〉
−−−−−−−−−−→ Σ + k2 : {k1} . l[[0]]

using (l-out) and (l-open). The transition label denotes the scope extrusion of the
fresh location k2 with the information that it is connected to k1. We can also have
the sequence of transitions

Σ . (ν k2 : {k1})l[[a!〈k2〉]]
kill:k1
−−−→

Σ − k1 . (ν k2 : {k1})l[[a!〈k2〉]]
(k2:∅)l:a!〈k2〉
−−−−−−−−→

(Σ − k1) + k2 : ∅ . (ν k2 : {k1})l[[a!〈k2〉]]

whereby the context first kills k1 before performing the input on a at l. The second
transition is still derived using (l-out) and (l-open) but, this time ,the side-condition
U = T \ ΣD of (l-open) ensures that we scope extrude k2 with different information,
stating that it is completely disconnected, thus inaccessible (hidden). This transi-
tion captures the fact that even though the link between k2 and k1 still exists, this
information cannot be discovered and used by the context to access k2. In fact, k2

is added to ΣO in the resulting configuration of the first case of scope extrusion but
added to (Σ − k1)H in the second case.

Example 21 Let us revisit Example 13 to see the effect of the observer O on M1;
this observer runs on the effective network Σl having only one location l which is
alive, that is Σ(∆l). This effectively means calculating the result of M1 performing
an output on a at l.

If we consider a sub-derivation where k1 is not restricted, then an application of
(l-out) and (l-par-ctxt), followed by two applications of (l-open) gives

Σl + k1 : {l} . M′1
α
−→Σl + k1 : {l} + k2 : {k1} + k3 : {k1, k2} . l[[P]] | k2[[Q]] (7)

where M′1 is (ν k2 : {k1})(ν k3 : {k1, k2})l[[a!〈k2, k3〉.P]] | k2[[Q]] and α is the action (k2 :
{k1}, k3 : {k1, k2})l : a!〈k2, k3〉. Note that (l-rest) can not be applied to this judgement,
since k1 occurs free in the action α. However (7) can be re-arranged to read

Σl + k1 : {l} . M′1
α
−→Σl + k2 :∅ + k3 : {k2} + k1 : {l, k2, k3} . l[[P]] | k2[[Q]]

moving the addition of location k1 in the reduct to the outmost position. At this
point, (l-rest-typ) can be applied, to give

Σl . M1
β
−→Σl + k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3})l[[P]] | k2[[Q]]

27

where β is the action (k2 : ∅, k3 : {k2})l : a!〈k2, k3〉; that is β is filtered of any
occurrence of k1 in its bound types.

Note that the residual network representation, Σl+k2 : ∅+k3 : {k2} describes partial-
view network, with a hidden part that is not available to the observer. Eliding any
channel names, the network evaluates to

〈{l, k2, k3}, {〈l, l〉}, {〈k2, k2〉, 〈k3, k3〉, 〈k2, k3〉}〉

where the liveness of k2 and k2 and the connection between them is hidden. This
effective network may be represented diagrammatically as:

d
d

d
6

?

l

k3

k2

where the links of hidden components are denoted with dashed lines.

With these actions we can now define in the standard manner a bisimulation equiv-
alence between configurations, which can be used as the basis for contextual rea-
soning. Let us write

Σ |= M ≈wrong N
to mean that there is a (weak) bisimulation between the configurations Σ . M and
Σ.N using the current lts actions. This new framework can be used to establish pos-
itive results. For example, for Σl,k = 〈{a, l, k}, {〈l, l〉, 〈k, k〉, 〈l, k〉}, ∅〉, one can prove

Σl,k |= l[[ping k. a!〈〉 else 0]] ≈wrong k[[go l.a!〈〉]]

by giving the relation R defined as:

R =



〈Σl,k . M , Σl,k . N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l . M , Σl,k−l . N〉 | 〈M,N〉 ∈ R1
sys

〈Σl,k−k . M , Σl,k−k . N〉 | 〈M,N〉 ∈ R2
sys

〈Σl,k−l↔k . M , Σl,k−l↔k . N〉 | 〈M,N〉 ∈ R3
sys

〈Σl,k−l, l↔k . M , Σl,k−l, l↔k . N〉 | 〈M,N〉 ∈ R3
sys

〈Σl,k−k, l↔k . M , Σl,k−k, l↔k . N〉 | 〈M,N〉 ∈ R3
sys

〈Σl,k−l, k . M , Σl,k−l, k . N〉 | 〈M,N〉 ∈ R3
sys

〈Σl,k−l, k, l↔k . M , Σl,k−l, k, l↔k . N〉 | 〈M,N〉 ∈ R3
sys


28

where

Rsys =


〈l[[ping k. a!〈〉 else 0]] , k[[go l.a!〈〉]]〉

〈l[[a!〈〉]] , l[[a!〈〉]]〉

〈l[[0]] , l[[0]]〉


R1

sys = Rsys ∪ {〈l[[ping k. a!〈〉 else 0]], l[[0]]〉}

R2
sys = Rsys ∪ {〈l[[0]], k[[go l.a!〈〉]]〉}

R3
sys = Rsys ∪

{
〈l[[0]], k[[go l.a!〈〉]]〉, 〈l[[ping k. a!〈〉 else 0]], l[[0]]〉

}

However we can argue, at least informally, that this notion of equivalence is too
discriminating and the labels too intentional, because it distinguishes between sys-
tems running on a network, where the differences in behaviour are impossible to
observe. Problems arise because the current labels contain information relating to
the hidden part of an effective network, which is not observable by valid contexts.

Example 22 Let us consider a slight variation on the system M1 used in Exam-
ple 13 and Example 21:

M2⇐ (ν k1 : {l})(ν k2 : {k1})(ν k3 : {k1})l[[a!〈k2, k3〉.P]] | k2[[R]]

again running on the (effective) network Σl = 〈{l, a}, {〈l, l〉}, ∅〉. Note that the code
l[[a!〈k2, k3〉.P]] | k2[[R]] is now effectively running on the following implicit network,

d d
d

d
-�

���*

����

H
HHj

HHHY

l k1

k3

k2

a slight variation on that for M1. It turns out that

Σl |= M1 6≈wrong M2

This is not because k2[[Q]] in M1 and k2[[R]] in M2 may be different - the condition
Σ `O l : alive in (l-out) and (l-in) of Table 6 prohibits input or output labels at
hidden locations - but rather because the configurations give rise to different output
actions, on a at l. The difference lies in the types at which the locations k2 and k3

are exported; as we have seen, in Σl . M1 the output label is β = (k2 :∅, k3 : {k2}) l :
a!〈k2, k3〉 while with Σl . M2 it is β′ = (k2 : ∅, k3 : ∅)l : a!〈k2, k3〉. More specifically,

29

there is a difference in the type associated to the scope extruded location k3; in the
first label, the scope extruded k3 is linked to the newly scope extruded k2 whereas
in the second label it is not.

However if k1 does not occur in P, (for example if P is the trivial process 0) then
k1 can never be scope extruded to the observer and thus k2 and k3 will remain
inaccessible in both systems. This means that the presence (or absence) of the link
k2↔k3 can never be checked and thus

Σl |= M1 � M2

The extra label information relating to the hidden part of the network is also indis-
tinguishable from information relating to dead nodes, as is shown in the following
example.

Example 23 Let us reconsider the three configurations Σl . Ni for i = 1, 2, 3 from
Example 12 where Σl = Σ(∆l) = 〈{l, a}, {〈l, l〉}, ∅〉. We have already argued that these
three configurations should not be distinguished. However, our lts specifies that
all three configurations perform the output with different scope extrusion labels,
namely:

Σl . N1
(k:loc[d,{l}])l:a!〈k〉
−−−−−−−−−−−−−→ 〈{l, k}, {〈l, l〉}, ∅〉 . l[[0]]

Σl . N2
(k:loc[d,∅])l:a!〈k〉
−−−−−−−−−−−−→ 〈{l, k}, {〈l, l〉}, ∅〉 . l[[0]]

Σl . N3
(k:loc[a,∅])l:a!〈k〉
−−−−−−−−−−−−→ 〈{l, k}, {〈l, l〉}, {〈k, k〉}〉 . l[[0]]

More specifically,

• Σl . N1’s transition label states that the scope extruded location k is dead and
linked to l
• Σl . N2’s label states that the scope extruded location k is dead and completely

disconnected
• whereas Σl . N3’s label states that k is alive but completely disconnected, and

thus added to the hidden part of Σl.

With these labels, the three configurations will be distinguished by the bisimulation
equivalence ≈wrong whereas, according to � we have

Σl |= N1 � N2 � N3

since no observer would be able to distinguish the difference in the state of k.

In order to obtain a bisimulation equivalence which coincides with reduction barbed
congruence it is necessary to abstract away from some of the information contained
in the types of newly exported location names.

30

4 A bisimulation equivalence for DπF

We first outline the revision to our labelled transitions. Currently, the actions of
these transitions use types of the form T = ch or loc[S, {k1, . . . kn}], where the
latter indicates the liveness of a location and the nodes ki to which it is directly
linked. We change these to new types of the form

L, K = {〈l1, k1〉, . . . , 〈li, ki〉}

where L, K are components. Intuitively, these represent the new live nodes and links,
which are made accessible to observers by the extrusion of a new location. Alterna-
tively, this is the information which is added to the observable part of the network
representation, ΣO, as a result of the action. This means that our labels now de-
scribe information at the level of accessibility paths between locations as opposed
to direct connections only. We have already developed the necessary technology to
define these new types, in Definition 17.

Definition 24 (A (derived) labelled transition system for DπF) This consists of
a collection of transitions Σ . N

µ
7−→ Σ′ . N′, where µ takes one of the forms:

• (internal action) - τ
• (bounded input) - (ñ : L̃)l : a?(V)
• (bounded output) - (ñ : L̃)l : a!〈V〉
• (external location kill) - kill : l
• (external link break) - l= k

The transitions in the derived lts for DπF are defined in Table 9. The rules (l-deriv-
2) and (l-deriv-3) transform the types of bound names using the function lnkO(ñ :
T̃,Σ); this is simply a version of the function defined in Definition 17 to deal with
sequences of type declarations:

lnkO((n, ñ) : (T, T̃),Σ) = lnkO(n :T,Σ), lnkO(ñ : T̃, (Σ + n : T))

These revised transitions give rise to a new (weak) bisimulation equivalence over
configurations, ≈, defined in the usual way, but based on derived actions. Our defi-

nition uses the standard notation for weak actions, namely
µ

|==⇒ denotes
(
τ
7−→

∗
)

µ
−→(

τ
7−→

∗
)
, and

µ̂

|==⇒ denotes

•
τ
7−→

∗

if µ = τ

•
µ

|==⇒ otherwise.

Definition 25 (Weak bisimulation equivalence) This is denoted as ≈ and defined
as the largest relation over configurations such that if ΣM.M ≈ ΣN .N then

31

Table 9. The derived lts for DπF

(l-deriv-1)

Σ . N
µ
−→ Σ′ . N′

Σ . N
µ
7−→ Σ′ . N′

µ ∈ {τ, kill : l, l= k}

(l-deriv-2)

Σ . N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Σ′ . N′

Σ . N `
(ñ:L̃)l:a!〈V〉
−−−−−−−−→ Σ′ . N′

L̃ = lnkO(ñ : T̃,Σ)

(l-deriv-3)

Σ . N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Σ′ . N′

Σ . N `
(ñ:L̃)l:a?(V)
−−−−−−−−→ Σ′ . N′

L̃ = lnkO(ñ : T̃,Σ)

• ΣM . M
µ
7−→ Σ′M . M′ implies ΣN . N

µ̂

|==⇒ Σ′N . N′ such that Σ′M.M
′ ≈ Σ′N .N

′

• ΣN . N
µ
7−→ Σ′N . N′ implies ΣM . M

µ̂

|==⇒ Σ′M . M′ such that Σ′M.M
′ ≈ Σ′N .N

′

Example 26 Here we re-examine the systems in Example 22 and Example 23. We
recall that in Example 22 we had the following labelled transitions with respect to
the original lts:

Σl . M1
µ1
−→ Σ + k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]] | k2[[Q]]

Σl . M2
µ2
−→ Σ + k2 :∅ + k3 :∅ . (ν k1 : {l, k2, k3}) l[[P]] | k2[[R]]

But Σl contains only one accessible node l; extending it with the new node k2, linked
to nothing does not increase the set of accessible nodes. Further increasing it with
a new node k3, linked to the inaccessible k2 (in the case of Σ . M1) also leads to no
increase in the accessible nodes. Correspondingly, the calculations of lnkO(k2 :∅,Σ)
and lnkO(k3 : {k2}, (Σ + k2 :∅)) both lead to the empty link set.

