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Abstract— We present an investigation into the genotype-
phenotype map in Position Independent Grammatical Evolution
(πGE). Previous studies have shown πGE to exhibit a per-
formance increase over standard Grammatical Evolution (GE).
The only difference between the two approaches is in how the
genotype-phenotype mapping process is performed. GE uses a
leftmost non terminal expansion, while πGE evolves the order of
mapping as well as the content. In this study, we use the idea
of focused search to examine which aspect of the πGE mapping
process provides the lift in performance over standard GE by
applying our approaches to three benchmark problems taken
from specialised literature. We examined the traditional πGE
approach and compared it to two setups which examined the
extremes of mapping order search and content search, and against
setups with varying ratios of content and order search. In all of
these tests a purely content focused πGE was shown to exhibit
a performance gain over the other setups.

I. INTRODUCTION

The adoption of a genotype-phenotype map for Genetic
Programming (GP) has demonstrated performance advantages
over traditional tree-based GP, with many examples in the
literature, e.g., see [8], [2], [9], [6], [1]. One of the most
popular grammar-based forms of GP, Grammatical Evolution
(GE), adopts a genotype-phenotype map which has been
argued to provide a number of advantages over standard
GP [10]. The genotype-phenotype map adopted in GE results
in the construction of a solution structure (a derivation tree)
in the language represented by an input grammar. This map
is deterministic, following a left-to-right, depth-first devel-
opment of the structure. An alternative, evolvable map was
proposed and significant performance gains were observed in
the problem domains tested [11]. The resulting algorithm, πGE
or Position Independent Grammatical Evolution, was recently
compared to a number of alternative genotype-phenotype maps
for GE [4]. The alternative mappers effectively modified the
order in which the developing structure is expanded, and it
was observed that the evolvable map of πGE was the most
successful. In light of this, we now wish to investigate more
deeply the impact of mapping order on πGE in an attempt to
understand why performance gains are achieved.

The remainder of the paper is structured as follows. Sections
II and III contain a brief overview of GE and how the πGE
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approach to GE differs. The specific research questions this
paper addresses and the experimental setup are presented in
Sections IV and V. Results are reported and analysed in
Section VI. Finally the paper reaches a close with conclusions
and future work in Section VII.

II. GRAMMATICAL EVOLUTION

GE is a form of GP that takes principles from molecular
biology and combines them with the representational power of
formal grammars. GE’s rich modularity provides a unique flex-
ibility, making it possible to use alternative search strategies,
whether evolutionary, or some other heuristic (be it stochastic
or deterministic) and to radically change its behaviour by
merely changing the grammar supplied. As a grammar is
used to describe the structures that are generated by GE, it
is trivial to modify the output structures by simply editing
the plain text grammar. The explicit grammar allows GE to
easily generate solutions in any language (or a useful subset
of a language). For example, GE has been used to gener-
ate solutions in multiple languages including Lisp, Scheme,
C/C++, Java, Prolog, Postscript, and English. The ease with
which a user can manipulate the output structures by simply
writing or modifying a grammar in a text file provides an
attractive flexibility and ease of application not as readily
enjoyed with the standard approach to GP. The grammar also
implicitly provides a mechanism by which type information
can be encoded thus overcoming the property of closure,
which limits the traditional representation adopted by GP to
a single type. The genotype-phenotype mapping also means
that instead of operating exclusively on solution trees, as in
standard GP, GE allows search operators to be applied to the
genotype (e.g., integer or binary chromosomes), in addition to
partially derived phenotypes, and the fully formed phenotypic
derivation trees themselves. As such, standard GP tree-based
operators of subtree-crossover and subtree-mutation can be
easily adopted with GE. By adopting the GE approach one
can therefore have the expressive power and convenience
of grammars, while operating search in a standard GP or
Strongly-Typed GP manner. For the latest description of GE
please refer to Dempsey et al. [3].

