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Abstract: This paper studies one important aspect of distributecsysiocality, us-
ing a calculus of distributed higher-order processes inctviriot only basic values or
channels, but also parameterised processes are transéeness distinct locations. An
integration of the subtyping of-calculus and 10-subtyping of theecalculus offers a
tractable tool to control the locality of channel names ia firesence of distributed
higher order processes. Using a local restriction on chacaygbilities together with
a subtyping relation, locality is preserved during redoiei even if we allow new re-
ceptors to be dynamically created by instantiation of aabjt higher-order values and
processes. We also show that our method is applicable to a gesreral channel con-
straints studied by Sewell in a higher-order distributetisg.
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Subtyping and L ocality in Distributed Higher Order
Processes

NOBUKO YOSHIDA MATTHEW HENNESSY

1 Introduction

There have been a number of attempts at adapting traditppoakss calculi, such as CCS
and CSP, so as to provide support for the modelling of cedaects of distributed systems,
such adistribution of resources antbcality, [3, 11, 21, 24, 29]. Most of these are based on
first-order extensions of the-calculus [22]; first-order in the sense that the data exgbdn
between processes are from simple datatypes, such as lafisés or channel names. There
are various proposals for implementing the transmissiomigifier-order data using these first-
order languages, mostly based on [26]. However these &iamiss, as we will explain in 6.1,
do not preserve the distribution and locality of the sousrggliage. Consequently we believe
that higher-order extensions of tiwecalculus should be developed in their own right, as formal
modelling languages for distributed systems.

In this paper we design such a language and examine one enpasgpect of distributed
systems, nameljocality. The language is a simple conservative extension of thebgallalue
A-calculus [25] and ther-calculus [22], together with primitives for distributi@md spawning
of new code at remote sites. The combination of dynamic oblacneation inherited from
calculus and transmission of higher-order programs inéerfirom A-calculus offers us direct
descriptions of various distributed computational stuues. As such, it has much in common
with the core version of Facile [2, 10, 20] and CML [9] and canrbgarded as an extension of
Blue-Calculus [6] to a higher-order term passing.

A desirable feature of some distributed systems is thayeslgnnel name is associated with
a unique receptor site, which is calleteceptiveness in [27]; another property calletbcality
where new receptors are not created by received channslgjsmbeen studied in [3, 5, 21, 32]
for an asynchronous version of thecalculus. The combination of these constraints provides a
model of a realistic distributed environment, which regaadreceptor as an object or a thread
existing in a unique name space. A generalisation is alspgzed in Distributed Join-calculus
where not only single receptor but also several receptdfstive same input channel are allowed
to exist in the same location [11]; in this paper we call thisrengeneral conditiotocality of
channels. In distributed object-oriented systems, objects with\aegip reside in a specific
location even if multiple objects with the sameare permitted to exist for efficiency reasons,
as found in, e.gCoNCcURRENTAGGREGATES[8]; This locality constraint should be obeyed even
in the presence of higher-order parameterised object pgsgihich is recently often found in
practice [12].

In this paper we show that, in a distributed higher-ordecpss language, locality of chan-
nels can be enforced by a typing system with subtyping. Tkergml idea is to control the
input capability of channels, guaranteeing at any one time this capabiléigles at exactly one
location. As discussed in Section 3, ensuring locality ighleir order processes is much more
difficult than in systems which only allows name passing. Ewsv, using our typing system we
only have tostatic type-check each local configuration to guarantee the redutobal invari-
ance, namelyocality of channels.

The main technical novelty of our work is an extension of thput/output type system
of [23, 16] to a higher-order setting where the order thdorptoperty of subtyping relation

OFull version available athttp: //www. cogs . susx.ac .uk/users/nobuko/index .html.
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Term: PQ,...€ Term:: V | letx:11=PinQ | PQ

u%:T).P | W(V)P | (va:o)P | «P | P|Q | O
u | Ax:1).P

] a]x

true | false | () | O | 1 | ..

Value: VW, ...€ Val
Identifier:  u,v,...€ld::
Literal: [,I',...e Lit =

FIGURE1. Syntax ofri\

plays a pivotal role for a natural integration with arrow &g The framework will be generally
applicable for other purposes where similar global comstsashould be guaranteed using static
local type checking.

The paper is organised as follows. In the following sectianstudy the undistributed ver-
sion of our languagen\, a call-by-value\-calculus with communication primitives based on
channels. Section 3 introduces a distributed versiomgfwhich we call DM, by adding a
process spawning operator and a primitive notion of digtidn. We then explain, using exam-
ples, the difficulty of enforcing locality in BA. Section 4 gives a typing system based on the
input/output typing in Section 2, which ensures localityatifchannels in DA by local static
type-checking. In Section 5, we discuss applications ofweark; extendibility of our typing
system to more general global/local channel constraintiied by Sewell [29] in a higher-order
setting, and the proof of a multiple higher-order replioattheorem extended from [23, 27].
Section 6 concludes with discussion and related work. Dugpaze limitation, we leave all
proofs and detailed definitions to the full version [33].

2 A Higher-order t-calculuswith 10-subtyping

In this section, we introduce a higher order concurrentudakwith subtyping, essentially the
call-by-valueA-calculus [25] augmented with thecalculus primitives [22]. We illustrate the
usage of this typing system by a few simple examples.

SYNTAX The syntax offiA is given in Figure 1. It uses an infinite setmdmes or channels
N, ranged over by b, ..., and an infinite set ofariables V, x,y,.... We often use&X,Y, ... for
variables over higher oder terms explicitly. It also useskiection of types, the discussion of
which we defer until later.