Formally, we get the derived action

Σ . M1
α
7−→ Σ + k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]] | k2[[Q]]

where α is (k2 : ∅, k3 : ∅)l : a!〈k2, k3〉. Similar calculations gives exactly the same
derived action from M2:

Σ . M2
α
7−→ Σ + k2 :∅ + k3 :∅ . (ν k1 : {l, k2, k3}) l[[P]] | k2[[R]]

Furthermore, if P contains no occurrence of k1, we can go on to show

Σ+k2 :∅+k3 : {k2} . (ν k1 : {l, k2, k3})l[[P]]|k2[[Q]] ≈

Σ+k2 :∅+k3 :∅ . (ν k1 : {l, k2, k3})l[[P]]|k2[[R]]

32

Since k1 cannot ever be scope extruded to the observer, we are guaranteed that the
state of k2 and k3 together with the code located at these locations, that is k2[[Q]]
and k2[[R]], are forever inaccessible to the observer. This means that we can match
any τ-move by k2[[Q]] on the left hand side by the empty move (and viceversa for
k2[[R]]) and any move by l[[P]] on either side by that same identical move.

On the other hand, if P is a!〈k1〉, the subsequent transitions are different:

((Σ + k2 : ∅) + k3 : {k2}) . (ν k1 : {l, k2, k3})l[[P]] | k2[[Q]]
α1
7−→ . . .

((Σ + k2 : ∅) + k3 : ∅) . (ν k1 : {l, k2, k3})l[[P]] | k2[[R]]
α2
7−→ . . .

where

α1 is (k1 : {k1↔k2, k1↔k3, k2↔k3})l :a!〈k1〉

α2 is (k1 : {k1↔k2, k1↔k3})l :a!〈k1〉

We note that the link type associated with β1 includes the additional component
{〈k2, k3〉}, that was previously hidden, but is now made accessible as a result of
scope extruding k1; β2 on the other hand, does not have this information in its link
type. Based on this discrepancy between α1 and α2 we have

Σl . M1 6≈ Σl . M2

In addition, if M1 and M2 were running on the same network, say (5), and k2[[Q]]
and k2[[R]] were different systems, this could be verified after the scope extrusion
of k1: scope extruding k1 would make k2 observable, enabling (l-out) and (l-in) to be
applied to the code Q and R running at k2.

Example 27 Revisiting Example 23, the three different actions of Σl . N1, Σl . N2

and Σl . N3 now abstract to the same action Σl . Ni
α
7−→ l[[0]] for i = 1, 2, 3

where α is the label (k : ∅)l : a!〈k〉. Thus we have

Σl . Ni ≈ Σl . N j where i, j = 1, 2, 3

as required.

5 Full-Abstraction

The purpose of this section is to show that our revised bisimulation equivalence
is the correct one, in the sense that it coincides with reduction barbed congruence
(Definition 9). We have already given a translation from a standard configuration
into an effective configuration, by simply translating the network representation as

33

Σ(∆). We next redefine reduction barbed congruence for effective configurations.
The reduction relation over effective configurations

Σ . M −→ Σ′ . M′

is simply obtained by reusing the rules defined earlier in Tables 2, 3, 4 and 5,
substituting Σ for ∆ 3 . Note that all the side-conditions used in these rules can also
be applied to Σ using the notation developed on page 21.

We refine the notion of a barb for effective configurations, intuitively restricting
them to observable locations, that is those in ΣO.

Definition 28 Σ.N ⇓a@l denotes an observable barb exhibited by the configuration
Σ.N, on channel a at location l. Formally, it means that Σ.N −→∗ Σ′ .N′ for some
Σ′ . N′ such that N′ ≡ (ν ñ : T̃)M|l[[a!〈V〉.Q]] where l, a < ñ and l ∈ dom(Σ′

O
).

We also extend the definition of contextual relations to effective configurations. The
novel aspect of this extended definition is that we now relate configurations with
arbitrary effective networks, as long as their observable part, that is ΣN and ΣO,
coincide. Because of this, valid observers, that is Σ `O O, valid network extensions,
that is fn(T) ∈ dom(ΣO), and name freshness, that is n < ΣN , in the definition below
need only be defined with respect to one effective network.

Definition 29 (Contextual relations over effective configurations) A relation R
over effective configurations is contextual if:

(Observable Network equality)

• Σ . M R Σ′ . N implies ΣN = Σ
′
N

and ΣO = Σ′O
(Parallel Systems)

• Σ . M R Σ′ . N and Σ `O O implies
− Σ . M|O R Σ′ . N|O

− Σ . O|M R Σ′ . O|N

(Network Extensions)

•
Σ . M R Σ′ . N and

fn(T) ⊆ dom(ΣO), n < ΣN
implies Σ + n : T . M R Σ′ + n : T . N

With these modifications, we extend Definition 9 for reduction barbed congruence

3 In this translation, we only lose the ability to break links with dead endpoints. These
reductions were in a sense redundant in the original reduction semantics because these
links could not be used for code migration and pinging.

34

for effective configurations, denoted as

ΣM . M � ΣN . N

and defined as the largest relation over effective configurations that is barb preserv-
ing, reduction closed and contextual.

Note that this enables us to compare arbitrary configurations, ΣM .M and ΣN .N, but
it can be specialised to simply comparing systems running on the same network.
Let us write

Σ |= M � N

to mean that Σ . M � Σ . N. Then, for example, the notation (3) used in Section 2
can be taken to mean

Σ(∆) |= M � N

where the effective network Σ(∆) has no hidden state.

At this point, we are in a position to state the main result of the paper:

Theorem 30 Suppose Σ.M, Σ′ .N are effective configurations in DπF such that
ΣN = Σ

′
N

and ΣO = Σ′O. Then

Σ.M � Σ′.N if and only if Σ.M ≈ Σ′.N

This general result can also be specialised to the notation for comparing systems
relative to a given network:

Corollary 31 In DπF, Σ |= N � M if and only if Σ |= N ≈ M.

The proof of the general theorem, which is quite complex, is detailed in the fol-
lowing two sections. The first section outlines the proof for soundness, that is, the
adequacy of the derived action bisimulation as a means to show that two configu-
rations are reduction barbed congruent:

Σ1.M1 ≈ Σ2.M2 implies Σ1.M1 � Σ2.M2

The second section outlines the proof for completeness, that is, for any two config-
urations that are reduction barbed congruent, we can give a derived action bisimu-
lation to show this:

Σ1.M1 � Σ2.M2 implies Σ1.M1 ≈ Σ2.M2

For the purposes of these proofs, we restrict the definition of bisimulation, Defini-
tion 25, to configurations Σ′ .M, Σ .N whose network names ΣN and Σ′

N
, denoting

the free names known by M and N, are identical. This reasonable assumption re-
stricts us to compare configurations which “know about” the same free names, but

35

this turns out to be in accordance with our definition of reduction barbed congru-
ence. This assumption also suffices to guarantee that when two configurations are
bisimilar, their observable network is equivalent (see Proposition 33).

5.1 Soundness

The main task in proving that derived action bisimulation is sound is showing that
≈ is contextual.

One aspect worth highlighting about any two bisimilar configurations Σ .M, Σ′ .N
in ≈ is that the observable parts of the respective effective networks Σ and Σ′, that
is ΣN ,Σ′

N
and ΣO, Σ′

O
, coincide (up to our symmetric interpretation of links, that

is l↔ k is the same as k↔ l); we show this in Proposition 33. This allows us to
smoothly apply the Definition 29, Contextuality, which also requires configurations
to have the same observable network. Intuitively, if they did not, one configuration
could transition with a label whose form depends on the observable part of the
network, such as kill : k or l = k for ΣO and l : a?(V) for ΣN , that the other could
not (weakly) match. For this purpose, we find it convenient to

• denote the observable pair 〈N ,O〉 in an effective configuration as I.
• refer to the observable part of an effective network Σ as I(Σ).

We start by proving our earlier claim that the observable networks of bisimilar con-
figurations coincide. This proposition uses a lemma stating that there is a special
relationship between derived silent actions and residual networks: internal transi-
tions do not change the state of the network, unless a kill or a break l process in the
configuration itself is consumed.

Lemma 32 If Σ . N
τ
7−→ Σ′ . N′ then Σ′ is either:

(1) Σ
(2) Σ − l
(3) Σ − l↔k

PROOF. A straightforward induction on the inference of Σ . N
τ
7−→ Σ′ . N′.

Proposition 33 (Bisimulation and Observable Networks)

If ΣM . M ≈ ΣN . N then I(ΣM) = I(ΣN).

PROOF. We already assume that ΣM
N
= ΣN

N
; we just need to show that ΣM

O
= ΣN

O
.

Assume 〈l, k〉 ∈ ΣM
O

. Since ΣM
O

is an effective linkset, we know also that 〈l, l〉 ∈ ΣM
O

36

(and also 〈k, k〉 ∈ ΣM
O

). Thus from Definition 16 we obtain ΣM `O l : alive and
ΣM `O l↔k. From ΣM `O l : alive, (l-halt) and (l-deriv-1) we get

ΣM . M `
kill:l
−−→ (ΣM−l) . M (8)

Similarly, from ΣM `O l↔k, (l-disc) and (l-deriv-1) we obtain

ΣM . M `
l=k
−−−→ (ΣM−l↔k) . M (9)

From the hypothesis that ΣM . M ≈ ΣN . N, (8) and (9) we get

ΣN . N
kill:l
|==⇒ Σ′ . N′ ≈ (ΣM−l) . M (10)

ΣN . N
l=k
|==⇒ Σ′ . N′ ≈ (ΣM−l↔k) . M (11)

We can expand the weak transition in (10) into

ΣN . N
τ̂

|==⇒ Σ′′ . N′′ (12)

Σ′′ . N′′ `
kill:l
−−→ Σ′′ − l . N′′ (13)

Σ′′ − l . N′′
τ̂

|==⇒ Σ′ . N′ (14)

and the weak transition in (11) into

ΣN . N
τ̂

|==⇒ Σ′′′′ . N′′′′ (15)

Σ′′′′ . N′′′′ `
l=k
−−−→ Σ′′′′ − l↔k . N′′ (16)

Σ′′′′ − l↔k . N′′′′
τ̂

|==⇒ Σ′′′ . N′′′ (17)

From (13) and (16) we deduce

Σ′′ `O l : alive (18)
Σ′′′′ `O l↔k (19)

Lemma 32 leads us to conclude that (12) could not have resuscitated l in ΣN and
similarly that (15) could not have created a link between l and k in ΣN . Thus, by
(18), (19), (12), (15) and Lemma 32 we conclude that

ΣN `O l↔k which also implies ΣN `O l : alive

and thus
〈l, l〉 ∈ ΣN

O
〈l, k〉 or 〈k, l〉 ∈ ΣN

O

37

The same argument is used to prove inclusion in the reverse direction.

This contextuality proof for ≈ relies heavily on the Composition and Decomposi-
tion Lemmas stated below, explaining how actions can be composed of, or decom-
posed into, other actions. Both Composition and Decomposition Lemmas make use
of the following lemmas. The first Lemma states that in our original transition sys-
tem of Section 3, Σ .M

µ
−→ Σ′ .M′, the reduct effective network Σ′ is a function of

the redex effective network Σ and the external action µ.

