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Abstract: This paper studies one important aspect of distributed systems,locality, us-
ing a calculus of distributed higher-order processes in which not only basic values or
channels, but also parameterised processes are transferred across distinct locations. An
integration of the subtyping ofλ-calculus and IO-subtyping of theπ-calculus offers a
tractable tool to control the locality of channel names in the presence of distributed
higher order processes. Using a local restriction on channel capabilities together with
a subtyping relation, locality is preserved during reductions even if we allow new re-
ceptors to be dynamically created by instantiation of arbitrary higher-order values and
processes. We also show that our method is applicable to a more general channel con-
straints studied by Sewell in a higher-order distributed setting.
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Subtyping and Locality in Distributed Higher Order
Processes

NOBUKO YOSHIDA MATTHEW HENNESSY

1 Introduction

There have been a number of attempts at adapting traditionalprocess calculi, such as CCS
and CSP, so as to provide support for the modelling of certainaspects of distributed systems,
such asdistribution of resources andlocality, [3, 11, 21, 24, 29]. Most of these are based on
first-order extensions of theπ-calculus [22]; first-order in the sense that the data exchanged
between processes are from simple datatypes, such as basic values or channel names. There
are various proposals for implementing the transmission ofhigher-order data using these first-
order languages, mostly based on [26]. However these translations, as we will explain in 6.1,
do not preserve the distribution and locality of the source language. Consequently we believe
that higher-order extensions of theπ-calculus should be developed in their own right, as formal
modelling languages for distributed systems.

In this paper we design such a language and examine one important aspect of distributed
systems, namelylocality. The language is a simple conservative extension of the call-by-value
λ-calculus [25] and theπ-calculus [22], together with primitives for distributionand spawning
of new code at remote sites. The combination of dynamic channel creation inherited fromπ-
calculus and transmission of higher-order programs inherited fromλ-calculus offers us direct
descriptions of various distributed computational structures. As such, it has much in common
with the core version of Facile [2, 10, 20] and CML [9] and can be regarded as an extension of
Blue-Calculus [6] to a higher-order term passing.

A desirable feature of some distributed systems is that every channel name is associated with
a unique receptor site, which is calledreceptiveness in [27]; another property calledlocality
where new receptors are not created by received channels, has also been studied in [3, 5, 21, 32]
for an asynchronous version of theπ-calculus. The combination of these constraints provides a
model of a realistic distributed environment, which regards a receptor as an object or a thread
existing in a unique name space. A generalisation is also proposed in Distributed Join-calculus
where not only single receptor but also several receptors with the same input channel are allowed
to exist in the same location [11]; in this paper we call this more general conditionlocality of
channels. In distributed object-oriented systems, objects with a given ID reside in a specific
location even if multiple objects with the sameID are permitted to exist for efficiency reasons,
as found in, e.g.CONCURRENTAGGREGATES[8]; This locality constraint should be obeyed even
in the presence of higher-order parameterised object passing, which is recently often found in
practice [12].

In this paper we show that, in a distributed higher-order process language, locality of chan-
nels can be enforced by a typing system with subtyping. The essential idea is to control the
input capability of channels, guaranteeing at any one time this capability resides at exactly one
location. As discussed in Section 3, ensuring locality in higher order processes is much more
difficult than in systems which only allows name passing. However, using our typing system we
only have tostatic type-check each local configuration to guarantee the required global invari-
ance, namelylocality of channels.

The main technical novelty of our work is an extension of the input/output type system
of [23, 16] to a higher-order setting where the order theoretic property of subtyping relation

0Full version available at:http://www.cogs.susx.ac.uk/users/nobuko/index.html.
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Term: P;Q; :::2 Term ::= V j letx : τ1 = P in Q j P Qj u?(x̃ : τ̃):P j u!hṼ iP j (νa :σ)P j �P j P jQ j 0

Value: V;W; :::2 Val ::= u j λ(x :τ):P
Identifier: u;v; :::2 Id ::= l j a j x

Literal: l; l 0; :::2 Lit ::= true j false j () j 0 j 1 j :::
FIGURE 1. Syntax ofπλ

plays a pivotal role for a natural integration with arrow types. The framework will be generally
applicable for other purposes where similar global constraints should be guaranteed using static
local type checking.

The paper is organised as follows. In the following section we study the undistributed ver-
sion of our language,πλ, a call-by-valueλ-calculus with communication primitives based on
channels. Section 3 introduces a distributed version ofπλ, which we call Dπλ, by adding a
process spawning operator and a primitive notion of distribution. We then explain, using exam-
ples, the difficulty of enforcing locality in Dπλ. Section 4 gives a typing system based on the
input/output typing in Section 2, which ensures locality ofall channels in Dπλ by local static
type-checking. In Section 5, we discuss applications of ourwork; extendibility of our typing
system to more general global/local channel constraints studied by Sewell [29] in a higher-order
setting, and the proof of a multiple higher-order replication theorem extended from [23, 27].
Section 6 concludes with discussion and related work. Due tospace limitation, we leave all
proofs and detailed definitions to the full version [33].

2 A Higher-order π-calculus with IO-subtyping

In this section, we introduce a higher order concurrent calculus with subtyping, essentially the
call-by-valueλ-calculus [25] augmented with theπ-calculus primitives [22]. We illustrate the
usage of this typing system by a few simple examples.

SYNTAX The syntax ofπλ is given in Figure 1. It uses an infinite set ofnames or channels
N, ranged over bya;b; :::, and an infinite set ofvariables V, x;y; :::. We often useX;Y; ::: for
variables over higher oder terms explicitly. It also uses a collection of types, the discussion of
which we defer until later.