III. GE TO πGE

The only difference between standard GE and πGE is in the
mapping process from genotype to phenotype. In GE we start
of with a non terminal node (NT) or start symbol. In the case of
the example grammar shown in Fig.1, that would be <e>.<e>
is then evaluated using Eq.1. By taking the first codon value
of the GE chromosome (12) and the number of expansions
possible for the state <e> (2) we get the first expansion of
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the tree, where <e> expands to <e><o><e> (12%2) . Once
this is done a leftmost NT first derivation (where the leftmost
unexpanded NT is chosen) is done to expand the derivation
tree until no NTs remain to be expanded. An example of this
mapping is shown in Fig.2 based on the example grammar
shown in Fig.1 where the order of expansion is indicated, as
well as the application of Eq.1 that results in that expansion.
In the form of 1(12%2) where 1 is the expansion order and
12%2 is the application of Eq.1.

New Node = codon val. % num. of rules for NT (1)

<e> ::= <e> <o> <e> | <v>

<o> ::= + | *

<v> ::= 0.5 | 5

Chromosome ::= 12,8,3,11,7,6,11,8,4,3,3,11,15,7,9,8,10,3,7,4

Fig. 1. Example Grammar and Chromosome.

πGE’s mapping process differs from that of GE in that each
expansion of a NT requires two codons. The standard GE
chromosome is essentially split into pair values where the first
codon of the pair is used to choose which NT to expand and
the second is used to choose what to expand the NT to based
on the rules available for a NT of that type. The chromosome
shown in Fig.1 can be viewed as a list of paired values such as
((12,8),(3,11)........), where the first value of the
pair (The Order Codon) is used to determine the next NT to
expand by using Eq.2 and this will return which NT to choose
from a list of unexpanded NTs. Once the NT to be expanded
has been chosen, the second codon (Content Codon) is used
in conjunction with Eq.1 (the standard GE expansion rule) to
determine what the NT expands to; and if this node happens
to be an NT, it is added to the list of unexpanded NTs. Fig’s.3
and 4 show the expansion of the example grammar in Fig.1
using the πGE mapping process. The number associated with
each branch of the tree is a reference to the numbered steps
shown in Fig.3 which show how each choice of NT to expand
comes about. It is interesting to note the different shape and
size of the examples based on just a change in mapping.

NT to expand = codon value % number of NT ′s (2)

IV. ADJUSTING πGE MAPPING

In order to understand why the πGE map operates so
successfully we are faced with a number of questions. We can
see that the order of the mapping is subject to evolutionary
search in πGE whereas it is fixed in standard GE. Perhaps
there is an unfavourable bias introduced into the search by the
strict depth-first, left-to-right mapping order of GE, and simply
by randomising this mapping order the bias is overcome with
the resulting performance gains. It may be that this is not
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Fig. 2. Standard GE Genotype to Phenotype Mapping.

1. [(e)] <- (12%1=0)
2. [(e),o,e] <- (3%3=0)
3. [o,(e),v] <- (7%3=1)
4. [o,(v),e,o,e]<- (11%5=1)
5. [(o),e,o,e] <- (4%4=0)
6. [(e),o,e] <- (3%3=0)
7. [(o),e,v] <- (15%3=0)
8. [e,(v)] <- (9%2=1)
9. [(e)] <- (10%1=0)
10. [(v)] <- (7%1=0)

Fig. 3. NT selection process in πGE.

sufficient to explain the observed gains and that the evolvable
nature of the order itself confers the advantage on πGE.

In the standard πGE setup the rate of search performed on
the order and content codons relative to each is on a basis
of 1:1. If we allowed this search to be rebalanced, will this
confer an advantage. For example, it may be that the rate
of search directed towards the order of the map should be
undertaken at a lower rate than that of the content in order
to give each evolved mapping order a chance to be sampled
for a number of alternative content sets (c.f., genetic code [7]
and grammar evolution [13], [5] studies). In standard πGE,
an unknown amount of order and content codons are mutated,
thus giving a fluctuating mix of mutation between codon types
across the population. This can have a drastic effect on the
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Fig. 4. Standard πGE Genotype to Phenotype Mapping.

mapping process. Consider the effect changing one of the order
codons has on the mapping, compared to changing one content
codon. The act of changing a content codon will change what
the current non-terminal becomes. While this will effect any
subsequent mapping in the sub-tree emanating from this non-
terminal (the ripple effect), it will not effect any other sub-
trees. Changing one order codon on the other hand, will in
most cases move the position of expansion on the tree to a
new position. This will affect both expansion on the sub-tree
emanating from the original position in the tree and the new
position that is to be expanded based on the changing of one
codon.