Definition 34 (Action residuals) The partial function after ranges over effective
networks Σ and external actions µ. It returns effective networks, defined as:

• Σ after (ñ : T̃)l : a!〈V〉 is defined as Σ + ñ : T̃
• Σ after (ñ : T̃)l : a?(V) is defined as Σ + ñ : T̃
• Σ after kill : l is defined as Σ − l
• Σ after l= k is defined as Σ − l↔k

Proposition 35 If µ is an external action and Σ .N
µ
−→ Σ′ .N′ then Σ′ = Σ after µ.

PROOF. A straightforward induction on the inference of Σ . N
µ
−→ Σ′ . N′.

The second lemma below relates actions and pre/post conditions on Σ with the
structure of the systems.

Lemma 36 (Actions and Systems)

• if Σ . N
(ñ:T̃)l:a!〈V〉
−−−−−−−→ Σ′ . N′ then

· N ≡ (ν ñ : T̃′)(ν m̃ : Ũ)M|l[[a!〈V〉.P]] where T̃ = T̃′ \ ΣD.
· N′ ≡ (ν m̃ : Ũ)M|l[[P]]

• if Σ . N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Σ′ . N′ then

· N ≡ (ν m̃ : Ũ)M|l[[a?(X).P]]
· N′ ≡ (ν m̃ : Ũ)M|l[[P{V/X}]]
• if Σ . N

τ
7−→ Σ′ . N′ where Σ ` l : alive and Σ′ 0 l : alive then

· N ≡ N′|l[[kill]]
• if Σ . N

τ
7−→ Σ′ . N′ where Σ ` l↔k and Σ′ 0 l↔k then

· N ≡ N′|l[[break k]] or N ≡ N′|k[[break l]]

PROOF. A straightforward induction on the inference of Σ . N
(ñ:T̃)l:a!〈V〉
−−−−−−−→ Σ′ . N′,

Σ . N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Σ′ . N′ and Σ . N

τ
7−→ Σ′ . N′.

38

The third lemma required by the Composition and Decomposition stems from the
use of the function ↑ (Σ) in the inductive hypothesis of the rule (l-par-comm) of
Table 8.

Lemma 37 (Input/Output Actions and the Maximal Observer View)

• If Σ . N
(ñ:T̃)l:a!〈V〉
−−−−−−−→ Σ′ . N′ then ↑ (Σ) . N

(ñ:T̃)l:a!〈V〉
−−−−−−−→↑ (Σ′) . N′.

• If Σ .N
(ñ:Ũ)l:a?(V)
−−−−−−−−→ Σ′ .N′ and Ũ = T̃ \dom(ΣH) then ↑ (Σ) .N

(ñ:T̃)l:a?(V)
−−−−−−−−→↑ (Σ′) .N′

.
• If ↑ (Σ) . N

(ñ:T̃)l:a!〈V〉
−−−−−−−→ Σ′ . N′ and Σ `O l :alive then Σ . N

(ñ:T̃)l:a!〈V〉
−−−−−−−→ Σ′′ . N′.

• If ↑ (Σ) .N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Σ′ .N′ and Σ `O l :alive then Σ .N

(ñ:Ũ)l:a?(V)
−−−−−−−−→ Σ′′ .N′ where

Ũ = T̃ \ dom(ΣH).

PROOF. The proof uses Lemma 36 to infer the structure of N and then proceeds
by induction on the structure of N.

The Composition and Decomposition Lemmas cover all the cases of how an action
can be composed and decomposed. In our lts we have only one instance where an
action can be decomposed into different actions in the premises, namely τ, which
can be constructed through interacting (bound) input and (bound) output actions.
All other actions cannot be decomposed and are preserved by parallel contexts.

Lemma 38 (Composition)

• Suppose Σ . M
µ
7−→ Σ′ . M′. If fn(N) ⊆ ΣN , that is for arbitrary system N

that consists only of names known in ΣN , then Σ . M|N
µ
7−→ Σ′ . M′|N and

Σ . N|M
µ
7−→ Σ′ . N|M′.

• Suppose Σ . M `
(ñ:L̃)l:a!〈V〉
−−−−−−−→ Σ′ . M′ and Σ . N `

(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ′′ . N′ where K̃ =

L̃ \ dom(ΣH). Then
· Σ . M|N

τ
7−→ Σ . (ν ñ : T̃)M′|N′ where L̃ = lnkO(ñ : T̃,Σ)

· Σ . N|M
τ
7−→ Σ . (ν ñ : T̃)N′|M′ where L̃ = lnkO(ñ : T̃,Σ)

PROOF. The proof for the first clause is trivial, by using (l-deriv-1), (l-deriv-2) or (l-
deriv-3), depending on the structure of µ to extract the original transition, (l-par-ctxt)
to compose N and then again (l-deriv-1), (l-deriv-2) or (l-deriv-3) to obtain the derived
transition. We here outline the proof for the more complicated second clause. From
the structure of the derived action, we know that the hypothesis

Σ . M `
(ñ:L̃)l:a!〈V〉
−−−−−−−→ Σ′ . M′

39

is derived using (l-deriv-2) and from the inductive hypothesis of this rule we know

Σ . M
(ñ:T̃)l:a!〈V〉
−−−−−−−→ Σ′ . M′ where L̃ = lnkO(ñ : T̃,Σ) (20)

From (20), and Lemma 37 we immediately get

↑ (Σ) . M
(ñ:T̃)l:a!〈V〉
−−−−−−−→↑ (Σ′) . M′ (21)

Similarly, from the hypothesis Σ .N `
(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ′′ .N′ and the inductive hypothesis

of (l-deriv-3) we get

Σ . N
(ñ:Ũ)l:a?(V)
−−−−−−−−→ Σ′′ . N′ where K̃ = lnkO(ñ : Ũ,Σ) (22)

From the hypothesis K̃ = L̃ \ dom(ΣH), the condition L̃ = lnkO(ñ : T̃,Σ) of (20) and
the condition K̃ = lnkO(ñ : Ũ,Σ) of (22) we obtain

Ũ = T̃ \ dom(ΣH) (23)

We recall that ↑ (−) collapses the observable and hidden parts of a network into one
observable part. Thus, by (22), (23) and Lemma 37 we immediately get

↑ (Σ) . N
(ñ:T̃)l:a?(V)
−−−−−−−−→↑ (Σ′′) . N′ (24)

Hence, by (21), (24), (l-par-comm) and (l-deriv-1) we conclude

Σ . M|N
τ
7−→Σ . (ν ñ : T̃)M′|N′

Σ . N|M
τ
7−→Σ . (ν ñ : T̃)N′|M′

as required.

Lemma 39 (Decomposition) Suppose Σ . M|N
µ
7−→ Σ′ . M′ where Σ `O M or

Σ `O N . Then, one of the following conditions hold:

(1) M′ is M′′|N, where Σ . M
µ
7−→ Σ′ . M′′.

(2) M′ is M|N′ and Σ . N
µ
7−→ Σ′ . N′.

(3) M′ is (ν ñ : T̃)M′′|N′, µ is τ, Σ′ = Σ and either

• Σ . M `
(ñ:L̃)l:a!〈V〉
−−−−−−−→ Σ + ñ : T̃ . M′′ and Σ . N `

(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ + ñ : Ũ . N′

• Σ . M `
(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ + ñ : Ũ . M′′ and Σ . N `

(ñ:L̃)l:a!〈V〉
−−−−−−−→ Σ + ñ : T̃ . N′

where K̃ = L̃ \ dom(ΣH), K̃ = lnkO(ñ : Ũ,Σ) and L̃ = lnkO(ñ : T̃,Σ)

PROOF. The proof proceeds by induction on the derivation of Σ.M|N
µ
7−→ Σ′.M′.

We focus on case (3) where µ = τ, and the last two rules used in our derivation were

40

(l-deriv-1) (Table 9) and (l-par-comm) (Table 8). From the premises of (l-par-comm)
we derive

Σ′ = Σ (25)
M′ is (ν ñ : T̃)M′′|N′ (26)

↑ (Σ) . M
(ñ:T̃)l:a!〈V〉
−−−−−−−→ Σ′ . M′ (27)

↑ (Σ) . N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Σ′′ . N′ (28)

or viceversa. From the assumption that Σ `O M or Σ `O N we derive

Σ `O l :alive (29)

And from (27), (28), (29) and Lemma 37 we get

Σ . M
(ñ:T̃)l:a!〈V〉
−−−−−−−→ Σ′′′ . M′

Σ . N
(ñ:Ũ)l:a?(V)
−−−−−−−−→ Σ′′′′ . N′ where Ũ = T̃ \ dom(ΣH)

and using Proposition 35 we can rewrite the residual networks as

Σ . M
(ñ:T̃)l:a!〈V〉
−−−−−−−→ Σ + ñ : T̃ . M′ (30)

Σ . N
(ñ:Ũ)l:a?(V)
−−−−−−−−→ Σ + ñ : Ũ . N′ where Ũ = T̃ \ dom(ΣH) (31)

From (30) and (31) and (l-deriv-2) and (l-deriv-3) we obtain

Σ . M `
(ñ:L̃)l:a!〈V〉
−−−−−−−→ Σ + ñ : T̃ . M′ where L̃ = lnkO(ñ : T̃,Σ) (32)

Σ . N `
(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ + ñ : Ũ . N′ where K̃ = lnkO(ñ : Ũ,Σ) (33)

Finally, from Ũ = T̃ \ dom(ΣH) from (31), L̃ = lnkO(ñ : T̃,Σ) from (32) and K̃ =
lnkO(ñ : Ũ,Σ) from (33) we obtain

K̃ = L̃ \ dom(ΣH) (34)

as required.

We now turn our attention to the actual proof for the main proposition of this sec-
tion, namely that bisimulation, ≈, is contextual. We still require a number of propo-
sitions and lemmas that help us stitch up this proof. The first proposition establishes
relationships between derived actions, observers, the system N and the observable
part of the network I(Σ) of a configuration Σ . N.

41

Proposition 40 (Derived Actions, Observers and Observable Networks)

(1) If Σ . N
µ
7−→ Σ′ . N′ where µ is an external derived action, and I(Σ) = I(Σ′′)

for some Σ′′, then Σ′′ . N
µ
7−→ Σ′′′ . N′.

(2) If Σ `O O and I(Σ) = I(Σ′) then Σ′ `O O
(3) If Σ `O O, Σ . O

τ
7−→ Σ′ . O′ and for some Σ′′ we have I(Σ) = I(Σ′′), then

Σ′′ . O
τ
7−→ Σ′′′ . O′

PROOF. The proof for the first clause is by induction on the inference of Σ.N
µ
7−→

Σ′ . N′, using Lemma 36 to infer the structure of N from µ in the case of derived
input/output actions. If the external action is either kill : l or l= k we use (l-halt) and
(l-disc) respectively instead. The proof for the second clause is by induction on the
structure of O and the definition of Σ `O O. The proof of the third clause proceeds
by induction on Σ .O

τ
7−→ Σ′ .O′. We note that the third clause differs from the first

clause of Proposition 40 because it deals with valid observers and internal moves
(as opposed to systems and external moves).

We also prove a specific lemma that generalises scoping rule (l-rest) over derived
actions.

Lemma 41 If Σ+n :T . M
µ
7−→ Σ′+n :T . M′ and n < fn(µ), then Σ . (νn :T)M

µ
7−→

Σ′ . (νn :T)M′

PROOF. By case analysis of µ, rules (l-deriv-1), (l-deriv-2), (l-deriv-3) and (l-rest).

The next two specific lemmas concern valid observers, their relationship with their
transitions and network extensions. The first one states that when a valid observer
transitions over Σ, it still remains a valid observer with respect to Σ.

Lemma 42 (Observers and Actions) If Σ `O O and Σ.O
µ
7−→ Σ′.O′ then Σ′ `O O′.

PROOF. We use Lemma 36 to infer the structure of O, O′ from µ and Lemma 35
to infer the structure of Σ after µ and then show that (Σ after µ) `O O′.

The second specific lemma states that if we change the links of an observable node,
and this change does not alter the set of visible nodes, that is we do not connect the
node to hidden nodes, then the set of valid observers remains unaltered.

Lemma 43 (Observers and Network extensions) If Σ+n : U `O O where fn(U) ∈
dom(ΣO) then Σ+n :T `O O for any T where U = T \ dom(ΣH).