The syntax is a mixture of a call-by-valueλ-calculus and theπ-calculus. In the former
there are values, consisting of basic values and abstractions, together with application and a
form of let construct. From the latter we have input and output on communication channels,
dynamic channel creation, iteration and the empty process.All bound variables and names
have associated with them a type, but for the moment these areignored. We use the standard
notational conventions associated with theπ-calculus, for example ignoring trailing occurrences
of the empty process0 and omitting type annotations unless they are relevant. We also usefn(P)/bn(P) andfv(P)/bv(P) to denote the sets offree/bound names andfree/bound variables,
to respectively, defined in the standard manner. We also assume all bound names are distinct
and disjoint from free names.

REDUCTION The reduction semantics ofπλ is given in Figure 2 and is relatively straightfor-
ward. The main reduction rules are valueβ-reduction, (β), for the functional part of the language
and communication, (com), for processes. The final contextual rule, (str), uses a structural con-
gruence borrowed from standard presentations of theπ-calculus (Figure 2). We use�!! to
denote multi-step reductions.
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Reduction Rules:

(β) (λ(x :τ):P)V �! PfV=xg
(com) u?(x̃ : τ̃):P ju!hṼiQ�! PfṼ=x̃g jQ

(let1) P�! P0letx : τ = P in Q�! letx : τ = P0 in Q
(appl)

P �! P0
P Q�! P0 Q

(let2) letx : τ = V in Q �!QfV=xg (appr)
Q�!Q0

V Q�!V Q0
(par) P �! P0

P jQ�! P0 jQ (res) P�! P0(νa :σ)P�! (ν a :σ)P0 (str) P � P0 �!Q0 � Q
P �!Q

Structure Equivalence:� P �Q if P �α Q.� P jQ � Q jP (P jQ) jR � P j (Q jR) P j0 � P �P � P j �P� (ν a)0 � 0 (ν a)(νb)P � (ν b)(νa)P (νa)P jQ � (ν a)(P jQ) if a 62 fn(Q)
FIGURE 2. Reduction forπλ

EXAMPLE 2.1. (sq-server) Suppose that in the language we have a literal sq for squaring
natural numbers; this is a simple example of a data processing operation which may in fact be
quite complicated. For a given namea let sq(a) represent the expression�a?(y; z): z!hsq(y)i,
which we write as

sq(a)(= �a?(y; z): z!hsq(y)i
This receives a value ony to be processed together with a return channelz to which the processed
data is to be sent. It then processes the data (in this case simply squaring it) and then returns the
processed data along the return channel. Then a sq-server isa process which on requests sends
to the client the code for squaring values, which the client can initialise locally. Inπλ this can
be defined by

sqServ(= � req?(r): r!hλ(x): sq(x)i
Here the process receives a request on the channel req, in theform of a return channelr, to
which the abstractionλ(x): sq(x) is sent. A client can now download this code and initialise it
by applying it to a local channel which will act as the requestchannel for data processing:

Client(= (νr) req!hri: r?(X): (ν a)( X a ja!h1;c1i ja!h2;c2i ja!h3;c3i j � � �) 2
IO-TYPES We use as types forπλ a simplification of the input/output capabilities of [16] (in
turn astrict generalisation of [23]). They are defined in Figure 3, where we assume a given set of
base types, such asnat andbool, and a type for processes,proc. Value types, types of objects
which may be transmitted between processes or to which functions may be applied, may then
be constructed from these types using the exponential type constructor!, as in theλ-calculus.
However here in addition we may also use channel types, ranged over byσ. These take the formhSI;SOi, a pair consisting of aninput sort SI and anoutput sort SO; these input/output sorts are
in turn either a vector of value types or>, denoting the highest capability, or?, denoting the
lowest. The representation of IO-types as a tuple [17, 16] makes the definition of the subtyping
relationship, also given in Figure 3, more natural when we integrate with arrow types of theλ-
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Type:

Term Type: ρ ::= proc j τ
Value Type: τ ::= unit j bool j nat j τ! ρ j σ
Channel Type: σ ::= hSI;SOi with SI � SO, SI 6=? and SO 6= >.

Sort Type: S ::= ? j > j (τ̃)
Ordering: Abbreviations:

(base) proc� proc, nat� nat, S � S, etc.
(?;>) ?� S S� >
(vec) 8i: τi � τ0

i ) (τ̃) � (τ̃0)
(!) τ� τ0; ρ� ρ0 ) τ ! ρ� τ0 ! ρ0
(chan) σi = hSiI;SiOi; S1I � S2I; S1O � S2O ) σ1 � σ2.

(input only)(τ̃)I def= h(τ̃);?i
(output only)(τ̃)O def= h>; (τ̃)i
(input/output)(τ̃)IO def= h(τ̃); (τ̃)i

FIGURE 3. Types forπλ

calculus; the ordering of input types is covariant, whereasthat of output types is contravariant.
The condition on channel types,SI � SO is necessary to ensure that a receiver always takes
fewer capabilities than specified by the outside environment, while a sender always send more
capabilities than specified. Then, as already discussed in [16], IO-types in [23] are represented
as a special case of our IO-types;1 to denote them, we introduce the abbreviations in Figure 3.
Note that(τ̃)IO � (τ̃)I � h?;>i and (τ̃)IO � (τ̃)O � h?;>i. Note alsoh?;>i 6= > because
the former is a type for a channel which is only used as a value (i.e. empty capability), while
the latter is the top of sort types. The subtyping relation over types defined in Figure 3 is partial
order and finite bounded complete,FBC, (cf. [16]). The partial meet operatoru and join operatort can be also defined directly following [16]. For the base and arrow types, we defineu andt as the standard join and meet operators w.r.t.�. For channel types, we use the following
definition:

(vec) (τ̃)t (τ̃0) def= (τ̃00) with τ00
i = τit τ0

i and (τ̃)u (τ̃0) def= (τ̃00) with τ00
i = τi u τ0

i

(chan) (a)hSI;SOit hS0I;S0Oi def= hSItS0I;SOuS0Oi and

(b) hSI;SOiu hS0I;S0Oi def= hSIuS0I;SOtS0Oi if SI � S0O andS0I � SO; else undefined.