The syntax is a mixture of a call-by-vallecalculus and thetcalculus. In the former
there are values, consisting of basic values and abstractiogether with application and a
form of let construct. From the latter we have input and output on comaation channels,
dynamic channel creation, iteration and the empty procédsbound variables and names
have associated with them a type, but for the moment thesigaoeed. We use the standard
notational conventions associated with thealculus, for example ignoring trailing occurrences
of the empty proces® and omitting type annotations unless they are relevant. M wse
fn(P)/bn(P) andfv(P)/bv(P) to denote the sets difee/bound names andfree/bound variables,
to respectively, defined in the standard manner. We alsaressdi bound names are distinct
and disjoint from free names.

REDUCTION The reduction semantics o\ is given in Figure 2 and is relatively straightfor-
ward. The main reduction rules are vaieeduction, ), for the functional part of the language
and communication, (com), for processes. The final conaxtue, (str), uses a structural con-
gruence borrowed from standard presentations ofrHealculus (Figure 2). We use— to
denote multi-step reductions.
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Reduction Rules:
B AX:T).P)V — P{V/x}
(com) u?%:%).P|ul(V)Q — P{V/%}|Q

P—P P—P
(let) letX:T=PinQ—1letx:T=P inQ (apR) PQ—PQ
(lety) letx:T=V in Q — Q{V/x} (app) \/8%\%
P—P P—P PEP’—>QIEQ
P2 5Io—pT0 ) paop—(aop O P—Q

Structure Equivalence:

e P=Q if P=,Q.

e PIQ=QIP (PIQ|R=P|(QIR) PIO=P «P=P|«P

e (va)0=0 (va)(vb)P = (vb)(va)P (va)P|Q = (va)(P|Q) if a¢ fn(Q)

FIGURE 2. Reduction fom

ExXAMPLE 2.1. (sg-server) Suppose that in the language we have alligrfor squaring
natural numbers; this is a simple example of a data proagsgieration which may in fact be
quite complicated. For a given naradet sq(a) represent the expressiea?y, z). Z (sq(y)),
which we write as

sq(a)<= *aAy,z). 2(sq(y))
This receives a value grto be processed together with a return chaznelhich the processed
data is to be sent. It then processes the data (in this capéysiquaring it) and then returns the
processed data along the return channel. Then a sq-se@rigess which on requests sends

to the client the code for squaring values, which the cliemt initialise locally. InT\ this can
be defined by

qServ<— xreq7r). rli{A(X). sq(x)}
Here the process receives a request on the channel req, fortheof a return channel, to

which the abstractioA(x). sq(x) is sent. A client can now download this code and initialise it
by applying it to a local channel which will act as the requestnnel for data processing:

Client<— (vr) reqXr). rAX). (va)( Xa |al(1,cy)|al(2,c) |al(3,c3) | --)
o

IO-TYPES We use as types fam a simplification of the input/output capabilities of [16h (i
turn astrict generalisation of [23]). They are defined in Figure 3, wheesaasume a given set of
base types, such aat andbool, and a type for processgs;oc. Value types, types of objects
which may be transmitted between processes or to whichifumemay be applied, may then
be constructed from these types using the exponential typstirictor—, as in thek-calculus.
However here in addition we may also use channel types, caogr byo. These take the form
(S, S), a pair consisting of amput sort S; and anoutput sort S; these input/output sorts are
in turn either a vector of value types dr, denoting the highest capability, er, denoting the
lowest. The representation of 10-types as a tuple [17, 1&asnishe definition of the subtyping
relationship, also given in Figure 3, more natural when wegrate with arrow types of the
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Type:

Term Type: p == proc|T

Value Type: T = unit|bool|nat|T—p|O

Channel Type: ¢ = (S,§) With§>S, S#— andS#T.

Sort Type: S == — | T|(®

Ordering: Abbreviations:

(input only)

(base) proc < proc, nat <nat,S<S§ etc. (%) d:ef<(f) )
(-7 -—-<s s<T (output only)
(vec) Vi<t = (1) <(T) ~\q def ~
(=) I>7,p<p = 1—p<T —p (D =(T,(1)

(chan)  0i =(S1,S0), Su<Sr, Sw>Sw = 01<02. (input/OthpU(E)ef -
(DT =D, (1)

FIGURE 3. Types form

calculus; the ordering of input types is covariant, whertkas of output types is contravariant.
The condition on channel type§; > § is necessary to ensure that a receiver always takes
fewer capabilities than specified by the outside envirortinghile a sender always send more
capabilities than specified. Then, as already discusselbin lO-types in [23] are represented
as a special case of our |O-typesy denote them, we introduce the abbreviations in Figure 3.
Note that(T)!® < (T)! < (—, T) and (7)™ < (T)° < (-, T). Note also(—, T) # T because
the former is a type for a channel which is only used as a valae émpty capability), while
the latter is the top of sort types. The subtyping relatioardypes defined in Figure 3 is partial
order and finite bounded completgc, (cf. [16]). The partial meet operatorand join operator
LI can be also defined directly following [16]. For the base amdvatypes, we defin€l and
L as the standard join and meet operators wst. For channel types, we use the following
definition:

(vec) HuUE@)E@)witht =tut  and ()N @) L' @) witht’ =Nt

(chan) ()S,S)U(S,$) € (SUS,$NS) and

0) (S, ) N(S, ) E'(S NS, SUS)if S > S andS, > S; else undefined.

If SIS (resp.Su S) is undefined in (vec), (i.e. they are structually dissimdado not satisfy
the 10 constraint), then we s801S = — (resp.SUS = T) in (a) in (chan).