Four experimental setups are examined where we control
the order of the search being undertaken.

1) Order: Mutation events are restricted to codons respon-
sible for determining the mapping order. The content
codons are fixed in this setup with the exception of the
operation of the crossover operator which may shuffle
the content codons between individuals. The results
observed on this setup relative to the others will allow
us to determine the contribution of the search focused
on the order codons towards the success of πGE.

2) Content: Mutation events are restricted to codons re-
sponsible for production rule selection. The order codons
are fixed here (with the exception of the shuffling of
order codons between individuals by crossover). When
compared to a standard GE mapping, in effect the map-
ping order is largely randomised here upon initialisation

TABLE I

PARAMETER SETTINGS ADOPTED ON ALL PROBLEMS.

Parameter Value
generations 100
population size 100
replacement strategy generational with elitism (10%)
selection tournament (tsize=3)
mutation probability 0.01(int. mut.)
crossover probability 0.9 (ripple)
initial chromosome length 200 codons (rand. init)
max wrap events 0

of the order codons in the first generation.
3) πGE: Mutation events are allowed on both order and

content codons.
4) Content:Order: Two variations on πGE are examined

where the ratio of order to content mutation events
are varied to examine the situation where the search
is allowed to continue on both the order and content
codons, but at different relative rates (namely, 2:1 and
1:2, in contrast to the 1:1 of πGE). This will allow us to
determine if there may be an advantage in rebalancing
the relative rate of codon and order search.

By undertaking this investigation we hope to gain an un-
derstanding into which aspect of the πGE mapping process is
responsible for the performance gain over GE and also to see if
the current πGE setup can be refined for greater performance
at finding solutions to problems through the application of
focused mutation to the chromosome.

V. EXPERIMENTAL SETUP

We wish to test the null hypothesis that there is no difference
in performance when we focus mutation on different parts of
the chromosome in πGE. Performance in these cases will be
assessed in terms of the number of successful solutions found
for each problem instance, and by examining the average best
fitness.

We modified GEVA v1.1[12] for the experiments conducted
in this study, in order to perform the πGE mapping. The
evolutionary parameters adopted on all problems are presented
in Table I. Note that we deliberately use a relatively small
population size of 100 compared to the standard 500 that
would typically be adopted for these problem instances. This
was to make it harder to find a perfect solution, and therefore
allow us to discriminate more clearly performance differences
on these toy benchmark problems.

A. Benchmark Problems

Three standard GP benchmark problems were examined,
and 50 independent runs performed for each setup on each
problem. The grammar adopted in each case appears in Figs. 5,
6 and 7.

a) Even-5-parity: This is the classic benchmark problem
in which evolution attempts to find the five input even-parity
boolean function. The optimal fitness is obtained when the
correct output is generated for each of the 32 test cases.



<prog> ::= <expr>

<expr> ::= <expr> <op> <expr>
| ( <expr> <op> <expr> )
| <var>
| <pre-op> ( <var> )

<pre-op> ::= not

<op> ::= "|" | & | ˆ

<var> ::= d0 | d1 | d2 | d3 | d4

Fig. 5. The grammar adopted for the Even-5-parity problem.

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr>
| ( <expr> <op> <expr> )
| <pre-op> ( <expr> )
| <protected-op>
| <var>

<op> ::= + | * | -

<protected-op> ::= div( <expr>, <expr>)

<pre-op> ::= sin | cos | exp | inv | log

<var> ::= X | 1.0

Fig. 6. The grammar adopted for the Symbolic Regression problem instance.

b) Symbolic Regression: The classic quartic function is
used here x + x2 + x3 + x4 with 20 input-output test cases
drawn from the range -1 to 1. Fitness is simply the sum of the
errors. We measure success on this problem using the notion
of hits, where a hit is achieved when the error is less than
0.01.

c) Santa Fe ant trail: The objective is to evolve a
program to control the movement of an artificial ant on a
toroidal grid of size 32 by 32 units. 89 pieces of food are
located along a broken trail, and the ant has 600 units of
energy to find all the food. A unit of energy is consumed
when the ant uses one of the following operations: move(),
right() or left(). The ant also has the capability to look
ahead into the square directly facing it to determine if there
is food present.