42

PROOF. The proof proceeds by a simple induction on the structure of O. We note
that Σ `O U ensures that that is n is only linked to locations in the observable part
of Σ and thus no hidden state is revealed as a result of the extension Σ+n :U.

The last lemma required before we can prove contextuality of ≈ is prompted by the
first two conditions of the Decomposition Lemma 39, namely that observing code
may alter the state of the network by inducing failure. We thus need the following
lemma to guarantee closure.

Lemma 44 Suppose Σ1.M1 ≈ Σ2.M2. Then there exists some M′,M′′ such that:

• Σ2 . M2

τ̂

|==⇒ Σ2 . M′ and (Σ2 − l) . M′
τ

|==⇒ (Σ2 − l) . M′′

such that (Σ1 − l) . M1 ≈ (Σ2 − l) . M′′

• Σ2 . M2

τ̂

|==⇒ Σ2 . M′ and (Σ2−l↔k) . M′
τ

|==⇒ (Σ2−l↔k) . M′′

such that (Σ1−l↔k) . M1 ≈ (Σ2−l↔k) . M′′

PROOF. We here prove the first clause and leave the second similar clause for the
interested reader. If Σ1 0 l : alive then Σ1 − l is simply Σ1 and the result is trivial.

Otherwise Σ1 . M1
kill:l
7−→ Σ1 − l . M1 and hence Σ2 . M2

kill:l
|==⇒ Σ2 − l . M′′ for some

Σ2 − l . M′′ such that Σ1 − l . M1 ≈ Σ2 − l . M′′. By expanding the derivation

Σ2 . M
kill:l
|==⇒ (Σ2 − l) . M′′ we get the required missing M′ to complete the proof.

Contextuality is proved by inductively defining the least contextual relation over
effective configurations (Definition 29), whose base elements are bisimilar con-
figurations, and then show that this relation is closed with respect to our derived
actions.

Proposition 45 (Contextuality of Bisimulation Equivalence) If two configurations
are bisimilar, they are also bisimilar under any context. Stated otherwise, Σ1 .M1 ≈

Σ2 . M2 implies that:

• For any valid observer, Σi `O O for i = 1, 2 we have Σ1 . M1|O ≈ Σ2 . M2|O and
Σ1 . O|M1 ≈ Σ2 . O|M2

• For any n fresh in Σ1,Σ2 and any valid observer type Σi `O T for i = 1, 2 we have
Σ1+n :T . M1 ≈ Σ2+n :T . M2

PROOF. The proof proceeds by inductively defining a relation R as the least rela-

43

tion over effective configurations satisfying:

R=



〈Σ1 . M1, Σ2 . M2〉 | Σ1 . M1≈Σ2 . M2

〈Σ1 . M1|O, Σ2 . M2|O〉

〈Σ1 . O|M1, Σ2 . O|M2〉

∣∣∣∣∣∣∣∣ Σ1 . M1RΣ2 . M2 and

Σi `O O for i = 1, 2

〈Σ1+n :T . M1, Σ2+n :T . M2〉

∣∣∣∣∣∣∣∣Σ1 . M1 R Σ2 . M2,

fn(T) ∈ dom(ΣiO) for i = 1, 2 and n is fresh

〈Σ1 . (ν n :T)M1, Σ2 . (ν n :U)M2〉 | Σ1+n :T . M1 R Σ2+n :U . M2


and showing that R ⊆≈; by co-induction, since ≈ is the largest possible relation,
this would mean that it is contextual. We note that our definition of contextual
relations, Definition 8, would amount to a special case of the contexts defined for
R because it is only defined in terms of the second and third cases of the relation R,
namely contexts involving more systems in parallel and contexts involving a bigger
network. The fourth context case, that of name scoping, is required to ensure the
closure of R. All this is fairly standard with the exception that the type at which
names are scoped in the fourth case may not be the same because of the potentially
different hidden states in Σ1 and Σ2.

Before we delve into the actual proof we also note that Lemma 44 can be easily
extended from ≈ to R as:

Lemma 46 If Σ1.M1 R Σ2.M2, then there exist some M′,M′′ such that:

• Σ2 .M2
τ̂
=⇒ Σ2 .M′ and Σ2− l.M′

τ
=⇒ Σ2− l.M′′, where Σ1− l.M1RΣ2− l.M′′

• Σ2 .M2
τ̂
=⇒ Σ2 .M′ and Σ2− l↔ k . M′

τ
=⇒ Σ2− l↔ k . M′′, where Σ1− l↔

k.M1 R Σ2−l↔k.M′′

The proof for the above is by induction on why Σ1 .M1 R Σ2 .M2; the base case
follows from Lemma 44 and the three inductive cases are straightforward.

Similarly, also Proposition 33 can be extended to R as

Proposition 47 If ΣM . M R ΣN . N then I(ΣM) = I(ΣN)

Throughout the proof, when validating observer code, we will use interchangeably
the notation Σ1 `O O and Σ2 `O O for cases where it is assumed that I(Σ1) = I(Σ2).

44

To prove that R is a bisimulation, we take an arbitrary Σ1 . M1 R Σ2 . M2 and any
action Σ1 .M1

µ
7−→ Σ′1 .M′1; we then have to show that Σ2 .M2 can match this move

by performing a weak derived action Σ2.M2

µ̂

|==⇒ Σ′2.M
′
2 such that Σ′1.M

′
1RΣ

′
2.M

′
2.

The proof proceeds by induction on why Σ1 .M1 R Σ2 .M2. The first case, that is if
Σ1 .M1 ≈ Σ2 .M2 is immediate; the remaining three cases require a bit more work.
We here focus on the second case, where

Σ1 . M1|O R Σ2 . M2|O because Σ1 . M1 R Σ2 . M2 and Σ1 ` O (35)

which is also the most involving case, and leave the remaining two cases for the
interested reader.

We thus assume Σ1 . M1|O
µ
7−→ Σ′1 . M′1. We decompose this action using the De-

composition Lemma 39 and focus on the most difficult case, where

M′1 is (ν ñ : T̃)M′1|O
′, µ is τ and Σ′1 = Σ1 (36)

Σ1 . M1 `
(ñ:L̃)l:a!〈V〉
−−−−−−−→ Σ1+ñ : T̃ . M′1 (37)

Σ1 . O `
(ñ:K̃)l:a?(V)
−−−−−−−−→Σ1+ñ : Ũ . O′ (38)

where K̃ = L̃ \ dom(Σ1H), K̃ = lnkO(ñ : Ũ,Σ) and L̃ = lnkO(ñ : T̃,Σ) (39)

From (35), (37) and the inductive hypothesis we derive the matching weak action

Σ2 . M2 |=
(ñ:L̃)l:a!〈V〉
========⇒Σ′2+ñ : W̃ . M′2 (40)

where Σ′2+ñ : W̃ . M′2 R Σ1+ñ : T̃ . M′1 (41)

where we note the different types T̃ and W̃ at which the two networks Σ1 and Σ2

are updated - there may be updates to the hidden part of the networks which we
abstract away in the linktype L̃.

Now (40) can be decomposed as

Σ2 . M2

τ̂

|==⇒ Σ′′2 . M′′2 (42)

Σ′′2 . M′′2 `
(ñ:L̃)l:a!〈V〉
−−−−−−−→Σ′′2 +ñ : W̃ . M′′′2 (43)

Σ′′2 +ñ : W̃ . M′′′2

τ̂

|==⇒ Σ′2+ñ : W̃ . M′2 (44)

From (42), Σ2 ` O and the Composition Lemma 38 we get

Σ2 . M2|O
τ̂

|==⇒Σ′′2 . M′′2 |O (45)

45

From the hypothesis (35) we know I(Σ1) = I(Σ2), from (41) and Proposition 47
we know I(Σ1+ ñ : T̃) = I(Σ′2+ ñ : W̃) and Lemma 32 we know that the visible part
of Σ′′2 and Σ′2 did not change as a result of the silent transitions in (42) and (44) and
thus

I(Σ′′2) = I(Σ′2) = I(Σ2) = I(Σ1) (46)

Hence by (46), (38) and Lemma 40 we get

Σ′′2 . O
(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ′′2 +ñ : Ũ . O′ where Ũ = W̃ \ dom(Σ′′2H) (47)

At this point we note that from our inductive hypothesis (35), and (46) we derive

Σ′′2 `O O (48)

from (47), (48) and Lemma 42 we deduce

Σ′′2 +ñ : Ũ `O O′ (49)

and from (49) and Lemma 43 we obtain

Σ′′2 +ñ : W̃ `O O′ (50)

Combining (43), (47), (48) and the Composition Lemma 38, we obtain

Σ′′2 . M′′2 |O
τ
7−→ Σ′′2 . (ν ñ : W̃)M′′′2 |O

′ (51)

Similarly, from (44), (50) and the Composition Lemma 38 we obtain

Σ′′2 +ñ : W̃ . M′′′2 |O
′
τ̂

|==⇒ Σ′2+ñ : W̃ . M′2|O
′ (52)

and by applying Lemma 41 on (52) we get

Σ′′2 . (ν ñ : W̃)M′′′2 |O
′
τ̂

|==⇒ Σ′2 . (ν ñ : W̃)M′2|O
′ (53)

Thus, by combining (45), (51) and (53) we obtain the matching move

Σ2 . M2|O
τ

|==⇒ Σ′2 . (ν ñ : W̃)M′2|O
′ (54)

The only thing remaining is to show that the two residuals are in R, that is

Σ1 . (ν ñ : T̃)M′1|O
′ R Σ′2 . (ν ñ : W̃)M′2|O

′

Recalling (41) we know

Σ1+ñ : T̃ . M′1 R Σ
′
2+ñ : W̃ . M′2 (55)

46

which, by Proposition 47, means that

I(Σ1+ñ : T̃) = I(Σ′2+ñ : W̃) (56)

Now from (50), (46), Lemma 43 and (56) we deduce

Σ1+ñ : T̃ `O O′ and Σ2+ñ : W̃ `O O′ (57)

and thus from the definition of R we obtain

Σ1+ñ : T̃ . M′1|O
′ R Σ′2+ñ : W̃ . M′2|O

′

and again from the last case of the definition of R

Σ1 . (ν ñ : T̃)M′1|O
′ R Σ′2 . (ν ñ : W̃)M′2|O

′

as required.

We now conclude this part by showing that bisimulation is sound with respect to re-
duction barbed congruence. Before however, we still require one important lemma
stating that our formulation of internal activity, namely

τ
7−→, is in agreement, in

some sense, with the reduction semantics.

Proposition 48 (Reductions correspond to τ-actions)

• Σ . N −→ Σ′ . N′ implies Σ . N
τ
7−→ Σ′ . N′′ for some N′′ ≡ N′

• Σ . N
τ
7−→ Σ′ . N′ implies Σ . N −→ Σ′ . N′

PROOF. The proof for the first clause is by induction on why Σ . N −→ Σ′ . N′.
The proof for the second clause is also by induction. Since the internal transition
rule (l-par-comm) is defined in terms of input and output actions, we make use of
Lemma 36 in our induction to infer the structure of the communicating subterms.

We are finally in a position to prove that our bisimulation, ≈, is a contextual relation,
according to Definition 8.

Proposition 49 (Soundness)

Σ1 . M1 ≈ Σ2 . M2 implies Σ1 . M1 � Σ2 . M2

PROOF. To prove the above statement, it is sufficient to check that ≈ satisfies the
defining properties of �. It is obviously reduction closed, from the relationship be-
tween τ-actions and the reduction semantics given in Proposition 48. Barb preserv-
ing is also straightforward, from Proposition 48 and the direct relationship between
barbs and output actions. Finally, Proposition 45 proves that ≈ is also contextual.

47

5.2 Completeness

It remains to be shown that our bisimulation is also complete with respect to re-
duction barbed congruence. This entails showing that reduction barbed congruence
is preserved by actions, based on the proof developed earlier in [19,18]. At the
heart of this proof, we show that the effect of each external action can be mimicked
precisely by a specific context, a concept we refer to as definability.

We start this section by proving an obvious, though not explicit, property stating
that reduction barbed congruence is preserved by scoping. Stated otherwise, if two
configurations are reduction barbed congruent, scoping a channel or location name
on both sides would still yield two reduction barbed congruent configurations.