THE IO TYPING SYSTEM Type environments, ranged over by A, ..., are functions from a
finite subset oN UV to the set of value types. We use the following notation:

e dom(l) denotefu|u:tel} and [ /Adenotequ:tel |u¢A}.
e I u:tmeand U {u:Tt}, together with the assumptianz dom(I").
e A<T means? ue dom(lN). A(u) < T(u).
Then we define:
o TAAET/AUA/AU {u: (AU)NT (W) | u€ dom(T) Ndom(A)}, and

o TUAT {u:(AU)LT(U)) | ue dom(T) N dom(A)}

U
)

10ur general form of IO-types, where input and output cajtisilon a channel may be different [17, 16], gives us
more typable terms than [23] even if we restrict the syntathéopure polyadietcalculus. See Example 2.5 in [33].
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Common Typing Rules:

: Tk u: . [EP:T 1<t
ID: [uthu:T SUB: P
Functional Typing Rules:
CONST. Tk 1:nat etc. ABS: rx:tEP:p

FrNEAX:T).P:1—p
rFP:1—p M-Q:1
r=PQ:p

MNPt MxitHEQ:p
MFletx:tT=PinQ:p

LET: APP.

Process Typing Rules:

rcu: (' rxi-P:proc

: ) : :
IN: FFUAX:1).P: proc NiL: TFO:proc
_rku:(f)” Mr-Vi:ty M-P:proc . TFP:proc
our [ ul(V)P: proc REP: FF+P - proc
. la:oFP:proc . MTFP:iproc IFQ:proc
RES: Ik (va:o)P:proc PAR: =P|Q:proc

FIGURE 4. Typing System fori

Typing Assignments are formuladsP : p for any termP and any type. We writel” - P : p if the
formulaP : p is provable from a typing functioh using the Typing System given in Figure 4.
This is divided in two parts. The first is inherited from thecalculus, while the second is a
simple adaptation of the IO-Typing system from [23, 16].

EXAMPLE 2.2. (typed sq server) We may now revisit the example diszliabove, assigning
appropriate types to the channel names and variables intoln the definition og(a) a pair
of values are input, a natural number and a channel respigtand this channel will be used
to transmit a natural number. So the following annotatiomildde reasonable:

sq(a)<= *ay:int,z:(int)?). Z(sq(y))

However with this typing a user of this process, when tramténgj to it a return channel, is also
giving the process permission to receive on that channebrdeide protection against possible
misuse a more appropriate type annotation would be

sg(a)<= xay:int,z:(int)?). Z(sq(y))

where the process only receives the output capability orreh@n channel. Now we have
I+ sg(a) : proc for any typing functiorl such thaf (a) < (int,(int)?)’. Then by A8sin
Figure 4, we have:

F o A(x:(int, (int)")1).sq(X) : (int, (int)®)' — proc

which means that shouldbe instantiated by a channel whose capabilityss than
(int, (int)?)t, then it becomes a safe process. i

This simple typing system satisfies the following standaitgject reduction theorem.
THEOREM 2.3. (Subject Reduction)
IfT+P:pandP —— P, then we havé + P : p.
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Syntax:

Term: PQ,..e Term :=  Spawn(P) | --- from Figure 1
System: M,N,..€ System:= P | N||M | (va:o)N
Others from Figure 1.

Distributed Reduction Rules:
(spawn) (---Q[sSpawn(P)) — (---Q)||P
(com)  (UAK:T).P|--) [ (WV)Q| ) — (P{V/K}] ) [1(Q] )

M—M N— N N=N-—M=M
(Pas) IN— M'[|N (res) (va:o)N — (va:o)N’ (strs) N—M

FIGURE5. Syntax and Distributed Reduction im®

3 Locality of Channelsin Distributed Higher Order t-calculus

In this section we first extend the language by introducinepanticit, but simple, representation
of distribution of processes. Then we discuss the main toptbe paper, difficulty to ensure
locality of names in D\,

DISTRIBUTED HIGHER ORDER T-CALCULUS The extended syntax is given by in Figure 5.

Intuitively N || M represents two systend$, M running at two physically distinct locations,
while the processpawn(P) creates a new location at which the process launched. A more
comprehensive representation of distribution could bemias in [7, 16, 29], by associating
names with locations and allowing these names to be gededgtgamically and transmitted
between processes. However the simple syntax given abaugfisient for our purposes to
study the use of our locality typing system in the distrilolgetting. The reduction semantics of
the previous section is extended to the new languagg, D a straightforward manner, outlined
in Figure 5. The structural equivalence of systems is defiryechanging " to “ ||” and P,Q,R
toM, N, N'in Figure 2. The first two rules are the most important, narspgwning of a process
at a new location (spawn) and communication between phiysitiatinct locations, (cor).

DEFINING LOCALITY  We require that every input channel name is associated withigue
location. This is violated in, for example,

a?y). P || (a%2). Q|bAxy). Ri|bAx2). Ry)
because the nangecan receive input at two distinct locations. Note howevat the namé is

located uniquely, although at that location a call can beised in two different ways.
A formal definition of this concept (or rather its complemenbcality error, is given in

Figure 6, using a predicate on systemdsﬂ. Intuitively this should be read as saying: in the
systemN there is a runtime error, namely there is some nawich is ready to receive input at
two distinct locations. The definition is by a straightfore/atructural induction on systems and
uses an auxiliary predicate | a' which is satisfied wheR can immediately perform input on
namea. Now let us say a channel tygeis local if o has an input capability, ie = {(1),S).
We also call a channelis local under I if I'(u) is local.