If SuS0 (resp.StS0) is undefined in (vec), (i.e. they are structually dissimilar or do not satisfy
the IO constraint), then we setSuS0 =? (resp.StS0 =>) in (a) in (chan).

THE IO TYPING SYSTEM Type environments, ranged over byΓ;∆; : : :, are functions from a
finite subset ofN[V to the set of value types. We use the following notation:� dom(Γ) denotesfu j u :τ2 Γg and Γ=A denotesfu :τ2 Γ j u 62 Ag.� Γ;u :τ meansΓ[fu :τg, together with the assumptionu 62 dom(Γ).� ∆ � Γ means8 u 2 dom(Γ): ∆(u)� Γ(u).
Then we define:� Γu∆ def= Γ=A[∆=A[fu : (∆(u)uΓ(u)) j u 2 dom(Γ)\dom(∆)g, and� Γt∆ def= fu : (∆(u)tΓ(u)) j u 2 dom(Γ)\dom(∆)g

1Our general form of IO-types, where input and output capabilities on a channel may be different [17, 16], gives us
more typable terms than [23] even if we restrict the syntax tothe pure polyadicπ-calculus. See Example 2.5 in [33].
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Common Typing Rules:

ID: Γ;u :τ` u : τ SUB: Γ ` P : τ τ� τ0
Γ ` P : τ0

Functional Typing Rules:

CONST: Γ ` 1 :nat etc. ABS: Γ;x :τ ` P : ρ
Γ ` λ(x :τ):P : τ ! ρ

LET: Γ ` P : τ Γ;x :τ `Q : ρ
Γ ` letx : τ = P in Q : ρ APP: Γ ` P : τ ! ρ Γ `Q : τ

Γ ` P Q : ρ

Process Typing Rules:

IN: Γ ` u : (τ̃)I Γ; x̃ : τ̃ ` P : proc
Γ ` u?(x̃ : τ̃):P : proc NIL : Γ ` 0 : proc

OUT: Γ ` u : (τ̃)O Γ ` Vi : τi Γ ` P : proc
Γ ` u!hṼ iP : proc REP: Γ ` P : proc

Γ ` �P : proc
RES: Γ;a :σ` P : proc

Γ ` (νa :σ)P : proc PAR: Γ ` P : proc Γ ` Q : proc
Γ ` P jQ : proc

FIGURE 4. Typing System forπλ

Typing Assignments are formulasP : ρ for any termP and any typeρ. We writeΓ ` P : ρ if the
formulaP : ρ is provable from a typing functionΓ using the Typing System given in Figure 4.
This is divided in two parts. The first is inherited from theλ-calculus, while the second is a
simple adaptation of the IO-Typing system from [23, 16].

EXAMPLE 2.2. (typed sq server) We may now revisit the example discussed above, assigning
appropriate types to the channel names and variables involved. In the definition ofsq(a) a pair
of values are input, a natural number and a channel respectively, and this channel will be used
to transmit a natural number. So the following annotation would be reasonable:

sq(a)(= �a?(y :int; z : (int)IO): z!hsq(y)i
However with this typing a user of this process, when transmitting to it a return channel, is also
giving the process permission to receive on that channel. Toprovide protection against possible
misuse a more appropriate type annotation would be

sq(a)(= �a?(y :int; z : (int)O): z!hsq(y)i
where the process only receives the output capability on thereturn channel. Now we have
Γ ` sq(a) : proc for any typing functionΓ such thatΓ(a) � (int; (int)O)I. Then by ABS in
Figure 4, we have:` λ(x : (int; (int)O)I): sq(x) : (int; (int)O)I ! proc
which means that shouldx be instantiated by a channel whose capability isless than(int; (int)O)I, then it becomes a safe process. 2
This simple typing system satisfies the following standard subject reduction theorem.

THEOREM 2.3. (Subject Reduction)

If Γ ` P : ρ andP �!! P0, then we haveΓ ` P0 : ρ.
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Syntax:

Term: P;Q; :::2 Term ::= Spawn(P) j � � � from Figure 1

System: M;N; :::2 System::= P j N kM j (ν a :σ)N
Others from Figure 1.

Distributed Reduction Rules:

(spawn) (� � �Q jSpawn(P)) �! (� � �Q)kP

(coms) (u?(x̃ : τ̃):P j � � �)k (u!hṼiQ j � � �)�! (PfṼ=x̃g j � � �)k (Q j � � �)
(pars) M �!M0

M kN �!M0 kN
(ress) N �! N 0(νa :σ)N �! (νa :σ)N 0 (strs) N � N 0 �!M0 �M

N �!M

FIGURE 5. Syntax and Distributed Reduction in Dπλ

3 Locality of Channels in Distributed Higher Order π-calculus

In this section we first extend the language by introducing anexplicit, but simple, representation
of distribution of processes. Then we discuss the main topicof the paper, difficulty to ensure
locality of names in Dπλ.