Proposition 50 (Scoping and reduction barbed congruence)

(ΣM + n :T) . M � (ΣN + n :U) . N implies ΣM . (ν n :T)M � ΣN . (ν n :U)N

PROOF. We define the relation R as:

R =

{
〈ΣM . (ν n :T)M, ΣN . (ν n :U)N〉 (ΣM + n :T) . M � (ΣN + n :U) . N

}
and prove that R has the defining properties of �. It is clearly reduction closed using
(r-ctxt-res); it is also easy to show it is barb preserving since ΣM . (ν n : T)M ⇓a@l

implies (ΣM + n :T) . M ⇓a@l. Finally, contextuality is also trivial. As an example,
assume

ΣM `O O (58)
and we have to show that

ΣM . O | (ν n :T)(M) R ΣN . O | (ν n :U)N.

From (58) we know that n < fn(O) and thus

ΣM + n :T `O O and ΣN + n :U `O O (59)

Hence by contextuality of � and (59), we have

(ΣM + n :T) . O |M � (ΣN + n :U) . O |N

from which the result follows.

Our external actions can affect both the system part of our configuration as well as
the network representation and the main differences between the definability proofs
presented here and those in [19,18] lie in the effects an action has on the network
representation. In the following proofs, we model an action’s effect on a network
using two new constructs introduced in DπF:

48

• the first kind of constructs induce faults as changes in the network representation
and these include kill and break l.
• the second kind observe the current state of the network and the only example is

the ping l.P else Q construct.

The first lemma we consider, establishes a relationship between the labels kill : l
and l = k and the constructs inducing faults in the observable network representa-
tion; this proof is complicated by the asynchronous nature of the constructs kill and
break l.

Lemma 51 (Inducing faults)

• Suppose Σ `O l : alive. Then:

· Σ . N
kill:l
7−→ Σ′ . N′ implies Σ . N|l[[kill]] −→ Σ′ . N′

· Σ . N |l[[kill]] −→ Σ′ . N′, where Σ′ 6`O l : alive implies Σ . N
kill:l
7−→ Σ′ . N′′ such

that N′ ≡ N′′

• Suppose Σ `O l↔k. Then:

· Σ . N `
l=k
−−−→ Σ′ . N′ implies Σ . N|l[[break k]] −→ Σ′ . N′

· Σ .N|l[[break k]] −→ Σ′ .N′, where Σ′ 6`O l↔k implies Σ .N `
l=k
−−−→ Σ′ .N′′ such

that N′ ≡ N′′

PROOF. The first clause for the action kill : l is proved by induction on the deriva-

tion Σ . N
kill:l
−→ Σ′ . N′. The second clause uses induction on the the derivation of

Σ .N |l[[kill]] −→ Σ′ .N′. The proof for the two clauses of the action l= k is similar.

We next show that for any network Σ, the context can determine the exact state
of the observable network I(Σ). We note that ΣN denotes all the names known by
the observer so far; the main part of this proof thus consists in showing that the
observer can also determine ΣO and just ΣO. To show this we define an observer
verStatk(L, x) running at a location k, which is assumed to be connected to all ob-
servable locations in ΣO - we are guaranteed to always have such a completely
connected location where to run verStatk(L, x) since contexts can extend config-
urations by a fresh location with such a property; see Definition 29. Apart from
the channel x and the location k, the observer verStatk(L, x) is instantiated with
L, which denotes the network knowledge the observer intends to verify. We show
that this specific observer can produce the barb x@k if and only if the linkset it is
checking for, L, is equal to (modulo symmetric links) ΣO.

We find it convenient to define some notation. We start by formalising linkset equal-
ity, denotes as L ≈ L′, as the symmetric relation over linksets such that:

• 〈l, k〉 ∈ L implies 〈l, k〉 or 〈k, l〉 ∈ L′

• 〈l, k〉 ∈ L′ implies 〈l, k〉 or 〈k, l〉 ∈ L

49

In addition, for every effective linksetLwe define an operation l↔Lwhich returns
a linkset that represents the state relating to location l in L; the linkset returned
denotes the liveness of l and any links it has with other live locations. Formally we
define this operation as

l↔L = {〈k, k′〉 | 〈k, k′〉 ∈ L ∧ l = k ∨ l = k′}

We note that since L is assumed to be an effective linkset, if l ∈ dom(L) then
〈l, l〉 ∈ l↔L. In fact l↔L is either ∅ or of the form

{〈l, l〉, 〈l, k1〉, . . . , 〈l, ki〉, 〈ki+1, l〉, . . . , 〈kn, l〉} (60)

where k1 . . . kn denote the connections l has with other live locations in L (we also
know ∀1 ≤ i ≤ n.〈ki, ki〉 ∈ L). When a linkset L observes the general form of (60),
we find it convenient to denote it as Ll to show that it is a linkset solely concerned
with the state of l.

The operation l↔L provides a systematic way to divide an effective linkset such
that every subdivision focusses on the information relating to a single location, as
stated through the following lemma.

Lemma 52 (Effective Linkset Subdivision) If L is an effective linkset then

L ≈
⋃
L`l:alive

l↔L

PROOF. Immediate from Definition 14 since 〈l, k〉 ∈ L implies 〈l, l〉 ∈ L and
〈k, k〉 ∈ L and thus all links in L will be included in one of the sub-divisions.

We incrementally build the observer which can uniquely identify the observable
network ΣO in an effective network Σ. We define the process:

verLocStatek0(L
l)⇐ go l.(ν s)



∏
k∈dom(Ll)

ping k.s!〈〉 else 0

|
∏

k∈(loc(ΣN)\dom(Ll))

ping k.0 else s!〈〉

| s?() . . . s?()︸ ︷︷ ︸
|loc(ΣN)|

.go k0.sync!〈〉


The following lemma states that for any network Σ where k0 < ΣN the process
verLocStatek0(L

l) located at k0, which is in turn connected to l, reduces to the sys-
tem k0[[sync!〈〉]] if and only if the state relating to l in Σ is equal to Ll, that is
l↔ΣO ≈ Ll.

50

Lemma 53 (Observable Location State) For any Σ, if Σ+ is the extended network
Σ + k0 :loc[a,dom(ΣO)] + sync :ch then

(1) If Σ+ . k0[[verLocStatek0(L
l)]] −→∗ Σ+ . k0[[sync!〈〉]] then Ll ≈ l↔ΣO

(2) If Ll 6≈ l↔ΣO then Σ+ . k0[[verLocStatek0(L
l)]] 6−→∗ Σ+ . k0[[sync!〈〉]]

PROOF. We have two clauses:

(1) We trace back on the sequence of reductions of

Σ+ . k0[[verLocStatek0(L
l)]] −→∗ Σ+ . k0[[sync!〈〉]] (61)

From the structure of verLocStatek0(L
l) we know that the last reduction must

have been a successful migration from l to k0 from which we deduce that
〈l, l〉 ∈ Ll and 〈l, l〉 ∈ ΣO. Tracing further back, we know that some reduction
of (61) must have produced |loc(ΣN)| outputs on the scoped channel s. This
means that
(a) Every subprocess in

∏
k∈dom(Ll) ping k.s!〈〉 else 0 must have pinged suc-

cessfully and from the side condition of (r-ping) we deduce that 〈l, k〉 ∈ ΣO
or 〈k, l〉 ∈ ΣO. This conclusion can be reformulated as

〈l, k〉 ∈ Ll implies 〈k, k′〉 ∈ l↔ΣO and k = l ∨ k′ = l (62)

(b) Every subprocess in
∏

k∈(loc(ΣN)\dom(Ll))pingk.0 else s!〈〉must have pinged
unsuccessfully and from the side condition of (r-nping) and the fact that
ΣO is an effective linkset we deduce that 〈l, k〉 < ΣO and 〈k, l〉 < ΣO. This
conclusion can be reformulated as

〈l, k〉 < Ll implies 〈k, k′〉 < l↔ΣOwhere k = l ∨ k′ = l

which can be expressed without negative set inclusions as

〈l, k〉 ∈ l↔ΣO implies 〈k, k′〉 ∈ Ll and k = l ∨ k′ = l (63)

From (62) and (63) we deduce Ll ≈ l↔ΣO.
(2) For the second clause we apply similar reasoning to show that Σ+.k0[[verLocStatek0(L

l)]]
must block before reducing to Σ+ . k0[[sync!〈〉]]

51

We define the aforementioned observer verStatk0(L, x) as:

verStatk0(L, x)⇐ (ν sync) k0





∏
ł∈dom(L)

verLocStatek0(l↔L)

|
∏

ł∈(loc(ΣN)\dom(L))

ping l.0 else sync!〈〉

| sync?(). . . . sync?()︸ ︷︷ ︸
|loc(ΣN)|

.x!〈〉




The first group of subprocesses verLocStatek0(l↔L) ensure that all the locations
mentioned in L do have the links mentioned in the linkset and just those. The
second group of subprocesses ping l.0 else sync!〈〉 ensure that there are no more
accessible locations from k0 apart from the ones mentioned in L.

Lemma 54 (Observable network) For any Σ, and for any effective linkset L 6≈
ΣO, if Σ+ = Σ + k0 :loc[a,dom(ΣO)] +  :ch implies

(1) Σ+ . verStatk0(ΣO, ) −→
∗ Σ+ . k0[[!〈〉]]

(2) Σ+ . verStatk0(L, ) 6−→
∗ Σ+ . k0[[!〈〉]]

PROOF. We have two clauses to prove:

(1) By Lemma 52 we know that the subprocesses of verStatk0(ΣO, ) cover
all of ΣO and by Lemma 53 we know that every component will produce
k0[[sync!〈〉]]. By definition of Σ+ we also know that these are the only loca-
tions accessible from k0 so all pings will produce k0[[sync!〈〉]]. As a result the
system can reduce to k0[[]].

(2) If L does not include any of the locations in ΣO then one of the pings will
trivially not produce k0[[sync!〈〉]]. If L contains an l that is not in ΣO then the
first migration of the subprocess verLocStatek0(l↔L) will immediately fail
and thus never produce k0[[sync!〈〉]]. Finally if dom(L) = dom(ΣO) but still
some links do not correspond, then there will be an l such that l↔L 6≈ l↔ΣO.
By Lemma 53 we know this will not produce k0[[sync!〈〉]]. As a result the
system can never reduce to k0[[]].

We are now in a position to prove definability for every external action in DπF. We
use bn(µ) to denote the bound names in the action µ; note that this is empty for all
actions apart from bound input and bound output. In order to complete the proof,
we also require the following lemma.

Lemma 55 Σ + n : T . N −→ Σ′ + n : T . N′ where n < fn(N) iff fn(N) ⊆ ΣN and
Σ . N −→ Σ′ . N′

52

PROOF. The proofs are by induction on the derivations of Σ . N −→ Σ′ . N′ and
Σ + n : T . N −→ Σ′ + n : T . N′.

Proposition 56 (Definability) Assume that for an arbitrary network representa-
tion Σ, the network Σ+ denotes:

Σ+ = Σ + k0 :loc[a,dom(ΣO)],  :ch,  :ch

where k0,  and  are fresh to ΣN . Thus, for every external action µ and net-
work representation Σ, every non-empty finite set of names Nm where ΣN ⊆ Nm,
every fresh pair of channel names ,  < Nm, and every fresh location
name k0 < Nm connected to all observable locations in ΣO, there exists a system
T µ(Nm, , , k0) with the property that Σ+ `O T µ(Nm, , , k0), such that:

(1) Σ . N
µ
7−→ Σ′+bn(µ) : T̃ . N′ for some T̃ implies

Σ+ . N |T µ(Nm, , , k0) =⇒ Σ′+ . (ν bn(µ) : T̃) (N′ | k0[[!〈bn(µ)〉]])
(2) Σ+ . N |T µ(Nm, , , k0) =⇒ Σ′+ . N′,

where Σ′+ . N′ ⇓@k0 , Σ
′
+ . N′ 6⇓@k0 implies that

N′ ≡ (ν bn(µ) : T̃) (N′′|k0[[!〈bn(µ)〉]]) for some N′′

such that Σ . N
µ

|==⇒ Σ′+bn(µ) : T̃ . N′′.