DEFINITION 3.1. 1 andl', arecomposable, written bylM1 =< I, if [1 T, is defined, and ;
andl , aresystem-composable, written by My =3 Iy, if [ <y andu: (S1,Se) €T (i=1,2)
impliesS;=TorS; =T. |

Intuitively this means that if a channalis local in 1, then it must not be local in another
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Input Predicate:

P|a Qla Pla’ a#b PJa P|a

AOPIE BQIE PlQla wbPlad  Pld SpamP)la

M| a N|a Nja' a#c
(N[[M)[a" (N[[M)la  (voN|a

L ocality Error:

Nla® M|a N & NS
(N[|M) =2 (N|M) 2 N &2

FIGUREG6. Locality Error

Local Distributed Rules:

SPAWN: INTRO: PAR;: RES:
- P:proc F-P:proc THN AFM I A MaokH M
I F spawn(P) : proc M= P FMAF, N[[M Ik (va:o)M

FIGURE 7. Local Distributed Typing Rules

environment .

The typing system for the systeli) which is given by Distributed Typing Rules in Figure 7,
is simply in form ofl" = N wherel is again the same typing function. The most essential rule
is PaRy; this says thal; || N; is typable with respect to an environménif A can be written as
MMy, wherel 1 <7 > andN,; is typable with respect tb;. If the term is system composable,
then we have no immediate locality error sirRe a' andl" -y P: proc imply I' - a: (T)* for
somet. That is:

THEOREM3.2. (Type Safety) i N implies N /2.

It is however easy to see that the system composability asedefibove is not closed under
reduction: indeed, we easily hawé ﬂ andN —— N’ doesnot imply N’ ﬂ

DIFFICULTIES IN PRESERVING LOCALITY INDT\ There are basically two reasons why lo-
cality is not preserved after communication. The first reasothe use of a name received
from another location as an input subject. The second, wisichore complicated, concerns
the parameterisations of processes and the instantiafiear@bles which occur in outgo-
ing values. We first start with a simple example which doesinablve process passing.
Takea?(x). P|bl(a) || bAy). yA2). Q. Then it is easy to check that this can be typed with
PAR, in Figure 7. However after one reduction step, the commtioicaalongb, we obtain
a?x). P || a?(2). Q, which is no longer typable. It is not difficult to exclude suerms by a
simple syntactic condition or typing systems, as has baatied in [2, 27, 5, 21]. However
the presence of higher-order processes makes the situatiomcomplicated, as the following
example shows.

ExAMPLE 3.3. LetV denote the valug().sq(a) in the slightly modified system
a2(x). P|bl(V) || b2AY).Y ()

Once more this is a typable configuration; neverthelessy #fie transmission of the valie
to the new site and a reduction we get a system which violatesooality conditions. Next
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Types:

Term Type: p = T |1

Process Type: 1 ::= proc | S(proc)

Value Type: T = unit | nat | bool | 0 | (1) with T#0

| T—p withp~sp)=1x9T)
Channel Type: 0 = s({T,S)) | (5,S) with §>S, S#Z—and S #T.
Sort Type: S 1= asinFigure 3.

Ordering: All rules from Figure 3 and

(mono) p<p' = s(p)<s(p) (sendable) s(p) <p
(id) s(p) < s(s(p)) (lift) (1) — s(p) < S(S(1) — S(P))
(=) p<pP AP <p = pxp

FIGURES. Locality types for DA

consider a similar code whe¥edenotes\(x). sq(x).

a?(x). P|bl(V) || b2Y). (Y¢)[cA%). Q
Then this does not destroy localityl

Certain values areendable in that their transfer from location to location will nevead to

a locality error. For example, the first vali¢). sg(a) is immediately not sendable, although
A(x).sq(x) will be sendable, because it contains no free occurrenagpoitichannels. However
the algebra ofendable and nonsendable terms is not straightforward.

ExAMPLE 3.4. LetV be a seemingly sendable valMg). sq(x) in the system

d2X). X() [BH{V) [| bAY). d(A().(Y©)) |€Ax). Q

HereV is transmitted alond across locations, where it is used to construct a new value,
A().(V ©); this is then transmitted across locations diand when it is run we obtain once
more a locality error. More interestingly, the following e® not disturb locality although we
passi().sq(c) directly:

d2X). X() || bHAQ. sa(0) |BAY). Y () |€Ax). Q

However, the following violates locality.

dAX). X() || bAQ-sa(0)) [bAY). dI(Y) [c2x).Q O
Again the problem in the first example is the non-sendableeg\().(V c), which does not
appear in the original system, but constructed dynamicSiiyilarly in the third example, only
Y appears an object @it (Y), but it was dynamically instantiated by non-sendable value

We need a new set of types which includersdable/non-sendabletypes and a typing system
which controls the formation of values and ensures thatémewccurrence ob!(V), where the
termV can be exported to a new location, it can only evaluate towevaisendable type.

4 TypelInference System for L ocality

This section formalises a new typing system for processks.ifiportant point of our system is
if each process in each location is statically type-checleddcan automatically ensure that, in
the global environment, input capability always residea ahique location even after arbitrary
computation.
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Send Rules:
. k1l :nat . I'Ha(T§
CONST; : FFil:Snat) etc. QHAN;) : Frra: s(T,9)
TERM, : AHP:p AbFy18BL A>T SPAWN|: 1 P:g(proc)

L P:s(p)
Common Rules: as in Figure 4.
Functional Rules: as in Figure 4 adding a conditigq~ s(p') = 1 ~s(1') for LET.
Process Rules:

I k1 Spawn(P) : S(proc)

M us(s()° My u: (), (D)
FEViis(ti) FH P ouT:: F-1Vi:ti Tk P:proc
T ul(V)P:m I Ty ul{(V)P: proc

OuTy:

NiL,RERPAR,RES as in Figure 4 withproc replaced byrt, and N as the same as in Figure 4.

Local Distributed Rules: PaR; and RES as in Figure 7 andNTRO as in Figure 7 with+
replaced by-; in INTRO.

