
Comparing the Performance of the Evolvable
πGrammatical Evolution Genotype-Phenotype Map to

Grammatical Evolution in the Dynamic Ms. Pac-Man Environment

Edgar Galván-López, David Fagan, Eoin Murphy, John Mark Swafford,
Alexandros Agapitos, Michael O’Neill and Anthony Brabazon

Abstract—In this work, we examine the capabilities of two
forms of mappings by means of Grammatical Evolution (GE)
to successfully generate controllers by combining high-level
functions in a dynamic environment. In this work we adopted
the Ms. Pac-Man game as a benchmark test bed. We show that
the standard GE mapping and Position Independent GE (πGE)
mapping achieve similar performance in terms of maximising
the score. We also show that the controllers produced by
both approaches have an overall better performance in terms
of maximising the score compared to a hand-coded agent.
There are, however, significant differences in the controllers
produced by these two approaches: standard GE produces more
controllers with invalid code, whereas the opposite is seen with
πGE.

I. INTRODUCTION
In Grammatical Evolution (GE) [10], [1], rather than rep-

resenting programs as parse trees, as in Genetic Programming
(GP) [4], a variable length linear genome representation is
used. A genotype to phenotype mapping process is employed
on these genomes which uses a user-specified context-free
grammar to generate the actual phenotype. This work is
concerned with understanding the impact of two forms
of this mapping, the traditional GE mapping and Position
Independent GE (πGE) [9], in a dynamic environment. We
use the notion of a dynamic problem as defined in [1] “...
a problem in which some element under its domain varies
with the progression of time”. For this purpose, we use the
Ms. Pac-Man game as a benchmark problem (the specifics
about the Ms. Pac-Man game are given in Section III).
Using Trojanowski and Michalewicz’s categorization of

dynamic problems [12], [13], we know that this problem lies
in the category of a static objective function (i.e., maximizing
the score of the Ms. Pac-Man agent) and static constraints.
These type of problems are interesting because both elements
(objective function and constraints) do not change over time
and, in principle, it should be easier to examine the effects
of both mappings (i.e., standard and and πGE) on a dynamic
environment.
GE has been successfully used in a wide range of appli-

cations as reported in [10], [1]. πGE has been reported to

Edgar Galván-López, David Fagan, Eoin Murphy, John Mark Swafford,
Alexandros Agapitos, Michael O’Neill and Anthony Brabazon are
with the University College Dublin, Natural Computing Research &
Applications Group, UCD CASL, 8 Belfield Office Park, Beaver Row,
Clonskeagh, Dublin 4, email: edgar.galvan, david.fagan,
eoin.murphy, john-mark.swafford, alex-agapitos,
m.oneill, anthony.brabazon@ucd.ie.

have a better overall performance in terms of finding better
results compared to standard GE as shown in [9], [2]. The
objective of this paper is to see the utility of both forms of
mappings on a dynamic problem.
This paper is structured as follows. In the following section

we describe how both mappings (standard GE and πGE)
work. In Section III we describe the benchmark problem
used in this work. In Section IV we describe the approach
taken for controlling our agent on a dynamic environment. In
Section V we describe the experimental setup and Section VI
presents the results achieved by our approach, followed by a
discussion. Finally, Section VII draws some conclusions.

II. OVERVIEW OF GE AND πGE MAPPINGS
A. Standard GE Mapping
In GE, a grammar can be represented by the tuple

{N,T, P, S}, where N is the set of non-terminals, T is the
terminal set, P stands for a set of production rules and, S

is the start symbol which is also an element of N . It is
important to note that N may be mapped to other elements
from N as well as elements from T . The following is an
example based on the grammar used in this work (Note: the
following is not the actual grammar, just a simplified version;
see Figure 4 for the actual grammar used in our studies):

Rule Productions Number
(a)<prog> ::= <ifs> | <ifs> <elses> (0),(1)

(b)<ifs> ::= if(<vars> <equals> <vars>){ <prog> } (0)
| if(<vars> <equals> <vars>){<action>} (1)

(c)<elses> ::= else{ <action> } | else{ <prog> } (0),(1)

(d)<action> ::= goto(nearestPill) (0)
| goto(nearestPowerPill) (1)
| goto(nearestEdibleGhost) (2)

(e)<equals> ::= < | <= | > (0),(1),(2)
| >= | == (3),(4)

(f)<vars> ::= thresholdDistanceGhost (0)
| inedibleGhostDistance (1)
| avgDistBetGhosts | windowSize (2),(3)

To better understand how the genotype-phenotype map-
ping process works in GE, here is a brief example. Suppose
that we use the grammar defined previously. It is easy to
see that each rule has a number of different choices. That is,
there are 2, 2, 2, 3, 5, and 4 choices for rules (a), (b), (c),
(d), (e), and (f), respectively. Given the following genome:

16 93 34 81 17 46,

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

we need to define a mapping function (i.e., genotype-
phenotype mapping) to produce the phenotype. GE uses
the following function: Rule = c mod r, where c is the
codon integer value and r is the number of choices for the
current symbol, to determine which productions are picked
for the phenotype. Beginning with the start symbol, <prog> ,
and its definition, <prog> ::= <ifs> | <ifs> <elses>

the mapping function is performed: 16 mod 2 = 0. This
means the left-most non-terminal, <prog> will be replaced
by its 0

th production, <ifs> , leaving the current phenotype:
<ifs> .
Because <ifs> has two productions and the next codon in

the integer array is, 93, <ifs> is replaced by: if(<vars>

<equals> <var>){ <action> } . Following the same
idea, we take the next codon, 34, and left-most non-terminal,
<vars> and apply the mapping function. The results is 2,
so the phenotype is now:
if(avgDistBetGhosts <equals><var>) {<action>}.
Repeating the same process for the remaining codons, we
will have the following expression:
if(avgDistBetGhosts <= inedibleGhostDistance)

{goto(nearestPowerPill) }.

B. πGE Mapping

Position Independent GE (πGE) [9], [2] is almost identi-
cal in operation to standard GE except when it comes to
the mapping process. As shown above, GE always takes
the left-most non-terminal to be expanded next during the
mapping from genotype to phenotype. In πGE, we refine
this process by introducing an evolved ordering as to which
non-terminals are expanded. By doing this, we allow the
grammar to have more freedom in the way the derivation
tree (i.e., phenotype) is built. With this method, not only
the productions used for the non-terminal expansions are
picked using chromosome, the chromosome is also used to
determine the order in which the non-terminals are expanded.
In πGE, we take a standard GE chromosome and convert it
into a list of codon pairs. The second codon of each pair
is used to choose which non-terminal to expand next (the
order of mapping), and the first codon is used to decide
what that non-terminal will expand to. If this happens to
be another non-terminal it is added to a list of unexpanded
non-terminals and is available to be selected for further
expansion. The method for selection which non-terminal
expand is based on the equation for selecting what the non-
terminal should expand to: non − terminal to expand =

codon value mod number of non − terminals.

C. Final Remarks on GE and πGE

As mentioned previously, the GE mapping follows a left-
to-right, depth-first development of the structure, whereas
πGE adopts an evolved ordering to the mapping. This
mapping, is in fact, quite interesting, specially when dealing
with the dynamic problem that we have used as benchmark
test. This is introduced in the following section.

III. MS. PACMAN AGENT

Ms. Pac-Man, released in early 1980s, became one the
most popular video games of all time. This game, the sequel
to Pac-Man, consists of guiding Ms. Pac-Man through a
maze, eating pills, power pills, and fruit. This task would be
simple enough if it was not for the presence of four ghosts,
Blinky, Pinky, Inky, and Sue, that try to catch Ms. Pac-Man.
Each ghost has their own, well-defined, behaviour. These
behaviors are the largest difference between the Pac-Man
and Ms. Pac-Man. In the original Pac-Man, the ghosts are
deterministic and players who understand their behavior may
always predict where the ghosts will move. In Ms. Pac-
Man, the ghosts have non-deterministic elements in their
behavior and are not predictable. This feature makes the
game extremely challenging.
The gameplay mechanics of Ms. Pac-Man are also very

easy to understand. When Ms. Pac-Man eats a power pill,
the ghosts change their status from inedible to edible (only
if they are outside their “nest”, located at the centre of the
maze) and remain edible for a few seconds. In the edible
state they are defensive, and if they are eaten, Ms. Pac-
Man’s score is increased considerably. When all the pills
are eaten, Ms. Pac-Man is taken to the next level. Levels get
progressively harder by changing the maze, increasing the
speed of the ghosts, and decreasing the time to eat edible
ghosts. The original version of Ms. Pac-Man presents some
very interesting features. For instance, Ms. Pac-Man moves
slightly slower than Ghosts when she is eating pills, but
she moves slightly faster when crossing tunnels. The most
challenging element is the fact that the ghosts’ movements
are non-deterministic. The goal of the ghosts is to catch
Ms. Pac-Man, so they are designed to attack her. Due to
their non-deterministic behaviour, the player may not be
certain what the ghosts will do next. Over the last few
years, researchers have tried to develop software agents able
to successfully clear the levels and simultaneously get the
highest score possible (the world record for a human player
on the original game stands at 921,360 [6]). The highest score
achieved by a computer, developed by Matsumoto [7], based
on a screen-capture system that is supposed to be exactly
the same as the arcade game, stands at 30,010 [6]. The other
top three scores achieved are 15640, 9000 and 8740 points,
respectively [7]. It is worth pointing out that all of them
used a hand-coded approach as opposed to an evolutionary
computation or machine learning algorithm.
However, it is important to note that there has been work