PROOF. We have to prove that the above two clauses are true for all of the four
external actions. If µ is the bound input action (ñ : L̃)l : a?(V), where L̃ = lnkO(ñ :
T̃,Σ) for some T̃, the required system is

(ν ñ : T̃)(l[[a!〈V〉.go k0.?().!〈〉]] | k0[[!〈〉]])

For the output case where µ is (ñ : L̃)l : a!〈V〉, the required T µ(Nm, , , k0) is

k0[[!〈〉]] |

l




a?(X).(ν sync)



m∏
i=1

if xi<Nm.sync!〈〉 |
|X|∏

j=m+1

if x j=v j.sync!〈〉

| sync?()..sync?()︸ ︷︷ ︸
|X|

.go k0.(νc)


verNwStatk0(x1 . . . xm,ΣO, c)

| c?(x).

?().!〈x1 . . . xm〉

| go x.kill









such that

verNwStatk0(x1 . . . xm,L, y) ⇐ (ν k′ :Tk′)go k′.(νd)

 verStatk′(L ∪ L̃, d)

| d?().go k0.y!〈k′〉


and Tk′ = loc[a,Nm∪{x1..xm}]

53

In the above context we exploit the fact that we can have variables in location types
that are not yet instantiated; they can then be replaced by actual location names
through input, as we saw earlier in Example 5. For the sake of presentation, in the
above context we assume that the first v1 . . . vm in V = v1 . . . v|V | in µ are bound,
and the remaining vm+1 . . . v|V | are free; a more general test can be constructed for
arbitrary ordering of bound names in V using the same principles used for this test.
We also use the conditional if x < Nm.P as an abbreviation for the obvious nested
negative comparisons between x and each name ni ∈ Nm, that is

if x<Nm.P⇐ if x=n1 then 0 else . . . if x=n|Nm| then 0 else P

The test works in two stages. Similar to the tests in [19,18], the first stage performs
the appropriate test for every input variable xi, releasing sync!〈〉 if the test is suc-
cessful; if xi is expected to be a bound name in µ, then we make sure it is fresh to
Nm; otherwise xi is matched with the corresponding free name. Another process
waits for input on |V | successful tests, that is |V | inputs on the scoped channel sync
and then releases the code for the second stage.

The second stage deals with the verification of any new live connections and loca-
tions that become reachable as a result of the fresh names inputted. To avoid com-
plicated routing to reach these new locations, we use a slightly augmented version
of the process verStatk0(L, y) from Lemma 54 called verNwStatk0(x1 . . . xm,L, y). It
creates a new location k′ from the location k0, with a location type that attempts
to connect to any name in Nm together with the fresh bound names just inputted
x1 . . . xm - the purpose of this procedure is to short-circuit our way to the newly
reachable locations (see Example 5). We afterwards run verStatk′(L ∪ L̃, d) from
this new location k′ and some fresh scoped location d, to verify that the new ob-
servable network state is indeed ΣO ∪ L̃. If this is the case, we signal on the con-
tinuation channel d the fresh location k′, which triggers a process that goes back
to location k0 and signals once again on another continuation channel, denoted by
the variable y, but eventually parameterised by the scoped channel c in the testing
context above. This triggers two parallel processes; the first one consumes the barb
 and releases an output on  with the bound names x1 . . . xm, whereas the
second process goes back to k′ to kill it for housekeeping purposes.

In addition to bound input and bound output, we have two non-standard actions
kill : l and l= k and the test required for these actions are :

l[[kill]] | k0[[!〈〉]] | k0[[ping l.(ping l.0 else ?().!〈〉) else 0]]

54

and

l[[break k]] | k0[[!〈〉]] | (ν sync)


l[[ping k.(ping k.0 else go k0.sync!〈〉) else 0]]

| k[[ping l.(ping l.0 else go k0.sync!〈〉) else 0]]

| k0[[sync?().sync?().?().!〈〉]]


respectively.

Since inducing faults is an asynchronous operation, the actual killing of a location
or breaking of a link is independent of its observation. The observation of a kill at
l is carried out from k0 by two successive pings, first observing that l is alive and
subsequently observing that l has become dead. The observation of a link break
between l and k is less straightforward, because it cannot be tested for from the
observer location k0 directly, but from the connected locations l or k. It is even more
complicated because it needs to be tested from both sides, l and k: k (or viceversa l)
can become inaccessible because it died and not because the link broke; to ensure
that k (or l) became inaccessible because of a link failure, we perform the test (two
successive pings, the first to determine that k is accessible from l, or viceversa, and
the second to determine that it is not anymore) from both endpoints, l and k, and
synchronise at k0.

The proof for the bound input and bound output actions can be extracted from
[19,18]; we have an additional check for the output case were apart from checking
that scope extruded names are fresh (as in [19,18]), we also verify that the links and
nodes attached to scope extruded names (as linksets) are indeed the only nodes and
links newly accessible to the observer. This follows from the use of verStat in the
output testing context and Lemma 54.

We here give an outline of the proof for one of the non-standard actions, kill : l. The

proof of definability for l= k is similar. For the first clause, from Σ.N `
kill:l
−−→ Σ′ .N′,

(l-deriv-1) and (l-halt) we know that Σ `O l :alive, thus

Σ+ `O l :alive (64)

which means we can perform the ping reduction, releasing the positive branch:

Σ+ . N | l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.0 else ?().!〈〉]] −→

Σ+ . l[[kill]] | k0[[!〈〉]] | k0[[ping l.0 else ?().!〈〉]]
(65)

From (64), (l-halt) and (l-deriv-1) we derive

Σ+ . N
kill:l
−→ Σ′+ . N′ where Σ+ `O l :alive and Σ′+ 6`O l :alive (66)

55

and from (66) and Lemma 51 we get

Σ+ . N | l[[kill]] −→ Σ′+ . N′

and (r-par-ctxt) we derive

Σ+ . N | l[[kill]] | k0[[!〈〉]] | k0[[ping l.0 else ?().!〈〉]] −→

Σ′+ . N′ | k0[[!〈〉]] | k0[[ping l.0 else ?().!〈〉]]
(67)

Subsequently we derive the sequence of reductions

Σ′+ . N′ | k0[[!〈〉]] | k0[[ping l.0 else ?().!〈〉]] −→

Σ′+ . N′ | k0[[!〈〉]] | k0[[?().!〈〉]] −→

Σ′+ . N′ | k0[[!〈〉]]

(68)

Combining the reductions in (65), (67) and (68) we prove the first clause.

For the second clause, the set of barbs Σ′+ . N′ ⇓@k0 , Σ
′
+ . N′ 6⇓@k0 can only be

obtained through the sequence of reductions

Σ+ . N | l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.0 else ?().!〈〉]] =⇒ (69)
Σ1
+ . N1 | l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.0 else ?().!〈〉]] −→
Σ1
+ . N1 | l[[kill]] | k0[[!〈〉]] | k0[[ping l.0 else ?().!〈〉]] =⇒ (70)
Σ2
+ . N2 | l[[kill]] | k0[[!〈〉]] | k0[[ping l.0 else ?().!〈〉]] −→ (71)
Σ2
+ − l . N2 | k0[[!〈〉]] | k0[[ping l.0 else ?().!〈〉]] =⇒ (72)
Σ3
+ − l . N3 | k0[[!〈〉]] | k0[[ping l.0 else ?().!〈〉]] −→
Σ3
+ − l . N3 | k0[[!〈〉]] | k0[[?().!〈〉]] =⇒ (73)
Σ4
+ − l . N4 | k0[[!〈〉]] | k0[[?().!〈〉]] −→
Σ4
+ − l . N4 | k0[[!〈〉]] =⇒ (74)
Σ′+ . N′ | k0[[!〈〉]]

From (71) and Lemma 51 we deduce

Σ2
+ . N2 | k0[[!〈〉]] | k0[[ping l.0 else ?().!〈〉]] `

kill:l
−−→

Σ2
+ − l . N2 | k0[[!〈〉]] | k0[[ping l.0 else ?().!〈〉]]

and by (l-deriv-1) and the inductive hypothesis of (l-halt) we know

Σ2
+ `O l : alive thus Σ2 `O l : alive (75)

56

and by (75), (l-halt) and (l-deriv-1) we derive

Σ2 . N2 `
kill:l
−−→ Σ2 − l . N2 (76)

From (69), (70), (72), (73) and (74) and (r-par-ctxt) obtain

Σ+ . N =⇒ Σ1
+ . N1 =⇒ Σ2

+ . N2

Σ2 − l+ . N2 =⇒ Σ3
+ . N3 =⇒ Σ4

+ . N4 =⇒ Σ+ . N′
(77)

and from (77) and Lemma 55 we obtain

Σ . N =⇒ Σ1 . N1 =⇒ Σ2 . N2

Σ2 − l . N2 =⇒ Σ3 . N3 =⇒ Σ4 . N4 =⇒ Σ′ . N′
(78)

Finally, using Proposition 48 to convert the reductions in (78) into weak silent ac-
tions and merging these with (76) we obtain as required

Σ . N
kill:l
|==⇒≡ Σ′ . N′

The result of Proposition 56 (Definability) means that intuitively we can provoke
the action Σ . N

µ
=⇒ Σ′ . N′ by extending Σ with a fresh location k0 and fresh

channels  and  and placing N in parallel with T µ(Nm, , , k0) for a
suitably chosen Nm. But in the case of actions where bn(µ) , ∅ we do not get
precisely the residual Σ′ . N′ but instead Σ′′+ . (ν bn(µ) : T̃) N | k0[[!〈bn(µ)〉]]
where Σ′′ + bn(µ) : T̃ = Σ′.

We therefore state and prove a variant of the extrusion lemma in [19,18], which
enables us to recover the residual Σ′.N′ from Σ′′+ .(ν bn(µ) : T̃)N | k0[[!〈bn(µ)〉]];
this lemma uses the preliminary lemma below, which we chose to extract as an
important step of the proof.

Lemma 57 Suppose δ, k0 are fresh to the systems M, k[[P(X)]]. Suppose also that
k ∈ C. Then:

Σ |= (ν ñ : T̃)(M | k1[[P(ñ)]] | k2[[Q(ñ)]]) �

(ν ñ : T̃)(ν δ :ch)(ν k0 :loc[a, C])

M | k0[[δ!〈ñ〉]]

| k0[[δ?(X).go k1.P(X) | go k2.Q(X)]]


PROOF. We note that the left hand system can be obtained from the right hand
system in two reductions, communication on δ and migrating from k0 to k, that
cannot be interfered with by any context. It is easy to come up with a bisimulation
proving that the two systems are reduction barbed congruent.

57

Lemma 58 (Extrusion) Suppose , , k0 are fresh to ΣM, ΣN , M and N. Then

ΣM
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] � ΣN

+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]]

implies ΣM + ñ : T̃ . M � ΣN + ñ : Ũ . N

PROOF. We define the relation R as:

R =

〈ΣM + ñ : T̃ . M,ΣN + ñ : Ũ . N〉

∣∣∣∣∣∣∣∣ Σ
M
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] �

ΣN
+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]]


and show that R satisfies the defining properties of �. From reduction closure of
�, it follows that R is also reduction closed. We here outline the proof for the barb
preserving and contextuality properties.

To show barb preservation, we assume ΣM + ñ : T̃ . M R ΣN + ñ : Ũ . N and
ΣM + ñ : T̃ . M ⇓a@l and then show ΣN + ñ : Ũ . N ⇓a@l.