DISTRIBUTED HIGHER ORDER π-CALCULUS The extended syntax is given by in Figure 5.
Intuitively N kM represents two systemsN; M running at two physically distinct locations,

while the processSpawn(P) creates a new location at which the processP is launched. A more
comprehensive representation of distribution could be given, as in [7, 16, 29], by associating
names with locations and allowing these names to be generated dynamically and transmitted
between processes. However the simple syntax given above issufficient for our purposes to
study the use of our locality typing system in the distributed setting. The reduction semantics of
the previous section is extended to the new language, Dπλ, in a straightforward manner, outlined
in Figure 5. The structural equivalence of systems is definedby changing “j ” to “ k ” andP;Q;R
to M;N;N0 in Figure 2. The first two rules are the most important, namelyspawning of a process
at a new location (spawn) and communication between physically distinct locations, (coms).

DEFINING LOCALITY We require that every input channel name is associated with aunique
location. This is violated in, for example,

a?(y): P k (a?(z): Q jb?(x1): R1 jb?(x2): R2)
because the namea can receive input at two distinct locations. Note however that the nameb is
located uniquely, although at that location a call can be serviced in two different ways.

A formal definition of this concept (or rather its complement), locality error, is given in

Figure 6, using a predicate on systems,N
lerr�!. Intuitively this should be read as saying: in the

systemN there is a runtime error, namely there is some namea which is ready to receive input at
two distinct locations. The definition is by a straightforward structural induction on systems and
uses an auxiliary predicateP # aI which is satisfied whenP can immediately perform input on
namea. Now let us say a channel typeσ is local if σ has an input capability, i.eσ = h(τ̃);SOi.
We also call a channelu is local under Γ if Γ(u) is local.

DEFINITION 3.1. Γ1 andΓ2 arecomposable, written byΓ1� Γ2, if Γ1uΓ2 is defined, andΓ1
andΓ2 aresystem-composable, written byΓ1 �l Γ2, if Γ1 � Γ2 andu : hSiI;SiOi 2 Γi (i = 1;2)
impliesS1I => or S2I =>. 2
Intuitively this means that if a channela is local in Γ1, then it must not be local in another



Subtyping and Locality in Distributed Higher Order Processes 7

Input Predicate:

a?(x̃): P # aI P # aI(P jQ) # aI Q # aI(P jQ) # aI P # aI a 6= b(νb)P # aI P # aI�P # aI P # aISpawn(P) # aI
M # aI(N kM) # aI N # aI(N kM) # aI N # aI a 6= c(νc)N # aI

Locality Error:

N # aI M # aI(N kM) lerr�! N
lerr�!(N kM) lerr�! N

lerr�!(ν c)N lerr�!
FIGURE 6. Locality Error

Local Distributed Rules:
SPAWN: INTRO: PARl : RESl :

Γ ` P : proc
Γ ` Spawn(P) : proc Γ ` P : proc

Γ `l P
Γ `l N ∆ `l M Γ�l ∆

Γu∆ `l N kM
Γ;a :σ`l M

Γ `l (ν a :σ)M
FIGURE 7. Local Distributed Typing Rules

environmentΓ2.
The typing system for the systemN, which is given by Distributed Typing Rules in Figure 7,

is simply in form ofΓ ` N whereΓ is again the same typing function. The most essential rule
is PARl; this says thatN1kN2 is typable with respect to an environment∆ if ∆ can be written as
Γ1uΓ2, whereΓ1�l Γ2 andNi is typable with respect toΓi. If the term is system composable,
then we have no immediate locality error sinceP # aI andΓ `l P : proc imply Γ ` a : (τ̃)I for
someτ̃. That is:

THEOREM 3.2. (Type Safety) Γ `l N implies N 6 lerr�!.

It is however easy to see that the system composability as defined above is not closed under

reduction: indeed, we easily haveN 6 lerr�! andN �!!N 0 doesnot imply N 0 6 lerr�!.

DIFFICULTIES IN PRESERVING LOCALITY IN Dπλ There are basically two reasons why lo-
cality is not preserved after communication. The first reason is the use of a name received
from another location as an input subject. The second, whichis more complicated, concerns
the parameterisations of processes and the instantiation of variables which occur in outgo-
ing values. We first start with a simple example which does notinvolve process passing.
Take a?(x): P jb!hai k b?(y): y?(z): Q. Then it is easy to check that this can be typed with
PARl in Figure 7. However after one reduction step, the communication alongb, we obtain
a?(x): P k a?(z): Q, which is no longer typable. It is not difficult to exclude such terms by a
simple syntactic condition or typing systems, as has been studied in [2, 27, 5, 21]. However
the presence of higher-order processes makes the situationmore complicated, as the following
example shows.

EXAMPLE 3.3. LetV denote the valueλ(): sq(a) in the slightly modified system

a?(x): P jb!hVi k b?(Y ): Y ()
Once more this is a typable configuration; nevertheless, after the transmission of the valueV
to the new site and a reduction we get a system which violates our locality conditions. Next
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Types:

Term Type: ρ ::= π j τ
Process Type: π ::= proc j s(proc)
Value Type: τ ::= unit j nat j bool j σ j s(τ) with τ 6= σj τ ! ρ with ρ ' s(ρ0)) τ ' s(τ0)
Channel Type: σ ::= s(h>;SOi) j hSI;SOi with SI � SO, SI 6=? and SO 6= >.

Sort Type: S ::= as in Figure 3.