FIGURE9. Locality Typing System for DA

LocAL TYPING SYSTEM We add a new type constructsfp) for sendable terms; the for-
mation rules and ordering are given in Figure 8. A channektwyith the input capability is
not sendable. The side condition of arrow types simply av@idendable term having a non-
sendable subterm; e.g. if eitheor Q is non-sendable, thdPQ is automatically non-sendable.
The first extra ordering rule says that the construs{or preserves subtyping; the second that
all sendable values are values. In conjunction with thelthite second implies that sendability
is idempotents(s(p)) ~ s(p). Similarly with the forth, we haves(s(1) — s(p)) ~ s(1) — s(p).

The new type inference system is given in Figure 9. Baed Rules determine which values
can be sent between locations. All constants and outpubddjss on channels are automat-
ically sendable. In the crucial ruleERM, we use the notatioA -; SBL to denote tha\ is a
sendable environment, that is it consists only of sendable types; formallyift € A, then (1)
T~95T)or(2)u=aandt =(T,S). Thus a general term is sendable if it can be derived from
a sendable type environment.

The rules for processes also require minor modifications.cévealso create a process by
spawn if it is sendable. In @ry we require that values which will be sent across locationg ha
sendable types. However if the transmission is only donéénsame location, this condition
should be relaxed; in O@r;, a message is guaranteed to transmit inside the same locatice
namea has an input capability. The side condition cft plays the same role of that of the
arrow type in Figure 8. Note also an input process has alwayaon-sendable typeroc.

ExXAMPLE 4.1. (sqg-server) In the following, we offer a non-trivialerple of the use of send-
ability in typing. Recall Examples 2.1 and 2.2, and let usraefi
0 =(int,(int)’)! T=0—proc 0 = (int,(int)")™"
First we note\(x: 0). sq(x) has a sendable ty[seo — proc) by Example 2.2. TheBqServ is
typed as follows.
req:((t)?)! k1 «req(r:(1)?).r'{A(x:0). (X)) : proc
Here a type declaratior(t)?” of r ensures thaBqServ does not create a new input subject by a

value received though channel “req”.
Next forClient, firstlet us define its body &= ( Xa |al(1,c3) | - - -). To acceph(X: 0). sq(X)
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from the server and creatg(a) by applyinga to A(x: 6). sq(x), a will be used with both in-
put/output capabilities if?. HenceP is typed as:X: 1, a:0’ 1 P: proc. Now let us define
I =req:((1)%)% r:(1)™. Since(1)™ < (1), by applying REsand IN, we have:

M rAX:1). (va:o’)P: proc
To outputr through “req”,r should have a sendable type. Then,(by® < (1)° and GHAN,
rule, we have:
MEpri(t)’
Meres((n)?)
The type of the channel “req” in the client is inferred $§yt)°) < (1)° as well as contravariance
of output capability:

rFy reqi(s((1)°))”
Combining these three, we now infer:
req:((T)°)° k1 (vr 1 (D))regir)rAX:1). (va:o’)P = Client
Finally by {req:((1)°)*} =1 {req:((1)°)"}, both systems are system composable.
req:((1)°)*° 1 SqServ || Client
Observe that:

(1) The sendable typgo — proc) of A(x:0). sq(x) makes it possible to create a new server
sq(a) in the client side.

(2) r is declared with both input and output capabilities in @igent. The Client itself uses
the input capability but, because of the type of “req” it oagnds the output capability to
SqServ. This form of communication is essential to represent ainoation passing style
programming in thawcalculus as studied in [19, 23, 26, 27].O0

One can also check the first system in Example 3.3 and the fidsttard systems in Example
3.4 are not typable in any environment, while the seconcesystin Examples 3.3 and 3.4 can
be typed using ErRM; and QuUT, rules, respectively (see [33]).

SUBJECTREDUCTION In the following we prove locality is preserved under redoist Note

if Pis a function, it is possible th&tt; P: s(p) is inferred by either ©NST,CHAN|,SUB,APP

or LET without using TERM; directly. But by (1) below, we can regard all sendable types a
inferred by TERM, uniformly. We note that as a special case of (2), we hawes(p').

LEMMA 4.2.

(1) (sendable) - P: s(p) implies there existA s.t. A>T, Ay sBL, andA 1 P: p.
(2) (local substitutionpupposé ,x:1,; P:p andrl 1 V : 1. Then we havé 1 P{V /x} : p.

The following decomposition lemma says the global systerdeisomposed into a local
process with an input-disjoint typed environment.

LEMMA 4.3. Supposé 1 N= (Va:3)((Pu|--- [P - || (Pm| - - | Pmy)) whereRj is

neitherP | Q nor(va)P. Then there exists; such thaé: &, C'or; with T =, MNA<i#j<

m) andl 1 By i proc (L < k< ).

The main lemma requires the order-theoretic propegy, of our subtyping relation (see [33]),
together with Lemma 4.2.

LEMMA 4.4. (main lemma) Suppose:1' 1+ P:mandl, 1V :s(t) withy =<1 I and
T < g(1). Then there exista such that(a) At SBL, (b)AF1V:S(1), (C)F1MAFR P{V/x}: T,
(A mAnF, =Ny, and (e =y A=y M.
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THEOREM4.5. (Subject Reduction Theorem)

If TFE N andN—— M, thenTl 1 M.

OUTLINE OF THE PROOE The non-trivial case of the proof of the subject reductioedrem is
when a value is sent to a different location by (gpmle. By Lemma 4.3, we only consider the
following case: suppode; - a?(x:1). P, 27 al(V). Qandl; <; ;. Then we show:

MMk a?2x:1). Plla(V). QimpliesT  MAF; P{V/x} andlz 1 Q

withT1MA=; My andlMMANT, =111, for someA. By the main lemma, we can takeas
a sendable environment such tigt; V : s(1), which establishes the theorem. See [33] for the
details.