If l, a < ñ this is straightforward since in this case ΣM
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] ⇓a@l,

by barb preservation, ΣN
+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]] ⇓a@l which can only be because

ΣN+ ñ : Ũ.N ⇓a@l. So suppose, as an example, that a ∈ ñ. Even though we no longer
have that ΣM

+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] ⇓a@l, the restricted name a can be extruded
via  through the system:

Ta⇐ k0[[?(X).go l.Xa?().go k0.δ!〈〉]]

where δ is a fresh channel and Xa is the variable xi where a is bound on input. Since
ΣM . M ⇓a@l it follows that

ΣM
+ + δ :ch . (ν ñ : T̃)M|k0[[!〈ñ〉]] |Ta ⇓δ@k0

From the definition of �, we know

ΣM
+ + δ :ch . (ν ñ : T̃)M|k0[[!〈ñ〉]] |Ta � Σ

N
+ + δ :ch . (ν ñ : Ũ)N|k0[[!〈ñ〉]] |Ta

and by barb preservation we conclude

ΣN
+ + δ :ch . (ν ñ : Ũ)N|k0[[!〈ñ〉]] |Ta ⇓δ@k0

which only be because ΣN . N ⇓a@l as required.

The case for when l ∈ ñ is similar, only that instead of Ta we use the system:

Tl⇐ k0[[?(X).(ν k : (dom(ΣM
+ O)∪Xl))go k.go Xl.a?().go k.go k0.δ!〈〉]]

58

This system is similar to Ta with the exception that a specific location k is created
so that we short-circuit our route to l, similar to the procedure we used earlier in
the definability proof of bound outputs (see Proposition 56).

We still have to show that R is contextual. As an example we show that it is pre-
served by parallel system contexts and leave the simpler case, that for network
extensions, to the interested reader. Suppose (ΣM + ñ : T̃) .M R (ΣN + ñ : Ũ) .N; we
have to show that for arbitrary k[[P]] such that (ΣM + ñ : T̃) `O k[[P]] then we have
(ΣM + ñ : T̃) . M | k[[P]] R (ΣN + ñ : Ũ) . N | k[[P]].

By definition of R, we have (ΣM + ñ : T̃) . M R (ΣN + ñ : Ũ) . N because

ΣM
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] � ΣN

+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]] (79)

We define the system

Tk[[P]] ⇐ k0[[?(X).(go k′0.(δ!〈X〉) |; (go k.P{X/̃n}))]]

where δ, k′0 are fresh names and gok.P{X/̃n} substitutes all occurrences of ñ in gok.P
by the appropriate variables xi ∈ X. From ΣM + ñ : T̃ `O k[[P]] we deduce that
ΣM
+ + δ :ch + k′0 :loc[a,dom(ΣM

+ O)] `O Tk[[P]] and subsequently, by contextuality of
� and (79), we obtain

ΣM
++ . M′ |Tk[[P]] � Σ

N
++ . N′ |Tk[[P]] (80)

where

M′ = (ν ñ : T̃)M | k0[[!〈ñ〉]]
N′ = (ν ñ : Ũ)N | k0[[!〈ñ〉]]
ΣM
++ =Σ

M
+ + δ :ch + k′0 :loc[a,dom(ΣM

+ O)]
ΣN
++ =Σ

N
+ + δ :ch + k′0 :loc[a,dom(ΣN

+O)]

From (80) and Proposition 50 we deduce that we can scope  and k0 to obtain

Σ′+ . (ν , k0)M′ |Tk[[P]] � Σ
′′
+ . (ν , k0)N′ |Tk[[P]] (81)

where

Σ′+ = Σ
M + δ :ch + k′0 :loc[a,dom(ΣM

O)](82)
Σ′′+ = Σ

N + δ :ch + k′0 :loc[a,dom(ΣN
O)] (83)

By applying Lemma 57 on both sides of the equivalence and then through transi-
tivity of � e get

Σ′+ . (ν ñ : T̃)M | k[[P]] | k′0[[δ!〈ñ〉]] � Σ′′+ . (ν ñ : T̃)N | k[[P]] | k′0[[δ!〈ñ〉]] (84)

59

from which, by definition ofR, and by (82) and (83) we derive ΣM+ñ : T̃.M|k[[P]] R
ΣN + ñ : Ũ . N|k[[P]] as required.

Proposition 59 (Completeness)

Σ1 . M1 � Σ
2 . M2 implies Σ1 . M1 ≈ Σ

2 . M2

PROOF. Suppose Σ1 .M1
µ
7−→ Σ1

1 .M′1; we must find a move Σ2 .M2

µ̂

|==⇒ Σ2
1 .M′2

such that Σ1
1 . M′1 � Σ

2
1 . M′2. If µ is an internal move then the matching move is

obtained from the fact that � is reduction closed, together with Proposition 48. If µ
is an external action, then by choosing Nm so that it contains all the free names in
Σ1
N

(which is equal to Σ2
N

) and choosing fresh , , k0, from the first part of

Proposition 56 and the assumption Σ1 .M1
µ
7−→ Σ1

2 + bn(µ) : T̃ .M′1 (we here rewrite
Σ1

1 as Σ1
2 + bn(µ) : T̃)we obtain

Σ1
+ . M1|T µ(Nm, , , k0) =⇒ Σ1

2+ . (ν bn(µ) : T̃)M′1 | k0[[!〈bn(µ)〉]]

By contextuality and reduction closure of �, we know that there is a matching move

Σ2
+ . M2|T µ(Nm, , , k0) =⇒ Σ . N

for some Σ.N such that Σ1
1+.(ν bn(µ) : T̃)M′1 | k0[[!〈bn(µ)〉]] � Σ.N. This in turn

means that Σ . N ⇓@k0 and Σ . N 6⇓@k0 and so the second part of Proposition 56
now gives that Σ . N ≡ Σ2

1+ . (ν bn(µ) : T̃)M′2 | k0[[!〈bn(µ)〉]] for some Σ2
1+, M′2

such that Σ2 . M2

µ

|==⇒ Σ2
1 + bn(µ) : T̃ . M′2. This is the required matching move,

since the Extrusion Lemma 58, gives us the required

Σ1
2 + bn(µ) : T̃ . M′1 � Σ

2
1 + bn(µ) : T̃ . M′2

6 Conclusions

In this paper, we have extended an adaptation of Dπ [17] with an explicit represen-
tation of the underlying network, exhibiting both node and link failures. We have
introduced a ping construct and adapted the migration construct ofDπ to provide a
level of abstraction close an idealised form of the IP/ICMP layers in the Internet
protocol suite [23]. We also encoded node status and connections as type informa-
tion and then defined a reduction semantics to describe the behaviour of systems
in the presence of node and link failures. Subsequently, we applied techniques for
actions dependent on the observer’s knowledge, developed for the π-calculus in
[19] and Dπ in [18], to characterise a natural notion of barbed congruence. Our
main result is a fully-abstract bisimulation equivalence with which we can reason
about the behaviour of systems in the presence of dynamic network failures and

60

partial accessibility of nodes. In order to obtain this goal, the work also provided
the following original contributions:

• A novel process calculus approach, encoding location status information (live-
ness and linkage) as types.
• A definition of contextual equivalence based on partial-views which evolve over

the course of computation; these partial views are not set, as in [18], but may
decrease through failure and increase through node scope extrusion.
• A corresponding bisimulation theory characterising this equivalence using a novel

derived lts based on the notion of paths. The actions of the derived lts take into
account not only the direct links that can be observed as part of a location scope
extrusion, but also whole components of a network that are made accessible as a
result.

We consciously chose to develop the theory in terms of a representation of nodes
and links, despite the possible view that representation of nodes only is sufficient
- this would typically entail encoding a link between location l and k as an inter-
mediary node lk, encoding migration from l to k as a two-step migration from l to
lk and lk to k, and finally encoding link failure as the intermediary node lk failing.
There are various reasons for describing both node and link failure.

• For a start, network representation with partial connection between nodes is very
natural in itself since WANs are often not a clique; programming for tolerating
link failure is moreover subtly different from that for tolerating node failure, as
shown in Example 10.
• Also, the resulting calculus also gives rise to an interesting theory of partial

views, as shown in Examples 12, 13 and 22. We feel that these factors are a suf-
ficient justification why link failure deserves to be investigated in its own right.
• We go further, and develop a setting that allows us to study directly the inter-

play between node and link failure and their respective observation from the
software’s point of view.
• Finally, we forgo the option of encoding link failure because it is unlikely that

a theory resulting from an encoding into a nodes only calculus would be fully
abstract, due to the fact that any encoding would typically decompose atomic re-
ductions such as migration into sub-reductions, which in turn affects the resulting
bisimulation equivalence; see [15].

The extended abstract for this work was presented at [12] and all the detailed proofs
appeared already as part of the first author’s thesis[11]. To the best of our knowl-
edge, this is the first body of work that studies system behaviour in the presence
of both permanent node and link failure in a unified setting, investigates the re-
sulting natural notion of partial views arising in this setting and characterises the
partial-view contextual equivalence through an lts based on accessibility paths.

61

Related Work: There have been a number of studies on process behaviour in the
presence of permanent node failure only, amongst them [26], our point of depar-
ture. In this work, they developed bisimulation techniques for a distributed variant
of CCS with location failure. Our work is also very close to the pioneering work
[2,1]; their approach to developing reasoning tools is however quite different from
ours. Rather than develop, justify and use bisimulations in the source language of
interest, in their case πl and π1l, they propose a translation into a version of the
π-calculus without locations, and use reasoning tools on the translations. But most
importantly, they do show that for certain π1l terms, it is sufficient to reason on these
translations.

Partial connections between locations have been studied in [8,6,9,7] where dis-
tributed Linda-like programs are equipped with connect, co-connect and discon-
nect software primitives that dynamically change the accessibility of locations. This
body of work addresses numerous issue such as the choice of barbs in a setting of
partial connections. In their latest work[9], they describe an observational equiv-
alence yielding a notion of partial view which is very similar to ours and give
a bisimulation equivalence which characterise the observational equivalence with
partial views. Despite these commonalities, their work differs from ours in many
respects. Their interpretation of connections is different from ours, since their aim
is to program with these constructs as one would do at a TCP layer of abstrac-
tion[23], establishing connections between two locations for remote communica-
tions and disconnecting afterwards; we do not attempt to program with our break
construct and rather apply breaks (and kills) non-deterministically to model per-
manent failure. Their model of computation is based on tuple-spaces rather than
channel communication and the network information, such as existing links, is de-
scribed at the system level instead of being encoded as type information, as in our
case. Most importantly though, their solution for the bisimulation characterisation
of their observational equivalence is different from ours. In particular, they employ
separate, simpler labels for location scope extrusion and individual link discovery.
Consequently, their bisimulations disentangle scope extrusion from the discovery
of newly accessible nodes that result from the scope extrusion. This separation turns
out to give a much simpler and more elegant completeness proof than the one in
Section 5.2. We however believe that it is natural to keep together information re-
lating name extrusion and the new network accessible as a result of the extrusion.
Moreover, the bisimulations resulting from our labels batch multiple related transi-
tions and intermediate states (scope extrusion and multiple link discoveries) under
one single transition. Our rationale has thus been to employ labels carrying more
information (as types) and incur more complication in proving the correctness of
our lts but then have an lts that permits smaller bisimulations than the ones with
otherwise simpler labels.

Another work dealing with partial connections is [24], whereby they describe a
process calculus with broadcasts which are subject to partial connections between
sites. The emphasis of this work is to develop static analysis for proving the cor-

62

rectness of routing protocols for ad-hoc networks. Even though they give an lts for
this calculus with partial connections, they do not study any equivalence properties
for the bisimulation arising from this lts. More crucially, their calculus does not ex-
press any scoping of location names, the scope extrusion of which posed the main
difficulty in establishing sound and complete equivalence theories for distributed
calculi with partial connections in our case.

On a technical level, our work is also considerably different from [18], even though
our theory may be seen as an extension of theirs; in this work, migration permis-
sions give rise to a sort of unidirectional links. For a start, in [18] they assume
that there is always an observable location giving migration rights to every other
location, which effectively links all locations in one direction to such a location
(whether observable or non-observable). This is fundamentally different from our
setting where, at most, new context locations can be linked to presently accessible
locations only. This also impacts their framework in more than one way. Whereas
their notion of contextual equivalence is based on a fixed set of accessible locations,
our equivalence assumes a dynamic set of accessible locations, which changes
through failure and scope extrusion. More importantly though, while they could
obtain a characterising lts whose labels are based directly on the fixed accessible
set, we required a more complex derived lts at the level of accessibility paths. More
concretely, in [18] a location’s accessibility depended solely on the type at which
it is scope extruded; in our case, a location’s accessibility also depends, in an in-
direct manner, on the scope extrusion of subsequent locations that may yield an
accessibility path to it. All of this is further complicated in our setting by dynamic
failure, which changes the state of the underlying network during execution; in [18]
migration permissions are never revoked.