where researchers have used a variety of artificial intelligence
approaches to create Ms. Pac-Man players. Some of these
approaches state a goal of evolving the best Ms. Pac-Man
player possible. Others aim to study different characteristics
of an algorithm in the context of this non-deterministic
game. Some previous approaches are listed here, but will
not be compared against each other due to differences in the
Ms. Pac-Man implementation and the goal of the approach.
One of the earliest, and most relevant, approaches comes

from Koza [4]. He used genetic programming to combine

pre-defined actions and conditional statements to evolve
Ms. Pac-Man game players. Koza’s primary goal was to
achieve the highest possible Ms. Pac-Man score using a
fitness function that only accounts for the points earned
per game. Work similar to that of Koza [4] is reported by
Szita and Lõrincz [11]. Their approach used a combination
of reinforcement learning and the cross-entropy method to
assist the Ms. Pac-Man agent in “learning” the appropriate
decisions for different circumstances in the game. This
approach is similar to Koza’s in that they pre-define a set
of conditions and actions and allow the Ms. Pac-Man agent
to learn how to combine and prioritise them. Another, more
recent, approach by Lucas [5] uses an evolutionary strategy
to train a neural network to play Ms. Pac-Man in hopes of
creating the best possible player. Recently, Galván-López et
al. used GE [3].
IV. GE AND πGE APPROACH TO MS. PACMAN AGENT
As highlighted by the literature there are many approaches

one could take when designing a controller for Ms. Pac-
Man. We now describe the rule-based approach we have
taken. Broadly speaking, a rule is a sentence of the form
“if <condition> then perform <action>”. These rules are easy
to read, understand, and more importantly, they can be com-
bined to represent complex behaviours. Now, an important
question arises: What needs to be accounted for when using
rules to evolve a Ms. Pac-Man controller? To answer this
question it is necessary to define these three elements:

• Conditions - The current state of the ghosts, Ms. Pac-
Man, the pills in the maze, and their relations to each
other are used to define the conditions. It is important
to consider these because the combinations of them
will determine which actions Ms. Pac-Man will take
to achieve high scores.

• Actions - Given the goal of maneuvering Ms. Pac-Man
through a maze while trying to get the highest score
possible, a set of basic actions need to be defined to de-
termine how Ms. Pac-Man will move through the maze.
When certain conditions, determined by evolution, are
met these actions will be executed. Descriptions of the
actions defined for this work can be found in Table I.

• Complexity - Because there are many possibilities for
combining the actions and conditions, restrictions are
needed to limit the number of these combinations. When
defining these restrictions, a balance is needed to ensure
that the evolved controllers may increase in complexity
without becoming completely unreasonable in size. To
achieve this, a grammar is defined which specifies what
combinations of conditions and actions are possible (see
Figure 4 for the grammar used).

A number of functions were implemented to be used as
primitives in the evolution of the Ms. Pac-Man controller
(see Table I). The aim of each of these functions is to be
sufficiently basic, allowing evolution to combine them in a
significant manner to produce the best possible behavior for
the Ms. Pac-Man controller. In other words, we provide hand-
coded, high-level functions and evolve the combination of

// edibleGhost counts for the number of edible ghosts.
windowSize = 13; avoidGhostDistance = 7;
thresholdGhostDistanceGhosts = 10;
inedibleGhostDistance = Utilities.getClosest(current.adj,

nig.closest, gs.getMaze());
switch(edibleGhosts){

case 0:{
if (inedibleGhostDistance < windowSize){

next = Utilities.getClosest(current.adj,
ang.closest, gs.getMaze());

} else if (numPowerPills > 0) {
if (avgDistBetGhosts < thresholdDistanceGhosts){

next = Utilities.getClosest(current.adj,
nppd.closest, gs.getMaze());

} else {
next = Utilities.getClosest(current.adj,

npd.closest, gs.getMaze());
}

} else {
next = Utilities.getClosest(current.adj,

npd.closest, gs.getMaze());
}
break;

}
case 1:
case 2:
case 3:
case 4:{

if (inedibleGhostDistance < avoidGhostDistance) {
next = Utilities.getClosest(current.adj,

ang.closest, gs.getMaze());
}else {

next = Utilities.getClosest(current.adj,
ngd.closest, gs.getMaze());

}
break;

}
}

Fig. 1. Hand-coded functions to maneuver Ms. Pac-Man (see Table I for
a full description of the functions used).

these functions, pre-defined variables, and conditional state-
ments using GE. These functions were easy to implement,
and can be potentially very useful for our purposes.

A. Hand-Coded Example

The code shown in Figure 1 calls the functions described
in Table I. It is worth mentioning that we tried different
rule combinations with different values for the variables
(e.g., windowSize) and the code shown in Figure 1 gave us
the highest score among all the combinations and different
values assigned to the variable that we tested. As stated
before, the goal of the game is to maneuver Ms. Pac-Man
through a maze, trying to achieve the highest score possible
while trying to avoid inedible ghosts. First, we count the
number of edible ghosts. Based on this information, Ms. Pac-
Man has to decide if it goes to eat power pills, pills, or
edible ghosts. We will further explain this hand-coded agent
in Section VI where we will compare it with the evolved
controllers (both using GE and πGE). In the following
section, the experimental setup is described to show how
both approaches evolved the combination of the high-level
functions described in Table I with conditional statements
and variables to determine when certain actions should be
taken.