Combining Theorem 3.2 and Theorem 4.5, we now have:

COROLLARY 4.6. (Type Safety) I i, N andN —— M imply M 2%

5 Further Development
This section illustrates usefulness of our typing systeawshg some interesting applications.

5.1 Generalisation to Global/Local Subtyping

In this subsection, we show that our sendability notion cargénerally extended to a more
refined channel usage based on Sewell's idea [29]. A simpémsion is easily done by labelling
channel types by one of thecality modes, given by{aG,Lg,GL,LL}, ranged over byn,n, ...,
which are:

¢ GG —a channel is allowed to be used as the input and output $algjegwhere.

e GL (resp.LG) — a channel is used as the input (resp. output) subject amgylvhile as the
output (resp. input) subject only inside this location.

¢ LL —a channel is used as the input and output subjects onlydtatation.

A partial order on this set is given by: reflexive closurezef< mwith m= Lg,6aL. andm < LL.
Then the syntax of channel type is extendeth{6;, S;).2 For the typing system, we first extend
the GHAN; rule in Figure 9 as following @ANg rule.

MNga:lL{S,S) MN-ea:L6(S,S) MNHgaiel(S,S) MNga:66(S,S)
MNga:sea(T,—)) Trga:gea(T,S)) MNrga:sea(S,—)) TrFga:sea(S,S))

If a has the modeL, then it is prohibited from being used as the output subjean other
location, hence it should be sent as if it were only input bilpg (S, —) with the modesa.
Since the receiver only accepts the higher capability froengender, it is only possible to uae
asm(S;, —) with ¢ < m. The basic idea of the input and output rules is the same asilésein
Figure 9; we only allow processes to pass sendable termsatmate location, while any terms
can be passed inside its location, whose destination isgtesd by the moda.. Thus, we can
consider that the local typing system discussed in the pusvsection is concerned with only
sub-ordering.¢ < LL. In the following, we assumg(T)° denotes eithe&L(T,T) or LL(T,T),
andL(T)* denotes eitherg(T, —) or LL(T, —).

INg: OuTgq: OuTy:
Mhgu:m(®)! Mg u:m(s(1))° MFg u:LL{(¥),(T))
MXthgPimm (1) T ViiS(T) FHEPimm (1) ThHViiT g Prproc
Mg u2X:7).P:m Mg ul(V)P:mt g ul(V)P:proc

°mdenotes howais used as theubject, while Sy, § in (S, S} stand for types obbjectsa carries; these are notations
of the different level. For exampléL(%, '} does not meaG(1),L(1"))).
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where (1) ifm= L, thentt = proc. Note in this generalisation, a term which includes input
capabilities can be passed outside if all subjects are bl@iaer rules except €aN;, IN and
Our, g4 are the same as the rules in Figure 9 repla¢ipgvith .

Then two environments; andl, are composable, denoted By =g I, if 'y < > and if
u:m(Sz,Se) €T (i =1,2), then (1)m = LL impliesSj; = T andSj, = —, (2) m = La implies
Sj; = T, and (3)m = aL implies Sjp = — with i ## j. Then we change the rule of the system
composition as in the following.
MM AF,N T=x,A

rMAFg M[IN

THEOREMS.1. (Subject Reduction) If =¢ N and N —— M, thenT kg M.

The definition of run-time error is however somewhat more pboated. In general whether
or nor there is a violation of the locality requirements degi'eon an apriori decision of which
channel capabilities can be used globally. For exampleyiping dictates that input on a channel
ais global then no run-time error occurs if the input predi occurs at two distinct locations.

Thus to formalise run-time errors we require a notion daégged version of the language
along the lines of [23] or [16]. The reader familiar with théEhnique should be easily convinced
that such a tagged language could be developed, togethreaw#ppropriate version of a Type
Safety theorem.

PARg:

5.2 Behavioral Equivalence

A precise type abstraction of the communication structdrprocesses induces a non-trivial
behaviour equivalence; such effects of types have already btudied in, e.g. [23, 27, 31], for
various kinds of encodings. Since we can express compuattimnstraints similar to those in
[21, 3, 27] by appropriate restriction of syntax and rule®im\, interesting behavioural equal-
ities can be inherited from them for higher-order processkest =~ denote a typed barbed
reduction-closed congruence defined by input/output peeds and reduction-closure prop-
erty as in [23, 31, 2, 27]. Then we immediately obserlie: N andN — N’ by either @),
(lety2) or (app ) in Figure 2, therN ~r N’. Note also that we do not alloR|| (Q|R) being
structurally equivalent t® || (P|R), but we can prove the distributed equations: for same
(P|spawn(Q)) || R~a (P| Q) [|R~a P||(QIR) andP|| (a!(V) | Q) ~a (P|al{V))[| Q, etc.

We also have the following multiple higher-order strongliegion theorem which is not
valid in untyped D, but valid in the local D studied in Section 4.

PROPOSITIONS.2. Let us defineR Cg*a?(i). Ri|---| *a?AX). Ry with R; sendable. Then we
have:  (va)(R[|P||Q) ~r (va)(R|P)||(va)(R|Q)

Note we do not require any side condition fandQ (cf. [23]). The proof is by observing that
P andQ may only export the sendable valvevia a since the left-hand side of the equation is
typable (note it is impossible that a namaés local in eitherP or Q). We can then apply the
standard reasoning framework from [26, 23, 27, 2]. Note #igproposition can not be derived
from the system in [27] sincais neither lineaw-receptive name.

Such theorems will be useful for reasoning about objearied systems where templates
are shared among locations. Further extension of typedvalgmices studied im-calculus
(e.g. [27, 31]) to distributed higher-order processes isnderesting research topic we intend
to pursue.