Elsewhere, permanent location failure with hierarchical dependencies have been
studied by Fournet et al [10]. Berger [3] was the first to study a π-calculus exten-
sion that models transient location failure with persistent code and communication
failures, while Nestmann et al [25] employ a tailor-made process calculus to study
standard results in distributed systems, such as [5].

Future Work: Our study is far from conclusive; rather than being a body of work
that could be directly applied to real case scenarios, we believe that this work is
best viewed as a succinct well-founded framework from which numerous varia-
tions could be considered. For example links between sites could be uni-directional,
rather than symmetric, or ping l.P else Q could test for a path from the current site
to l, rather than a direct connection. One could also limit the use of the fault in-
ducing actions kill : l and l = k; for instance, disallowing them in the definition
of the contextual equivalences would give a behavioural theory between systems
running on static but possibly defective networks. More generally, one could al-
low the recovery of faults, in which dead nodes or broken links may randomly be
restored; transient faults are also directly related to issues such as persistence and

63

volatility of code. As we stated often, we never intended to program with location
and link failure but where more interested in applying their effects on computation
in a non-deterministic way. A whole area of research that is still relatively unex-
plored in process calculi is that of attaching probabilities to failures; our framework
can be seen as an ideal starting point for such work. One further avenue worth ex-
ploring is how partial links between locations and partial-view equivalence can be
adapted to asses the fault-tolerance of a system[13]. Adapting our lts and the result-
ing bisimulation equivalence to such scenarios are in some cases straightforward,
and in others, serious undertakings; a typical example of the former is the introduc-
tion of uni-directional links, while fault recovery and persistence would probably
fall into the latter; higher-order theories of Dπ may need to be considered in the
latter case.

The expressivity of the present calculus warrant further investigation. The graph
structure imposed on DπF locations should also be flexible enough to express other
location structures as instances of the calculus. For instance, a hierarchical location
structure such as that used in the distributed join-calculus can be elegantly encoded
in DπF by imposing restrictions on the starting graph structure and the types of the
new locations to be created. Moreover, by restricting the observer’s view to the root
nodes of this encoding, we can also encode the failure of a subtree as the breaking
of the link connecting the root of the subtree to the remainder of the tree.

Finally we hope that some extended form of our framework can be used to study
distributed algorithms in the style of [14], where distributed computation needs to
be aware of the dynamic computing context in which it is executing; various ex-
amples can be drawn from ad-hoc networks, embedded systems and generic rout-
ing software; see [24] for some examples. In these settings, the software typically
discovers new parts of the neighbouring computing environment at runtime, but
this often does not entail the accessibility of this environment. This separation be-
tween discovery and eventual accessibility is naturally expressed in our calculus.
Our framework also handles the reverse, that is, remote resources that are known
and accessible, but eventually become inaccessible through failure; in such a set-
ting, we study the power of network observation mechanisms used to update the
knowledge of the changes at the current underlying network caused by failure, en-
abling the discovery of alternative routes to remote resources.

References

[1] Roberto M. Amadio. An asynchronous model of locality, failure, and process mobility.
In D. Garlan and D. Le Métayer, editors, Proceedings of the 2nd International
Conference on Coordination Languages and Models (COORDINATION’97), volume
1282, pages 374–391, Berlin, Germany, 1997. Springer-Verlag.

[2] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. FSTTCS: Foundations

64

of Software Technology and Theoretical Computer Science, 14, 1994.

[3] Martin Berger. Basic theory of reduction congruence for two timed asynchronous
π-calculi. In Proc. CONCUR’04, 2004.

[4] Luca Cardelli. Wide area computation. In Proceedings of 26th ICALP, Lecture Notes
in Computer Science, pages 10–24. Springer-Verlag, 1999.

[5] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, March 1996.

[6] R. De Nicola, D. Gorla, and R. Pugliese. Global computing in a dynamic
network of tuple spaces. In J.M. Jacquet and G.P. Picco, editors, Proc. of 7th
International Conference on Coordination Models and Languages (COORDINATION
2005), volume 3454 of LNCS, pages 157–172. Springer, 2005.

[7] R. De Nicola, D. Gorla, and R. Pugliese. Global computing in a dynamic network of
tuple spaces. Science of Computer Programming, 64(2):187–204, 2007.

[8] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observables for a
calculus for global computing. In L. Caires et al., editor, Proc. of 32nd International
Colloquium on Automata, Languages and Programming (ICALP 2005), volume 3580
of LNCS, pages 1226–1238. Springer, 2005.

[9] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observables for a
calculus for global computing. Information and Computation, 205(10):1491–1525,
2007.

[10] Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of
mobile agents. CONCUR 96, LNCS 1119:406–421, August 1996.

[11] Adrian Francalanza. A Study of Failure in a Distributed Pi-calculus. PhD thesis,
University of Sussex, 2006.

[12] Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the
presence of node and link failures. In CONCUR, volume 3653 of Lecture Notes in
Computer Science, pages 368–382. Springer, 2005.

[13] Adrian Francalanza and Matthew Hennessy. A theory of system fault tolerance. In
L. Aceto and A. Ingolfsdottir, editors, Proc. of 9th Intern. Conf. on Foundations of
Software Science and Computation Structures (FoSSaCS’06), volume 3921 of LNCS,
pages 16–31. Springer, 2006.

[14] Adrian Francalanza and Matthew Hennessy. A fault tolerance bisimulation proof for
consensus. In Rocco De Nicola, editor, 16th European Symposium on Programming
(ESOP’07), volume 4421 of LNCS, pages 395–410. Springer, March 2007.

[15] Rob. van Glabbeek and Ursula Goltz. Equivalence notions for concurrent systems and
refinement of actions (extended abstract). In A. Kreczmar and G. Mirkowska, editors,
Proceedings 14th Symposium on Mathematical Foundations of Computer Science,
MFCS ’89, Pora̧bka-Kozubnik, Poland, August/September 1989, volume 379 of lncs,
pages 237–248. Springer-Verlag, 1989.

65

[16] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification Second Edition. Addison-Wesley, Boston, Mass., 2000.

[17] Matthew Hennessy. A Distributed Pi-calculus. Cambridge University Press, 2007.

[18] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory
of access and mobility control in distributed systems. Theoretical Computer Science,
322:615–669, 2004.

[19] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes
in the presence of subtyping. Mathematical Structures in Computer Science, 14:651–
684, 2004.

[20] Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. Information and Computation, 173:82–120, 2002.

[21] Kohei Honda and Martin Berger. The two-phase commitment protocol in an extended
pi-calculus. In Luca Aceto and Björn Victor, editors, EXPRESS00: 7th International
Workshop on Expressiveness in Concurrency, volume 39, pages 105–130, Amsterdam,
The Netherlands, 2000. Elsevier.

[22] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics.
Theoretical Computer Science, 152(2):437–486, 1995.

[23] Martin W. Murhammer, Orcun Atakan, Stefan Bretz, Larry R. Pugh, Kazunari Suzuki,
and David H. Wood. TCP/IP Tutorial and Technical Overview. IBM Redbooks.
International Technical Support Organization, 8 edition, December 2006.

[24] Sebastian Nanz and Chris Hankin. A framework for security analysis of mobile
wireless networks. Theoretical Computer Science, 367(1-2):203–227, 2006.

[25] Uwe Nestmann, Rachele Fuzzati, and Massimo Merro. Modeling consensus in
a process calculus. In CONCUR: 14th International Conference on Concurrency
Theory. LNCS, Springer-Verlag, 2003.

[26] James Riely and Matthew Hennessy. Distributed processes and location failures.
Theoretical Computer Science, 226:693–735, 2001.

[27] Davide Sangiorgi and David Walker. The π-calculus. Cambridge University Press,
2001.

66

A Auxilliary Definitions

We here define the standard notions of free/bound variable and names for DπF.
We recall from Section 2 that V and X denote respectively tuples of identifiers
(u1, . . . , un) and tuples of distinct variables (x1, . . . , xn). We define the functions
names(V) and vars(V) which extract names and variables respectively from iden-
tifier tuples:

names((u1, . . . , un)) def
= {n | n = ui} vars((u1, . . . , un)) def

= {x | x = ui}

We also abuse notation and use {X} to mean

{(x1, . . . , xn)} def
= {x | x = xi}

We overload the functions for free name fn(−) and for free variables fv(−) to range
over types, open processes and open systems as follows:

fn(ch) def
= ∅ fv(ch) def

= ∅

fn(loc[S, C]) def
= {n | n ∈ C} fv(loc[S, C]) def

= {x | x ∈ C}

fn(u!〈V〉.P)def
= fn(P) ∪ names(V) ∪

{u} if u ∈ N
∅ othewise

fv(u!〈V〉.P)def
= fv(P) ∪ vars(V) ∪

{u} if u ∈ V
∅ otherwise

fn(u?(X).P)def
= fn(P) ∪

{u} if u ∈ N
∅ othewise

fv(u?(X).P)def
=

fv(P) ∪

{u} if u ∈ V
∅ otherwise

 \ {X}
fn(∗P) def

= fn(P) fv(∗P) def
= fv(P)

fn(P|Q) def
= fn(P) ∪ fn(Q) fv(P|Q) def

= fv(P) ∪ fv(Q)

fn((ν n :T)P) def
= fn(T) ∪ fn(P) \ {n} fv((ν n :T)P) def

= fv(T) ∪ fv(P)

fn(0) def
= ∅ fv(0) def

= ∅

fn(go u.P)def
= fn(P) ∪

{u} if u ∈ N
∅ othewise

fv(go u.P)def
= fv(P) ∪

{u} if u ∈ V
∅ otherwise

67

fn(kill) def
= ∅ fv(kill) def

= ∅

fn(break u)def
=

{u} if u ∈ N
∅ othewise

fv(break u)def
=

{u} if u ∈ V
∅ otherwise

fn(if u=v then P else Q)def
= fn(P) ∪ fn(Q) ∪ {n | n ∈ {u, v}}

fv(if u=v then P else Q)def
= fv(P) ∪ fv(Q) ∪ {x | x ∈ {u, v}}

fn(ping u.P else Q)def
= fn(P) ∪ fn(Q) ∪

{u} if u ∈ N
∅ othewise

fv(ping u.P else Q)def
= fv(P) ∪ fv(Q) ∪

{u} if u ∈ V
∅ otherwise

fn(l[[P]]) def
= fn(P) ∪ {l} fv(l[[P]]) def

= fv(P)

fn(N|M) def
= fn(N) ∪ fn(M) fv(N|M) def

= fv(N) ∪ fv(M)

fn((ν n :T)M) def
= fn(T) ∪ fn(M) \ {n} fv((ν n :T)M) def

= fv(T) ∪ fv(M)

We also overload the bound name and bound variables functions, bn(−) and bv(−),
to range over open processes and systems:

bn((ν n :T)P) def
= {n} ∪ bn(P)

bn(0) = bn(kill) = bn(break u) def
= ∅

bn(u!〈V〉.P) = bn(u?(X).P) = bn(∗P) = bn(go u.P) def
= bn(P)

bn(P|Q) = bn(if u=v then P else Q) = bn(ping u.P else Q) def
= bn(P) ∪ bn(Q)

bv(u?(X).P) def
= {X} ∪ bv(P)

bv(0) = bv(kill) = bv(break u) def
= ∅

bv(u!〈V〉.P) = bv(∗P) = bv(go u.P) = bv((ν n :T)P) def
= bv(P)

bv(P|Q) = bv(if u=v then P else Q) = bv(ping u.P else Q) def
= bv(P) ∪ bv(Q)

68

bn(l[[P]]) def
= bn(P) bv(l[[P]]) def

= bv(P)

bn((ν n :T)P) def
= {n} ∪ bn(P) bv((ν n :T)P) def

= bv(P)

bn(M|N) def
= bn(M) ∪ bn(N) bv(M|N) def

= bv(M) ∪ bv(N)

69