TABLE I
HIGH-LEVEL FUNCTIONS USED TO CONTROL MS. PAC-MAN.

Function Variable Description
NearestPill() npd Originally, this function [6] the agent finds the nearest food pill and heads

straight for it regardless of what ghosts are in front of it. We modified it so
that in the event a power pill is found before the target food pill, it waits
next to the power pill until a different condition is met and another action is
executed.

NearestPowerPill() nppd The goal of this function is to go to the nearest power pill.
EatNearestGhost() ngd When there is at least one edible ghost in the maze, Ms. Pac-Man goes towards

the nearest edible ghost.
AvoidNearestGhost() ang Calculates the distance of the nearest inedible ghost in a “window” of size

windowSize × windowSize , given as a parameter set by evolution, and
returns the location of the farthest node from the ghost. This “window” is just
a mask, where Ms. Pac-Man is at the center.

NearestInedibleGhost() nig Returns the distance from the agent to the nearest inedible ghost. This function
is used by the previously explained AvoidNearestGhost().

// edibleGhost counts for the number of edible ghosts.
1 thresholdDistanceGhosts = 13; windowSize = 11 ;
2 avoidGhostDistance = 8 ;
3 avgDistBetGhosts = (int)adbg.score(gs,
4 thresholdDistanceGhosts);
5 ang.score(gs, current, windowSize);
6 if(edibleGhosts == 0){
7 if (avgDistBetGhosts >= avoidGhostDistance) {
8 if (numPowerPills > 0){
9 next = Utilities.getClosest(current.adj,
10 nppd.closest , gs.getMaze());
11 } else{
12 next = Utilities.getClosest(current.adj,
13 npd.closest, gs.getMaze());
14 }
15 } else {
16 if(avgDistBetGhosts <= avgDistBetGhosts) {
17 if (avoidGhostDistance>thresholdDistanceGhosts){
18 next = Utilities.getClosest(current.adj,
19 ngd.closest , gs.getMaze());
20 }
21 } else {
22 if (numPowerPills > 0){
23 next = Utilities.getClosest(current.adj,
24 nppd.closest , gs.getMaze());
25 } else{
26 next = Utilities.getClosest(current.adj,
27 npd.closest, gs.getMaze());
28 }
29 }
30 }
31
32 } else{
33 if (inedibleGhostDistance < windowSize) {
34 next = Utilities.getClosest(current.adj,
35 nppd.closest , gs.getMaze());
36 } else {
37 next = Utilities.getClosest(current.adj,
38 ngd.closest , gs.getMaze());
39 }
40 }

Fig. 2. Best evolved agent using GE to maneuver Ms. Pac-Man (see Table I
for a full description of the functions used).

V. EXPERIMENTAL SETUP
We use the Ms. Pac-Man simulator developed by Simon

Lucas [8]. It is important to mention that the simulator
only gives one life to Ms. Pac-Man and has only one level.
The Ms. Pac-Man implementation was tied into GE in Java
(GEVA). This involved creating a grammar that is able to
represent what was considered the best possible combination
of the high level functions described in Table I. The grammar

// edibleGhost counts for the number of edible ghosts.
thresholdDistanceGhosts = 10; windowSize = 11 ;
avoidGhostDistance = 4;
avgDistBetGhosts = (int)adbg.score(gs,

thresholdDistanceGhosts);
ang.score(gs, current, windowSize);
if (edibleGhosts == 0){

if (inedibleGhostDistance < windowSize) {
next = Utilities.getClosest(current.adj,

nppd.closest , gs.getMaze());
}

}
else{

if (inedibleGhostDistance < windowSize) {
next = Utilities.getClosest(current.adj,

nppd.closest , gs.getMaze());
} else {

next = Utilities.getClosest(current.adj,
ngd.closest , gs.getMaze());

}
}

Fig. 3. Best evolved agent using πGE to maneuver Ms. Pac-Man (see
Table I for a full description of the functions used).

used in this work is shown in Figure 4. The fitness function
is defined to reward higher scores. This is done by adding
the scores for each pill, power pill, and ghost eaten. The
scores used are the same as the original Ms. Pac-Man game
described in Section III. Each generated Ms. Pac-Man agent
was executed 20 times to get the fitness.

The experiments were conducted using a generational
approach, a population size of 100 individuals, 100 gener-
ations, and the maximum derivation tree depth to control
bloat was set at 10. The rest of the parameters are as
follows: tournament selection of size 2, int-flip mutation with
probability 0.1, one-point crossover with probability 0.7, and
3 maximum wraps were allowed to “fix” invalid individuals
(in case they still are invalid individuals, they were given
lowest possible fitness). To obtain meaningful results, we
performed 100 independent runs. Runs were stopped when
the maximum number of generations was reached.