5.3 Type Checking

For a practical use of a typing system, it is essential thatcare check the well-typedness
of a systemN against a global type environmeht For this purpose, we can construct an
equivalent typing system te; without TERM;, which becomes syntax-directed (in particular,
in type reconstruction we use the partial meet operator tainka sendable type). Using this,
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we can easily obtain an algorithm to check the typabilitPafgainst”, as well as an algorithm
to computep such that” ; P:p givenT” andP. The algorithm can also be extended to the
global/local subtyping discussed in 5.1.

6 Discussion and Related Work

We proposed a static local typing system and we used it to shatva a global safety con-
dition can be guaranteed by static type-checking each lomafiguration; we do not require
additional resource informations in the different locagdo ensure a safe higher-order process
passing/receiving. We also showed that the system can baded to global/local subtyping
[29] and gave some non-trivial equational properties ofuthderlying languages.

6.1 Encoding intat-calculus

In [26] there is an elegant translation of processes usighdriorder values into a first order
process language where only channel names are transmiteedow examine this translation
of DT\. The basic idea is to replace the transmission of an abitraeith the transmission of a
newly generatedrigger. An application to the abstraction is then replaced by astrassion of
the data to the trigger, which provides a copy of the abstratiody to process the data. Using
this ideasqServ is replaced by

[saServ]< *req®r). (vtr) (r{tr}| Sy) with Sy<= *trx). sq(x)

Here when a request is received, a new trigger is generatetltheen returned to the client.
Associated with the trigger is a trigger serv€; which receives data on the trigger and then
executes the body, nametli{sq(x)). Suppose we have the followir@ient, who already has

a square server for faster parallel evaluation.

Clienty<= (var)(regXr).rAX). Xa | sg(a) | al{1,cy) | al{2,¢cp) | al(3,c3)--)
Then the client is replaced by
[Client,] <= (var)(reqlr).rtr). tr'{a) | sq(a) | al{1,c1) | al{2,cp) | al(3,c3) )

The application irClient is replaced by a transmission ato the trigger, which was received
in response to the request.
However there is an essential differences between the tatersg:

sqServ || Client, [sgServ] || [Client,]

As seen in the following, in the former, the new recepdnfa) is created in the client location,
whereas in the lattesg(a) is created on the server side, which disturbs the locality.

sqServ || Client, —— sgServ [| (va)(sg(a)|sa(a)| al{l,c1)--)

[saServ] || [Client2] —— (va)(sq(a) | [saServ] || sa(a)| al(1,cy) )

Actually we can check that for all, we have:l /1 [Client,] || [saServ], sincea should be
used as input capability in the server side to create aséa). ButsgServ || Client is typable
as seen in Example 4.1. This example shows that it would reragty difficult to adapt the
translation technique in [26] so that the local typing stuue is preserved. This indicates higher
order distributed calculi are worthy of independent inigegion.

6.2 Related work

Locality in Tecalculus. The expressiveness of locality and mobility have been studi the
T-calculus, especially in [3, 21, 5, 32, 11]. The untyped laeaalculus [21, 5, 32] is simply
defined with the following input restriction rule

a?x). P if x does not appear as a free input subjed in
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By Corollary 4.6, the proper subset off® in Section 4 where we only consider channel pass-
ing and a single location without using OUTule, satisfies their required locality property.
Similarly receptiveness studied in [3, 27] is ensured if the system starts reductimms the ini-

tial statement where each location contains only a singleges’> One may consider a better
way to ensure the locality in T\ is the following syntactic restriction as the same as thalloc
T-calculus.

AX.P if x does not appear as a free input subjed in

However this restriction is too strong; if we use it, new ggoes are never created I3+
reduction, hence Example 4.1 is no longer typable. Moretivisridea does not work if we
wish to control the higher-order abstraction as seen in Epard.4.

[11] showed that a locality condition similar to ours of Sent4 is practically useful to de-
scribe various kinds of encodings in Distributed Join-Qhls. Our approach differs from theirs
since our aim is to establish a formal typing system for aabyt higher-order process pass-
ing and instantiations which ensures locality in the notal@nvironments; our typing system
control higher-order term passing where new receptors eatréated inside the same location
(cf. OuT, in Figure 9).

Restriction of capability on names: In our system, a channel which has an input capability in
the local environment can be exported outside the origowationasif it had output capability
only, by CHAN, in Figure 9; this is essential to represent a continuatiasiog style program-
ming as seen in Example 4.1, which is in some aspects similarformulation of triggers in
Definition 5.3.1 in [23]. Secondly in our system, if a varialalppears in an object position in
an outgoing message, it should have a sendable type. Heitde found by a prefix oi-
abstraction, then the bound variable is automatically tated bys( ) (e.g.b2Y :5(1)). dI{Y)}),
which rejects receipt of non-sendable value from a diffelecation. The idea of direct restric-
tions on input prefixes rather than on outgoing values is sladied in [4] for ther-calculus,
with the aim of ensuring no leak of secret names. In our systesse frameworks are gen-
eralised to deal with higher-order process passing presgigcality with subtyping o\ and
Tecalculi.

Distributed higher-order processes. As argued in [10, 9, 20, 28], many practical applications
call for parameterised higher-order process passing,wigy be difficult to represent directly
without functional constructions even with a migrationloé tsecond order processes. Since our
language is also based on the subtyping offwalculus, it is straightforward to import richer
subtyping, e.g. records, recursive types, polymorphiesyipto the distributed languages.

We believe our simple capability control based on subtypiiibbe equally applicable to a
wide range of concurrent/functional languages, includédlO, 9, 20, 28]. In general, exten-
sions of higher-order process passing to more advancedbdigtd primitives, such as hierar-
chical location spaces [16, 29, 15], process mobility [7, 2B, and cryptographic constructs
[1, 14] needs to be investigated.