<prog> ::= <code>

<code> ::= <line> | <code> <line>

<line> ::= <condition>\n | <op>\n

<condition> ::= if(food_ahead()==1){
<opcode>

}
else { <opcode> }

<op> ::= left(); | right(); | move();

<opcode> ::= <op> | <opcode> <op>

Fig. 7. The grammar adopted for the Santa Fe ant trail problem.

TABLE II

MUTATION RATES FOR EXPERIMENTAL SETUPS

Setup Order Rate Content Rate
1:1 ratio (πGE) 0.01 0.01
1:0 ratio (all order) 0.02 0.00
0:1 ratio (all content) 0.00 0.02
2:1 ratio (double order) 0.0133 0.0067
1:2 ratio (double content) 0.0067 0.0133

B. Mutation Rates

In the four experimental setups proposed, we are modifying
the effective rate of mutational search, by varying the rate of
mutation between content and order codons. In standard πGE,
each codon is mutated at the specified rate, but when mutation
is restricted to order or content codons (or any order:content
ratio), specific mutation rates for the order and content codons
have to be applied. These have been calculated using the
following equations:

po =
o

o + c
∗ pmut ∗ 2 pc =

c

o + c
∗ pmut ∗ 2

where o and c are the ratios for order and content mutations
(as in o:c), and po and pc are the required mutation rates for
content and order codons, respectively.

Note that this equation is applicable to any sort of ratios,
including 1:1 (i.e. standard πGE), 1:0 (i.e. order only), and
0:1 (i.e. content only). The calculated probabilities of mutation
used are shown in Table II.

VI. RESULTS

The results for the four experimental setups described in
Section IV are now presented. We divide their exposition into
two parts by focusing in the first instance on the scenarios
where search is restricted to either the content or order codons,
before examining the results for the alternative relative rates
of order:content search.

A. Results for standard πGE, order-only and content-only

Tables III (with crossover) and IV (without crossover) show
the number of solutions found to the three problems as well
as the mean best fitness and the standard deviation over the
50 runs performed for each setup. Figs. 8 to 10 also plot the
mean best fitness for the results with crossover, and Figs. 11
to 13 the results without crossover.

These figures show that focusing the search purely on the
order codons (1:0 setup) tends to give the worse results.
There is however still evolution in terms of fitness over
time, which suggests that merely by shuffling the mapping
order, the change of context of the content codons will in
effect generate new content material (or rather change the
function of the existing content material). Also note the better
performance of this setup when the crossover operator is used;
this suggests that crossover is of great help in maximising
the utility of content codons, by trying out different contexts
across individuals.

The results obtained with content-only mutation (0:1 setup)
seem to give the best results. When mutation events are



TABLE III

RESULTS WITH CROSSOVER BASED ON 50 RUNS

Problem Setup Mean Best Fitness (stdev) Successes
Even 5 πGE 2.70(3.56) 30

1:0 4.72(3.84) 16
0:1 1.86(3.14) 35

Santa Fe πGE 29.58(12.66) 1
1:0 27.86(13.98) 3
0:1 24.4(13.77) 3

Sym Reg πGE 0.44(0.94) 19
1:0 0.54(1.14) 7
0:1 0.19(0.27) 18

TABLE IV

RESULTS WITH NO CROSSOVER BASED ON 50 RUNS

Problem Setup Mean Best Fitness (stdev) Successes
Even 5 πGE 1.92(3.35) 36

1:0 5.18(3.46) 11
0:1 1.94(3.13) 34

Santa Fe πGE 33.54(14.73) 0
1:0 31.78(14.41) 0
0:1 35.96(11.71) 1

Sym Reg πGE 0.97(1.86) 12
1:0 1.37(2.43) 8
0:1 0.69(1.15) 13

restricted to the content codons, the amount of search on
the order setup is effectively reduced, which suggests that
alternative (and initially random) mapping orders are superior.
Note however the difference in performance when crossover
is not used. This seems to suggest that some limited search in
the order codons, through the effect of the crossover operator,
is useful to explore the search space.