VI. RESULTS AND DISCUSSIONS
A. Ghost Teams and Basic Controllers
For comparison purposes, we used three different ghost

teams (already implemented in [8]), called Random, Legacy,
and Pincer team, where each has a particular form of “attack-
ing” Ms. Pac-Man. The random ghost team chooses a random
direction for each of the four ghosts every time the method
is called. This method does not allow the ghosts to reverse.
The second team, Legacy, uses four different methods, one
per ghost. Three ghosts use the following distance metrics:
Manhattan, Euclidean, and a shortest path distance. Each
of these distance measures returns the shortest distance to
Ms. Pac-Man. The fourth ghost simply makes random moves.
Finally, the Pincer team aims to trap Ms. Pac-Man between
junctions in the maze paths. Each ghost attempts to pick the
closest junction to Ms. Pac-Man within a certain distance in
order to trap her.
We started our studies by using four different Ms. Pac-

Man Agents (including a hand-coded approach as mentioned
in Section IV). These are random, random non-reverse and
simple pill eater agent. The Random agent chooses one of
five options (up, down, left, right, and neutral) at every
time step. This agent allows reversing at any time. The
second agent, called Random Non-Reverse, is the same as the
random agent except it does not allow Ms. Pac-Man to back-
track her steps. Finally, the Simple Pill Eater agent heads for
the nearest pill, regardless of what is in front of it. Results
achieved by these agents are shown in Table II.
As expected, the results achieved by these agents versus

ghosts are poor. This is not surprising given their nature.
It is very difficult to imagine how a controller that does
not take into account any valuable information in terms of
both, surviving and maximizing the score, can successfully
navigate the maze. There are, however, some differences
worth mentioning. For instance, the random agent shows the
poorest performance of all the agents described previously.
This is to be expected mainly because of two reasons: it
performs random movements and, more importantly, it allows
reversing at any time, so Ms. Pac-Man can easily spend too
much time going backwards and forwards in a small space.
This is different for the random non-reverse agent that does
not allow reversing and as a result of this achieves a higher
score. The score achieved by the simple pill eater is better
compared with random and random non-reverse agents. This
is simply because there is a target of increasing the score by
eating pills.

B. Evolved Controllers
Due to space limitations, we have taken the best and the

worst four individuals from the 100 independent runs using
both GE and πGE (i.e., 16 individuals). Each of these were
used 100 times in the Ms. Pac-Man game. We can see the
highest scores achieved by the best controllers using GE
and πGE in Tables III and IV, respectively. Clearly, the
best four controllers evolved using GE show a better overall
performance in terms of highest score (i.e., 8 results were

TABLE II
RESULTS OF FOUR different Ms. Pac-Man agents (random, random
non-reverse, simple pill eater and a hand-coded agent) VS. THREE

DIFFERENT GHOST TEAMS OVER 100 INDEPENDENT RUNS. HIGHEST
SCORES ARE SHOWN IN BOLDFACE.

Ghost Team Min. Max. Score Sum of
Score ± Std. Dev. all Runs

Random Agent
Random 70 810 ± 160.95 24,450
Legacy 40 200 ± 31.75 8,670
Pincer 40 410 ± 4.33 10,460

Random Non-Reverse Agent
Random 80 2,800 ± 59.92 89,760
Legacy 80 5,310 ± 74.40 69,950
Pincer 80 3,810 ± 74.19 73,510

Simple Pill Eater Agent
Random 240 4,180 ± 108.70 146,010
Legacy 250 5,380 ± 107.04 154,720
Pincer 240 4,780 ± 96.33 174,370

Hand-coded Agent
Random 180 11,220 ± 242.68 579,590
Legacy 190 11,740 ± 236.58 404,640
Pincer 790 12,820 ± 327.10 409,040

better compared to the hand-coded controller). πGE also
shows good performance, although not as good as GE, as
can be seen in Table IV (i.e., 5 maximum scores were better
compared to the hand-coded controller shown in Figure 1).
To see how robust our approach is, we now are turning

our attention to the results achieved by the “worst” evolved
controllers using both approaches. Table V shows the results
obtained by the “worst” four evolved controllers obtained by
GE on 100 games. The maximum scores achieved by these
evolved controllers show that they are robust in achieving
a high score (i.e., 6 out of 12 are at least as good as the
ones found by the hand-coded approach). A similar story is
observed by the “worst” evolved controllers found by πGE
(see Table VI), where 7 maximum scores were higher than
those found by the hand-coded approach. Figure 5 simply
plots the highest scores found by the best and the “worst”
controllers found by GE and πGE.
To understand how the evolved controllers manage to

achieve highest scores compared to the hand-coded approach,
it is necessary to analyse the controllers. Due to space
constraints, we will use the best controller found by GE
(see Figure 2) and πGE (see Figure 3) and compared them
with the hand-coded controller (shown in Figure 1). If we
start first analysing our hand-coded controller, we can see
that we take quite a conservative approach. For instance,
notice how we considered that AvoidNearestGhost() function
is important because it helps Ms. Pacman to eventually
scape from the ghosts. However, this function is never called
from the evolved controllers (both using GE and πGE).
In fact, the latter two controllers both use a more risky
approach. That is, they achieved the highest scores compared
to the hand-coded approach by using only three functions:
NearestPowerPill(), EatNearestGhost(), NearestPill(). This is