Ordering: All rules from Figure 3 and

(mono) ρ� ρ0 ) s(ρ)� s(ρ0) (sendable) s(ρ)� ρ
(id) s(ρ)� s(s(ρ)) (lift) s(τ)! s(ρ) � s(s(τ)! s(ρ))
(') ρ� ρ0 ^ ρ0 � ρ ) ρ' ρ0

FIGURE 8. Locality types for Dπλ

consider a similar code whereV denotesλ(x): sq(x).
a?(x): P jb!hVi k b?(Y ): (Y c) jc?(x): Q

Then this does not destroy locality.

Certain values aresendable in that their transfer from location to location will never lead to
a locality error. For example, the first valueλ(): sq(a) is immediately not sendable, although
λ(x): sq(x) will be sendable, because it contains no free occurrence of input channels. However
the algebra ofsendable and non-sendable terms is not straightforward.

EXAMPLE 3.4. LetV be a seemingly sendable valueλ(x): sq(x) in the system

d?(X): X() jb!hVi k b?(Y ): d!hλ():(Y c)i jc?(x): Q

Here V is transmitted alongb across locations, where it is used to construct a new value,
λ():(V c); this is then transmitted across locations viad and when it is run we obtain once
more a locality error. More interestingly, the following does not disturb locality although we
passλ(): sq(c) directly:

d?(X): X() k b!hλ(): sq(c)i jb?(Y): Y () jc?(x): Q

However, the following violates locality.

d?(X): X() k b!hλ(): sq(c)i jb?(Y): d!hY i jc?(x): Q

Again the problem in the first example is the non-sendable valuesλ():(V c), which does not
appear in the original system, but constructed dynamically. Similarly in the third example, only
Y appears an object ofd!hY i, but it was dynamically instantiated by non-sendable value.

We need a new set of types which includessendable/non-sendable types and a typing system
which controls the formation of values and ensures that in every occurrence ofb!hVi, where the
termV can be exported to a new location, it can only evaluate to a value ofsendable type.

4 Type Inference System for Locality

This section formalises a new typing system for processes. The important point of our system is
if each process in each location is statically type-checked, we can automatically ensure that, in
the global environment, input capability always resides ata unique location even after arbitrary
computation.
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Send Rules:

CONSTl : Γ `l l : nat
Γ `l l : s(nat) etc. CHANl : Γ `l a : h>;Si

Γ `l a : s(h>;Si)
TERMl : ∆ `l P : ρ ∆ `l SBL ∆ � Γ

Γ `l P : s(ρ) SPAWNl :
Γ `l P : s(proc)

Γ `l Spawn(P) : s(proc)
Common Rules: as in Figure 4.

Functional Rules: as in Figure 4 adding a conditionρ' s(ρ0) ) τ ' s(τ0) for LET.

Process Rules:

OUTd :

Γ `l u : ( ˜s(τ))O
Γ `l Vi : s(τi) Γ `l P : π

Γ `l u!hṼiP : π OUTl :

Γ `l u : h(τ̃0); (τ̃)i
Γ `l Vi : τi Γ `l P : proc

Γ `l u!hṼiP : proc
NIL ,REP,PAR,RES as in Figure 4 withproc replaced byπ , and IN as the same as in Figure 4.

Local Distributed Rules: PARl and RESl as in Figure 7 and INTRO as in Figure 7 with̀
replaced bỳ l in INTRO.

FIGURE 9. Locality Typing System for Dπλ

LOCAL TYPING SYSTEM We add a new type constructors(ρ) for sendable terms; the for-
mation rules and ordering are given in Figure 8. A channel type with the input capability is
not sendable. The side condition of arrow types simply avoids a sendable term having a non-
sendable subterm; e.g. if eitherP or Q is non-sendable, thenP Q is automatically non-sendable.
The first extra ordering rule says that the constructors( ) preserves subtyping; the second that
all sendable values are values. In conjunction with the third, the second implies that sendability
is idempotent,s(s(ρ))' s(ρ). Similarly with the forth, we have:s(s(τ)! s(ρ))' s(τ)! s(ρ).
The new type inference system is given in Figure 9. TheSend Rules determine which values

can be sent between locations. All constants and output capabilities on channels are automat-
ically sendable. In the crucial rule TERMl we use the notation∆ `l SBL to denote that∆ is a
sendable environment, that is it consists only of sendable types; formally ifu : τ 2 ∆, then (1)
τ ' s(τ0) or (2) u = a andτ = h>;SOi. Thus a general term is sendable if it can be derived from
a sendable type environment.

The rules for processes also require minor modifications. Wecan also create a process by
spawn if it is sendable. In OUTd we require that values which will be sent across locations have
sendable types. However if the transmission is only done in the same location, this condition
should be relaxed; in OUTl, a message is guaranteed to transmit inside the same location since
namea has an input capability. The side condition of LET plays the same role of that of the
arrow type in Figure 8. Note also an input process has always the non-sendable typeproc.

EXAMPLE 4.1. (sq-server) In the following, we offer a non-trivial example of the use of send-
ability in typing. Recall Examples 2.1 and 2.2, and let us define

σ = (int; (int)O)I τ = σ! proc σ0 = (int; (int)O)IO
First we noteλ(x :σ): sq(x) has a sendable types(σ ! proc) by Example 2.2. ThenSqServ is
typed as follows.

req:((τ)O)I `l � req(r : (τ)O):r!hλ(x :σ): sq(x)i : proc
Here a type declaration “(τ)O” of r ensures thatSqServ does not create a new input subject by a
value received though channel “req”.