B. Results for 2:1 and 1:2 ratios

In order to investigate the contribution of the order search to
the success of πGE, different ratios of order:content mutation
were explored, and are presented in this section. Tables V
(with crossover) and VI (without crossover) show the results
obtained.

The two ratio mixes presented were designed to see what
effect refining the ratio of search has in πGE. What is
interesting to note is that the 1:2 and 2:1, perform on a par
with the purely content focused mutation when we eliminate
crossover. However with crossover, a content based approach
gets a performance gain. This backs up the claims made above
that crossover performs some form of order based search in
the search space when dealing with the content only setup and
suggests that some form of order search would be desirable.
However the variance in performance between the two ratio
setups suggest that trying to find the universal good setup for
a set of problems using a ratio technique of search is quite
hard. It is evident in that 1:2 out performs 2:1 and vice versa
in different problems. This volatility however is not present in
a purely content based setup which has what can be deemed
consistent good performance across the board.
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Fig. 8. Even 5 average best fitness with Crossover.
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Fig. 9. Santa Fe Ant average best fitness with Crossover.

It is worth keeping in mind the mutation rates in these setups
and from these results it can be said the while the 1:2 and 2:1
ratio setups were designed to see what more order search and
more content search, both setups are more of less a slightly
skewed standard πGE. It would be of interest to see what the
addition of some order mutation may have had to the content-
only setup rather than trying to balance the mutation rates, to
keep an effective mutation across the board.
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Fig. 10. Sym. Reg. average best fitness with Crossover.
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Fig. 11. Even 5 average best fitness without Crossover.

TABLE V

RESULTS WITH CROSSOVER BASED ON 50 RUNS

Problem Setup Mean best fitness (stdev) Successes
Even 5 0:1 1.86(3.14) 35

1:2 1.40(2.68) 38
2:1 1.86(3.00) 35

Santa Fe 0:1 24.4(13.77) 3
1:2 26.84(13.33) 2
2:1 25.84(15.56) 5

Sym Reg 0:1 0.19(0.27) 18
1:2 0.47(0.49) 9
2:1 0.33(0.39) 11
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Fig. 12. Santa Fe Ant average best fitness without Crossover.
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Fig. 13. Sym. Reg. average best fitness without Crossover.

TABLE VI

RESULTS WITH NO CROSSOVER BASED ON 50 RUNS

Problem Setup Mean best fitness (stdev) Successes
Even 5 0:1 1.94(3.13) 34

2:1 2.98(3.81) 29
1:2 2.22(3.51) 35

Santa Fe 0:1 35.96(11.71) 1
2:1 25.86(16.50) 4
1:2 31.24(12.48) 1

Sym Reg 0:1 0.69(1.15) 13
2:1 0.39(0.59) 12
1:2 0.95(1.81) 11



VII. CONCLUSIONS AND FUTURE WORK

We set out to examine the impact of mapping order on
the performance of πGrammatical Evolution, and to try to
measure why the πGE map operates so successfully relative
to standard GE. This is achieved through the comparison of a
series of setups where the relative amount of content to order
search is rebalanced. The results provide evidence to support a
rebalancing of the search towards the content codons relative
to the mapping order. In other words a slower rate of search
on mapping order is desirable relative to the content rate of
search. It is hypothesised that this presents an advantage by
allowing each mapping order a fair chance to be sampled by
alternative content sets.

In future work we wish to test this hypothesis and also
examine the implications of these findings for search in
dynamic problem environments. Through the adoption of an
evolvable (dynamic) mapping process, the ability to inject
additional order codon mutation during and/or after envi-
ronmental change may allow a faster adaptation to the new
environmental conditions.
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