<prog> ::= <setup><main>
<setup> ::= thresholdDistanceGhosts = <ghostThreshold>; windowSize = <window>;

avoidGhostDistance = <avoidDistance>; avgDistBetGhosts = (int)adbg.score(gs);
ang.score(gs, current, windowSize);

<main> ::= if(edibleGhosts == 0){ <statements> } else{ <statements> }
<statements> ::= <ifs> | <ifs> <elses>
<ifs> ::= if(<condition>) { <action> } | if(<condition>) { <statements> }

| if(avgDistBetGhosts <lessX2> thresholdDistanceGhosts) { <actsOrStats> }
| if(inedibleGhostDistance <lessX2> windowSize) { <avoidOrPPill> }

<elses> ::= else { <action> } | else { <statements> }
<actsOrStats> ::= <action> | <statements>
<action> ::= next = getClosest(current.adj, <closest>, gs.getMaze());

| if (numPowerPills <more> 0){ <pPillAction> }
else{ next = getClosest(current.adj, npd.closest, gs.getMaze()); }

<closest> ::= npd.closest | ang.closest | ngd.closest
<avoidOrPPill> ::= <avoidAction> | <pPillAction>
<avoidAction> ::= next = getClosest(current.adj, <avoidClosest>, gs.getMaze());
<pPillAction> ::= next = getClosest(current.adj, <pPillClosest>, gs.getMaze());
<avoidClosest> ::= ang.closest <pPillClosest> ::= nppd.closest <condition> ::= <var> <comparison> <var>
<var> ::= thresholdDistanceGhosts | inedibleGhostDistance | avgDistBetGhosts

| avoidGhostDistance | windowSize
<ghostThreshold> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20
<avoidDistance> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15
<window> ::= 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19
<comparison> ::= <less> | <more> | <lessE> | <moreE> | <equals>
<lessX2> ::= <less> | <lessE>
<less> ::= "<"
<more> ::= ">"
<lessE> ::= "<="
<moreE> ::= ">="
<equals> ::= "=="

Fig. 4. The grammar used in our experiments to evolve a Ms. Pac-Man controller using the functions described in Table I.

TABLE III
RESULTS OF THE FOUR fittest evolved Ms. Pac-Man agents using Standard
GE VS. THREE DIFFERENT GHOST TEAMS OVER 100 INDEPENDENT

RUNS. HIGHEST SCORES ARE SHOWN IN BOLDFACE .

Ghost Team Min. Max. Score Sum of
Score ± Std. Dev. all Runs

Evolved Agent 1
Random 230 11010 ± 2704.86 356450
Legacy 260 13780 ± 2666.00 418380
Pincer 310 14180 ± 3397.97 417500

Evolved Agent 2
Random 570 11220 ± 2290.83 441550
Legacy 660 12010 ± 3052.81 503790
Pincer 260 14010 ± 3606.44 663710

Evolved Agent 3
Random 580 9590 ± 2424.38 405410
Legacy 570 12110 ± 2879.62 484820
Pincer 1000 14050 ± 3556.82 630850

Evolved Agent 4
Random 230 10410 ± 2745.91 375120
Legacy 260 12000 ± 2651.73 467990
Pincer 900 12230 ± 2975.72 419880

actually quite interesting because GE and πGE shape the
controllers based on what gives the highest points (i.e., power
pills and then heading towards the ghosts). This shows some
degree of intelligence because this happens only if the four
ghosts are in inedible state, so this gives the chance to Ms.
Pacman to eat the four ghosts after eaten the power pill, and,
so, trying to maximise the score.
There is one element that is different from the controllers

evolved by GE and πGE. The former produced code that
will never be executed because the conditions are never met

TABLE IV
RESULTS OF THE FOUR fittest evolved Ms. Pac-Man agents using πGE VS.

THREE DIFFERENT GHOST TEAMS OVER 100 INDEPENDENT RUNS.
HIGHEST SCORES ARE SHOWN IN BOLDFACE.