Next forClient, first let us define its body asP� ( X a ja!h1;c1i j � � �). To acceptλ(x :σ): sq(x)
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from the server and createsq(a) by applyinga to λ(x :σ): sq(x), a will be used with both in-
put/output capabilities inP. HenceP is typed as:X : τ; a : σ0 `l P : proc. Now let us define
Γ = req:((τ)O)O; r : (τ)IO. Since(τ)IO � (τ)I, by applying RES and IN, we have:

Γ `l r?(X :τ): (νa :σ0)P : proc
To outputr through “req”, r should have a sendable type. Then, by(τ)IO � (τ)O and CHANl
rule, we have:

Γ `l r : (τ)O
Γ `l r : s((τ)O)

The type of the channel “req” in the client is inferred bys((τ)O)� (τ)O as well as contravariance
of output capability:

Γ `l req:(s((τ)O))O
Combining these three, we now infer:

req :((τ)O)O `l (νr : (τ)IO)req!hrir?(X :τ): (νa :σ0)P �Client

Finally byfreq:((τ)O)Ig �l freq :((τ)O)Og, both systems are system composable.

req :((τ)O)IO `l SqServ k Client

Observe that:

(1) The sendable types(σ ! proc) of λ(x :σ): sq(x) makes it possible to create a new server
sq(a) in the client side.

(2) r is declared with both input and output capabilities in theClient. TheClient itself uses
the input capability but, because of the type of “req” it onlysends the output capability to
SqServ. This form of communication is essential to represent a continuation passing style
programming in theπ-calculus as studied in [19, 23, 26, 27].

One can also check the first system in Example 3.3 and the first and third systems in Example
3.4 are not typable in any environment, while the second systems in Examples 3.3 and 3.4 can
be typed using TERMl and OUTl rules, respectively (see [33]).

SUBJECT REDUCTION In the following we prove locality is preserved under reduction. Note
if P is a function, it is possible thatΓ `l P : s(ρ) is inferred by either CONSTl ,CHANl ,SUB,APP

or LET without using TERMl directly. But by (1) below, we can regard all sendable types are
inferred by TERMl uniformly. We note that as a special case of (2), we haveρ = s(ρ0).
LEMMA 4.2.

(1) (sendable)Γ `l P : s(ρ) implies there exists∆ s.t. ∆ � Γ, ∆ `l SBL, and∆ `l P : ρ.
(2) (local substitution)SupposeΓ;x :τ;`l P : ρ andΓ `l V : τ. Then we haveΓ `l PfV=xg : ρ.

The following decomposition lemma says the global system isdecomposed into a local
process with an input-disjoint typed environment.

LEMMA 4.3. SupposeΓ `l N � (ν ã : σ̃)((P11 j � � � jP1n1
)k � � � k (Pm1 j � � � jPmnm)) wherePi j is

neitherP jQ nor(νa)P. Then there existsΓi such that̃a : σ̃;Γ def= uΓi with Γi �l Γ j (1� i 6= j �
m) andΓi `l Pik : proc (1� k � ni).

The main lemma requires the order-theoretic property,FBC, of our subtyping relation (see [33]),
together with Lemma 4.2.

LEMMA 4.4. (main lemma) Supposex :τ0;Γ1 `l P : π andΓ2 `l V : s(τ) with Γ1 �l Γ2 and
τ0 � s(τ). Then there exists∆ such that(a)∆`l SBL, (b)∆`l V : s(τ), (c) Γ1u∆`l PfV=xg : π ,
(d) Γ1u∆uΓ2 = Γ1uΓ2, and (e)Γ1 �l ∆ �l Γ2.
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THEOREM 4.5. (Subject Reduction Theorem)

If Γ `l N and N �!!M, then Γ `l M.

OUTLINE OF THE PROOF: The non-trivial case of the proof of the subject reduction theorem is
when a value is sent to a different location by (coms) rule. By Lemma 4.3, we only consider the
following case: supposeΓ1 `l a?(x :τ): P, Γ2 `l a!hVi: Q andΓ1 �l Γ2. Then we show:

Γ1uΓ2 `l a?(x :τ): Pka!hVi: Q impliesΓ1u∆ `l PfV=xg andΓ2 `l Q

with Γ1u∆�l Γ2 andΓ1u∆uΓ2 = Γ1uΓ2 for some∆. By the main lemma, we can take∆ as
a sendable environment such that∆ `l V : s(τ), which establishes the theorem. See [33] for the
details.

Combining Theorem 3.2 and Theorem 4.5, we now have:

COROLLARY 4.6. (Type Safety) Γ `l N andN �!!M imply M 6 lerr�!.

5 Further Development

This section illustrates usefulness of our typing system showing some interesting applications.

5.1 Generalisation to Global/Local Subtyping

In this subsection, we show that our sendability notion can be generally extended to a more
refined channel usage based on Sewell’s idea [29]. A simple extension is easily done by labelling
channel types by one of thelocality modes, given byfGG;LG;GL;LLg, ranged over bym;m0; : : :,
which are:� GG – a channel is allowed to be used as the input and output subjects anywhere.� GL (resp.LG) – a channel is used as the input (resp. output) subject anywhere, while as the

output (resp. input) subject only inside this location.� LL – a channel is used as the input and output subjects only in this location.

A partial order on this set is given by: reflexive closure ofGG�m with m = LG;GL andm� LL.
Then the syntax of channel type is extended tomhSI;SOi.2 For the typing system, we first extend
the CHANl rule in Figure 9 as following CHANg rule.