References

[1] Abadi, M. and Gordon, A., The Spi-calculus, Computer @wmmunications Security, ACM Press, 1997.
[2] Amadio, R., Translating Core Facile, ECRC Research Repbi-3, 1994.
[3] Amadio, R., An asynchronous model of locality, failuesd process mobility. INRIA Report 3109, 1997.

[4] C. Bodei et al., Control Flow Analysis for thee-calculus,Proc. CONCUR 98, pp.85-98, LNCS 1466, Springer-
Verlag, 1998.

3More exactly, we need to replae® with the input replicatiorsa?x). P and use the demand driven reduction for
+a?(x). P as (com) instead ofP = P| xP. For the linear and receptiveness, we need an additional constraint such that
uis notlocal undef in IN in Figure 9. Note we do not treat uniformity [27]/dead-lockddom [31] for the simplicity.



(5]
(6]
(71
(8]
9]
[10]
[11]
[12]
[13]
[14]
(18]
[16]

[17]
(18]

[19]
[20]
[21]
[22]

(23]
[24]

[25]
[26]

[27]
[28]
[29]
[30]
(31]

[32]

[33]

Subtyping and Locality in Distributed Higher Order Proass 15
Boreale, M., On the Expressiveness of Internal MobilityName-Passing CalculRroc. CONCUR 96, LNCS
1119, pp.163-178, Springer-Verlag, 1996.
Boudol, G., ThereCalculus in Direct StylePOPL’98, pp.228—241, ACM Press, 1998.
Cardelli, L. and Gordon, A., Typed Mobile Ambienf,oc. POPL'99, ACM Press, 1999.
Chien, A., Concurrent Aggregates, MIT Press, 1993.

Ferreira, W., Hennessy, M. and Jeffrey, M., A Theory ofdkeBisimulation for Core CML, Proc. Int. Conf.
Functional Programming, pp.201-212, ACM Press, 1996.

Giacalone, A., Mistra, P. and Prasad, S., Operatiomélgebraic Semantics for Facile: A Symmetric Integration
of Concurrent and Functional Programmitgpc. ICALP' 90, LNCS 443, pp.765-780, Springer-Verlag, 1990.

Fournet, C. et al., A Calculus for Mobile Agen@ONCUR 96, LNCS 1119, pp.406—-421, Springer-Verlag, 1996.
Sun Microsystems Inc., Java home page. http://wwasgatt.com/, 1995.

Hartonas, C. and Hennessy, M., Full Abstractness fouackonal/Concurrent Language With Higher-Order
Value-Passingnformation and Computation, Vol. 145, pp.64-106, 1998.

Heintze, N. and Riecke, J., The SLam Calculus: Programgmith Secrecy and Integrit{eroc. POPL' 98, pp.365-
377. ACM Press, 1998.

Hennessy, M. and Riely, J., Type Safe Extension of MoBigents in Anonymous NetworkBOPL'99, ACM
Press, 1999.

Hennessy, M. and Riely, J., Resource Access Controyatens of Mobile Agents, CS Report 02/98, University
of Sussex, http://www.cogs.susx.ac.uk, 1998.

Honda, K., Composing ProcessB&PL’ 96, pp.344-357, ACM Press, 1996.

Honda, K. and Yoshida, N., On Reduction-Based ProcessaticsTCS, pp.437-486, No.151, North-Holland,
1995.

Honda, K. and Tokoro, M., An Object Calculus for Asynehous CommunicatiorECOOP’91, LNCS 512,
pp.133-147, Springer-Verlag 1991.

Leth, L. and Thomsen, B., Some Facile Chemistry, ERCEhmeal Report, ERCC-92-14, 1992.
Merro, M. and Sangiorgi, D., On asynchrony in name-pagsalculi,ICALP’' 98, 1998.

Milner, R., Parrow, J.G. and Walker, D.J., A Calculus\dbile Processes$nformation and Computation, 100(1),
pp.1-77,1992.

Pierce, B.C. and Sangiorgi. D, Typing and subtypingfabile processe8ISCS, 6(5):409-454, 1996.
Pierce, B. and Turner, D., Pict: A Programming LanguBgsed on the Pi-calculus, Indiana University, CSCI
Technical Report, 476, March, 1997.

Plotkin, G., Call-by-name, call-by-value and the latabcalculusTCS, 1:125-159, 1975.

Sangiorgi, D. Expressing Mobility in Process Algebras: First Order and Higher Order Paradigms. Ph.D. Thesis,
University of Edinburgh, 1992.

Sangiorgi, D., The name discipline of uniform receptiessProc. ICALP'97, LNCS 1256, pp.303—-313, 1997.
Sekiguchi, T. and Yonezawa, A., A Calculus with Code Nigh Proc. IFIP, pp.21-36, Chapman & Hall, 1997.
Sewell, P., Global/Local Subtyping for a Distributedgalculus. Technical Report 435, Computer Laboratory,
University of Cambridge, 1997. Extended Abstract appearé&uoc. ICALP’ 98.

Vasconcelos, V. and Honda, K., Principal Typing SchdorePolyadic +Calculus.CONCUR 93, LNCS 715,
pp.524-538, Springer-Verlag, 1993.

Yoshida, N., Graph Types for Monadic Mobile Procesd$eS[/TCS 16, LNCS 1180, pp. 371-386, Springer-
Verlag, 1996. Full version as LFCS Technical Report, EC&86-350, 1996.

Yoshida, N., Minimality and Separation Results on Aslyronous Mobile Processes: Representability Theorems
by Concurrent Combinators. Proc. CONCUR’98, pp.131-148C6 1466, Springer-Verlag, 1998.

Full version of this paper. Available from: http://wwengs.susx.ac.uk/users/nobuko/index.html. To appe@fas
Report, University of Sussex, 1999.