Ghost Team Min. Max. Score Sum of
Score ± Std. Dev. all Runs

Evolved Agent 1
Random Team 230 12850 ± 2717.12 350460
Legacy Team 340 10450 ± 2571.18 476080
Pincer Team 700 13730 ± 3199.74 451760

Evolved Agent 2
Random Team 1040 9510 ± 2030.77 434910
Legacy Team 1080 12390 ± 2591.76 530930
Pincer Team 280 10990 ± 2979.73 380590

Evolved Agent 3
Random Team 600 8800 ± 2248.27 412890
Legacy Team 1000 11650 ± 2733.71 462880
Pincer Team 270 12280 ± 3002.68 501470

Evolved Agent 4
Random Team 570 10980 ± 2528.87 444390
Legacy Team 270 11860 ± 3216.99 487090
Pincer Team 290 13230 ± 3870.62 470780

(see Figure 2 lines 15-30). This is not the case for πGE
(see Figure 3), where all the code can be executed at some
point. It is important to point out that for both approaches the
same grammar was used (see Figure 4). This is something
that attracted our attention, and so, we examined all the
controllers produced by both GE and πGE. We found out that
GE produced 16.66% controllers that contain unused code,
whereas only 3.33% of the evolved controllers produced by
πGE contain unused code. When we analyse how this could
happen, we see that piGE produces bigger derivation trees

TABLE V
RESULTS OF THE FOUR less-fit evolved Ms. Pac-Man agents using
Standard GE VS. THREE DIFFERENT GHOST TEAMS OVER 100

INDEPENDENT RUNS. HIGHEST SCORES ARE SHOWN IN BOLDFACE.

Ghost Team Min. Max. Score Sum of
Score ± Std. Dev. all Runs

Evolved Agent 1
Random 230 10180 ± 2341.41 361950
Legacy 340 10400 ± 2492.30 414410
Pincer 330 14290 ± 3024.45 451810

Evolved Agent 2
Random 870 10710 ± 2724.08 479250
Legacy 470 11390 ± 2996.76 395720
Pincer 1050 14010 ± 3712.82 771480

Evolved Agent 3
Random 470 12820 ± 2866.94 523040
Legacy 470 12940 ± 2943.21 399110
Pincer 530 14420 ± 4456.26 809430

Evolved Agent 4
Random 230 10320 ± 2218.13 364970
Legacy 340 12240 ± 2661.62 466990
Pincer 450 10830 ± 2453.71 380030

TABLE VI
RESULTS OF THE FOUR less-fit evolved Ms. Pac-Man agents using πGE
VS. THREE DIFFERENT GHOST TEAMS OVER 100 INDEPENDENT RUNS.

HIGHEST SCORES ARE SHOWN IN BOLDFACE.

Ghost Team Min. Max. Score Sum of
Score ± Std. Dev. all Runs

Evolved Agent 1
Random 470 9610 ± 2464.54 421580
Legacy 870 10280 ± 2655.65 367270
Pincer 1670 13630 ± 3369.96 551100

Evolved Agent 2
Random 230 11840 ± 2853.38 349030
Legacy 340 10740 ± 2690.25 495140
Pincer 330 13580 ± 3046.06 438250

Evolved Agent 3
Random 330 9720 ± 2727.93 411140
Legacy 290 14090 ± 2863.72 432560
Pincer 430 13620 ± 2845.80 422880

Evolved Agent 4
Random 230 8820 ± 2417.84 333380
Legacy 330 11930 ± 2498.56 488500
Pincer 330 14150 ± 3506.20 454930

(both in terms of depth and number of nodes) compared to
those produced by GE (see Figure 5). This is not surprising
because πGE’s nature allows more freedom in the production
of derivation trees compared to standard GE.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to successfully combine
high-level functions by means of evolution using two forms
of mappings: the traditional GE and πGE. Both approaches
have a similar performance in terms of maximizing Ms. Pac-
Man score. There are, however, important differences on
these approaches. GE produces more controllers with invalid

code (i.e., code that is never executed because a condition is
never met), whereas with πGE we have a mirror image. That
is, there are more controllers (five times compared to GE)
where there is no invalid code. The former is not an ideal
scenario because, as we have seen, both approaches give a
similar performance (i.e., increasing the score), and so, πGE
is a better approach when combining high-level functions.
We have also seen that our approach is robust in the sense

that even those controllers having a low fitness achieved
good results on the game, and in fact, some of them were as
competitive as the best controllers found by GE and πGE.
In a future work, we would like to explore the idea of
using more complex functions and adopting a multi-objective
approach, where both: surviving and maximizing score, can
be taken into account to evolve our controller.

ACKNOWLEDGMENTS
This research is based upon works supported by the

Science Foundation Ireland under Grant No. 08/IN.1/I1868.

REFERENCES
[1] I. Dempsey, M. O’Neill, and A. Brabazon. Foundations in Grammat-

ical Evolution for Dynamic Environments. Springer, Apr. 2009.
[2] D. Fagan, M. O’Neill, E. Galván-López, A. Brabazon, and S. Mc-

Garraghy. An analysis of genotype-phenotype maps in grammatical
evolution. In EuroGP 2010: European Conference on Genetic Pro-
gramming. Springer, 2010.