Γ `g a : LLhSI;SOi
Γ `g a : s(GGh>;?i) Γ `g a : LGhSI;SOi

Γ `g a : s(GGh>;SOi) Γ `g a : GLhSI;SOi
Γ `g a : s(GGhSI;?i) Γ `g a : GGhSI;SOi

Γ `g a : s(GGhSI;SOi)
If a has the modeGL, then it is prohibited from being used as the output subject in an other
location, hence it should be sent as if it were only input capability hSI;?i with the modeGG.
Since the receiver only accepts the higher capability from the sender, it is only possible to usea
asmhSI;?iwith GG� m. The basic idea of the input and output rules is the same as therules in
Figure 9; we only allow processes to pass sendable terms to a remote location, while any terms
can be passed inside its location, whose destination is guaranteed by the modeLL. Thus, we can
consider that the local typing system discussed in the previous section is concerned with only
sub-orderingLG � LL. In the following, we assumeL(τ̃)O denotes eitherGLh>; τ̃i or LLh>; τ̃i,
andL(τ̃)I denotes eitherLGhτ̃;?i or LLhτ̃;?i.
INg : OUTgd : OUTgl :

Γ `g u : m(τ̃)I
Γ; x̃ : τ̃ `g P : π (1)
Γ `g u?(x̃ : τ̃):P : π

Γ `g u : m( ˜s(τ))O
Γ `g Vi : s(τi) Γ `g P : π (1)

Γ `g u!hṼiP : π

Γ `g u : LLh(τ̃0); (τ̃)i
Γ `g Vi : τi Γ `g P : proc

Γ `g u!hṼiP : proc
2m denotes howa is used as thesubject, whileSI;SO in hSI;SOi stand for types ofobjects a carries; these are notations

of the different level. For example,GLhτ̃; τ̃0i does not meanh ˜G(τ); ˜L(τ0))i.
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where (1) ifm = L, thenπ = proc. Note in this generalisation, a term which includes input
capabilities can be passed outside if all subjects are global. Other rules except CHANl, IN and
OUTl ;g are the same as the rules in Figure 9 replacing`l with `g.

Then two environmentsΓ1 andΓ2 are composable, denoted byΓ1 �g Γ2, if Γ1 � Γ2 and if
u :mihSiI;SiOi 2 Γi (i = 1;2), then (1)mi = LL impliesS jI => andS jO =?, (2) mi = LG implies
S jI = >, and (3)mi = GL impliesS jO = ? with i 6= j. Then we change the rule of the system
composition as in the following.

PARg:
Γ `g M ∆ `g N Γ�g ∆

Γu∆`g M kN

THEOREM 5.1. (Subject Reduction) IfΓ `g N and N �!!M, then Γ `g M.

The definition of run-time error is however somewhat more complicated. In general whether
or nor there is a violation of the locality requirements depends on an apriori decision of which
channel capabilities can be used globally. For example if a typing dictates that input on a channel
a is global then no run-time error occurs if the input prefixa?x occurs at two distinct locations.

Thus to formalise run-time errors we require a notion of atagged version of the language
along the lines of [23] or [16]. The reader familiar with thistechnique should be easily convinced
that such a tagged language could be developed, together with an appropriate version of a Type
Safety theorem.

5.2 Behavioral Equivalence

A precise type abstraction of the communication structure of processes induces a non-trivial
behaviour equivalence; such effects of types have already been studied in, e.g. [23, 27, 31], for
various kinds of encodings. Since we can express computational constraints similar to those in
[21, 3, 27] by appropriate restriction of syntax and rules inDπλ, interesting behavioural equal-
ities can be inherited from them for higher-order processes. Let �Γ denote a typed barbed
reduction-closed congruence defined by input/output predicates and reduction-closure prop-
erty as in [23, 31, 2, 27]. Then we immediately observe:Γ ` N andN �! N 0 by either (β),
(let1;2) or (appl ;r) in Figure 2, thenN �Γ N 0. Note also that we do not allowP k (Q jR) being
structurally equivalent toQ k (PjR), but we can prove the distributed equations: for some∆,(P jSpawn(Q))kR�∆ (PkQ)kR�∆ Pk (Q jR) andP k (a!hṼi jQ)�∆ (P ja!hṼi)kQ, etc.

We also have the following multiple higher-order strong replication theorem which is not
valid in untyped Dπλ, but valid in the local Dπλ studied in Section 4.

PROPOSITION5.2. Let us defineR def= �a?(x̃): R1 j � � � j �a?(x̃): Rn with Ri sendable. Then we
have: (νa)(RkPkQ) �Γ (νa)(R jP)k (νa)(R jQ)
Note we do not require any side condition forP andQ (cf. [23]). The proof is by observing that
P andQ may only export the sendable valueV via a since the left-hand side of the equation is
typable (note it is impossible that a namea is local in eitherP or Q). We can then apply the
standard reasoning framework from [26, 23, 27, 2]. Note alsothis proposition can not be derived
from the system in [27] sincea is neither linear/ω-receptive name.

Such theorems will be useful for reasoning about object-oriented systems where templates
are shared among locations. Further extension of typed equivalences studied inπ-calculus
(e.g. [27, 31]) to distributed higher-order processes is aninteresting research topic we intend
to pursue.

5.3 Type Checking

For a practical use of a typing system, it is essential that wecan check the well-typedness
of a systemN against a global type environmentΓ. For this purpose, we can construct an
equivalent typing system tòl without TERMl , which becomes syntax-directed (in particular,
in type reconstruction we use the partial meet operator to obtain a sendable type). Using this,
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we can easily obtain an algorithm to check the typability ofP againstΓ, as well as an algorithm
to computeρ such thatΓ `l P : ρ given Γ andP. The algorithm can also be extended to the
global/local subtyping discussed in 5.1.