[3] E. Galván-López, J. M. Swafford, M. O’Neill, and A. Brabazon.
Evolving a ms. pacman controller using grammatical evolution. In Ap-
plications of Evolutionary Computation, EvoApplications 2010: Evo-
COMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM
and EvoSTOC, volume 6024 of LNCS, pages 161–170. Springer, 2010.

[4] J. R. Koza. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. The MIT Press, Cambridge,
Massachusetts, 1992.

[5] S. Lucas. Evolving a neural network location evaluator to play ms. pac-
man. In IEEE Symposium on Computational Intelligence and Games,
pages 203–210, 2005.

[6] S. Lucas. Ms Pac-Man Competition. http://cswww.essex.
ac.uk/staff/sml/pacman/PacManContest.html, Septem-
ber 2009.

[7] S. Lucas. Ms Pac-Man Competition - IEEE CIG 2009.
http://cswww.essex.ac.uk/staff/sml/pacman/
CIG2009Results.html, September 2009.

[8] S. Lucas. Ms Pac-Man versus Ghost-Team Competition.
http://csee.essex.ac.uk/staff/sml/pacman/kit/
AgentVersusGhosts.html, September 2009.

[9] M. O’Neill, A. Brabazon, M. Nicolau, S. McGarraghy, and P. Keenan.
pi-grammatical evolution. In K. Deb, R. Poli, W. Banzhaf, H.-G.
Beyer, E. K. Burke, P. J. Darwen, D. Dasgupta, D. Floreano, J. A.
Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector, A. Tettamanzi,
D. Thierens, and A. M. Tyrrell, editors, GECCO (2), volume 3103 of
Lecture Notes in Computer Science, pages 617–629. Springer, 2004.

[10] M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary
Automatic Programming in a Arbitrary Language. Kluwer Academic
Publishers, 2003.

[11] I. Szita and A. Lõrincz. Learning to play using low-complexity rule-
based policies: illustrations through ms. pac-man. J. Artif. Int. Res.,
30(1):659–684, 2007.

[12] K. Trojanowski and Z. Michalewicz. Evolutionary algorithms for non-
stationary environments. In In Proc. of 8th Workshop: Intelligent
Information systems, pages 229–240. ICS PAS Press, 1999.

[13] K. Trojanowski and Z. Michalewicz. Evolutionary optimization in non-
stationary environments. Journal of Computer Science and Technology,
1(2):93–124, 2000.

Hand−Coded Agent 1 Agent 2 Agent 3 Agent 4
0

5000

10000

15000

Ms. Pacman Agents

S
c
o

re

Best GE Evolved Ms. Pacman Agents vs. Three Ghost Teams

Random

Legacy

Pincer

Hand−Coded Agent 1 Agent 2 Agent 3 Agent 4
0

5000

10000

15000

Ms. Pacman Agents

S
c
o

re

Best PiGE Evolved Ms. Pacman Agents vs. Three Ghost Teams

Random

Legacy

Pincer

Hand−Coded Agent 1 Agent 2 Agent 3 Agent 4
0

5000

10000

15000

Ms. Pacman Agents

S
c
o

re

Worst GE Evolved Ms. Pacman Agents vs. Three Ghost Teams

Random

Legacy

Pincer

Hand−Coded Agent 1 Agent 2 Agent 3 Agent 4
0

5000

10000

15000

Ms. Pacman Agents

S
c
o

re

Worst PiGE Evolved Ms. Pacman Agents vs. Three Ghost Teams

Random

Legacy

Pincer

Fig. 5. Highest scores achieved by the best GE evolved controller (top left), best πGE evolved controller (top right), “worst” GE evolved controller
(bottom left) and “worst” πGE evolved controller (bottom right).

0 20 40 60 80 100

2
4

2
6

2
8

3
0

3
2

3
4

3
6

Mean Average Used Gene Length

Generation

A
ve

ra
g

e
 U

s
e

d
 G

e
n

e
 L

e
n

g
th

pacman˙GE

pacman˙piGE

0 20 40 60 80 100

1
2

0
1

3
0

1
4

0
1

5
0

1
6

0
1

7
0

Mean Average Node Count

Generation

A
ve

ra
g

e
 N

o
d

e
 C

o
u

n
t

pacman˙GE

pacman˙piGE

0 20 40 60 80 100

9
.0

9
.5

1
0

.0
1

0
.5

1
1

.0
1

1
.5

1
2

.0

Mean Average Derivation Tree Depth

Generation

A
ve

ra
g

e
 D

e
ri

va
ti
o

n
 T

re
e

 D
e

p
th

pacman˙GE

pacman˙piGE

Fig. 6. Number of used genes (left), number of nodes in the derivation tree (centre) and depth of the derivation tree (right) for Standard GE and πGE
on the Ms. Pac-Man problem.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