6 Discussion and Related Work

We proposed a static local typing system and we used it to showthat a a global safety con-
dition can be guaranteed by static type-checking each localconfiguration; we do not require
additional resource informations in the different locations to ensure a safe higher-order process
passing/receiving. We also showed that the system can be extended to global/local subtyping
[29] and gave some non-trivial equational properties of theunderlying languages.

6.1 Encoding intoπ-calculus

In [26] there is an elegant translation of processes using higher order values into a first order
process language where only channel names are transmitted.We now examine this translation
of Dπλ. The basic idea is to replace the transmission of an abstraction with the transmission of a
newly generatedtrigger. An application to the abstraction is then replaced by a transmission of
the data to the trigger, which provides a copy of the abstraction body to process the data. Using
this ideasqServ is replaced by[[sqServ]](= � req?(r): (ν tr) (r!htrij Str) with Str(= � tr?(x): sq(x)
Here when a request is received, a new trigger is generated, and then returned to the client.
Associated with the trigger is a trigger server,Str which receives data on the trigger and then
executes the body, namelyz!hsq(x)i. Suppose we have the followingClient2 who already has
a square server for faster parallel evaluation.

Client2(= (νar)(req!hri: r?(X): X a j sq(a) j a!h1;c1i j a!h2;c2i j a!h3;c3i � � �)
Then the client is replaced by[[Client2]](= (νar)(req!hri: r?(tr): tr!hai j sq(a) j a!h1;c1i j a!h2;c2i j a!h3;c3i � � �)
The application inClient2 is replaced by a transmission ofa to the trigger, which was received
in response to the request.

However there is an essential differences between the two systems:

sqServ k Client2 [[sqServ]]k [[Client2]]
As seen in the following, in the former, the new receptorsq(a) is created in the client location,
whereas in the lattersq(a) is created on the server side, which disturbs the locality.

sqServ k Client2 �!! sqServ k (νa)(sq(a) j sq(a) j a!h1;c1i � � �)[[sqServ]]k [[Client2]] �!! (νa)(sq(a) j [[sqServ]] k sq(a) j a!h1;c1i � � �)
Actually we can check that for allΓ, we have:Γ 6`l [[Client2]] k [[sqServ]], sincea should be
used as input capability in the server side to create a newsq(a). But sqServ kClient2 is typable
as seen in Example 4.1. This example shows that it would be extremely difficult to adapt the
translation technique in [26] so that the local typing structure is preserved. This indicates higher
order distributed calculi are worthy of independent investigation.

6.2 Related work

Locality in π-calculus: The expressiveness of locality and mobility have been studied in the
π-calculus, especially in [3, 21, 5, 32, 11]. The untyped local π-calculus [21, 5, 32] is simply
defined with the following input restriction rule

a?(x): P if x does not appear as a free input subject inP



14 Nobuko Yoshida Matthew Hennessy

By Corollary 4.6, the proper subset of Dπλ in Section 4 where we only consider channel pass-
ing and a single location without using OUTl rule, satisfies their required locality property.
Similarly receptiveness studied in [3, 27] is ensured if the system starts reductionsfrom the ini-
tial statement where each location contains only a single process.3 One may consider a better
way to ensure the locality in Dπλ is the following syntactic restriction as the same as the local
π-calculus.

λx:P if x does not appear as a free input subject inP

However this restriction is too strong; if we use it, new receptors are never created byβ-
reduction, hence Example 4.1 is no longer typable. Moreoverthis idea does not work if we
wish to control the higher-order abstraction as seen in Example 3.4.

[11] showed that a locality condition similar to ours of Section 4 is practically useful to de-
scribe various kinds of encodings in Distributed Join-Calculus. Our approach differs from theirs
since our aim is to establish a formal typing system for arbitrary higher-order process pass-
ing and instantiations which ensures locality in the non-local environments; our typing system
control higher-order term passing where new receptors can be created inside the same location
(cf. OUTl in Figure 9).

Restriction of capability on names: In our system, a channel which has an input capability in
the local environment can be exported outside the original locationas if it had output capability
only, by CHANl in Figure 9; this is essential to represent a continuation passing style program-
ming as seen in Example 4.1, which is in some aspects similar to a formulation of triggers in
Definition 5.3.1 in [23]. Secondly in our system, if a variable appears in an object position in
an outgoing message, it should have a sendable type. Hence ifit is bound by a prefix orλ-
abstraction, then the bound variable is automatically annotated bys( ) (e.g.b?(Y : s(τ)): d!hY i),
which rejects receipt of non-sendable value from a different location. The idea of direct restric-
tions on input prefixes rather than on outgoing values is alsostudied in [4] for theπ-calculus,
with the aim of ensuring no leak of secret names. In our systemthese frameworks are gen-
eralised to deal with higher-order process passing preserving locality with subtyping ofλ and
π-calculi.

Distributed higher-order processes: As argued in [10, 9, 20, 28], many practical applications
call for parameterised higher-order process passing, which may be difficult to represent directly
without functional constructions even with a migration of the second order processes. Since our
language is also based on the subtyping of theλ-calculus, it is straightforward to import richer
subtyping, e.g. records, recursive types, polymorphic types into the distributed languages.

We believe our simple capability control based on subtypingwill be equally applicable to a
wide range of concurrent/functional languages, including[6, 10, 9, 20, 28]. In general, exten-
sions of higher-order process passing to more advanced distributed primitives, such as hierar-
chical location spaces [16, 29, 15], process mobility [7, 28, 11], and cryptographic constructs
[1, 14] needs to be investigated.
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