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Traditionally, if one wanted to make a bet on a certain outcome (such as the
outcome of a football game), the bet would be placed with a bookmaker. The
bookmaker sets the odds deemed appropriate for the expected probability of
the outcome and the customer can place bets against those odds. Bookmakers
can expect to make profits in the long run by providing odds to their customers
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Abstract

We analyze high frequency time series of odds and trading volume
as extracted from markets on an on-line betting exchange, Betfair.com.
As in financial markets, the probability distributions for the change in
the market price (odds) are seen to exhibit fat tails. We find significant
differences in the statistics of odds changes which occur during the in-play
activity of sporting events, when we argue that news is driving market
dynamics, and the statistics of odds changes when game-play activity has
ceased. Furthermore, we investigate the distribution of the market trading
volume as sampled at high frequ?ncy and find it can be fit very well to a

log-normal distribution function.

Introduction

that slightly overestimate the true probabilities of that given outcome.

A betting exchange operates in a manner more akin to a stock exchange.
Here, there is no single agent acting as a bookmaker, but agents can play both
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the roles of the customer and the bookmaker by choosing to either place a bet
on an outcome (“back”) or to offer a bet (“lay”) that can be backed by another
agent. An agent who bets $1 on an outcome (a “back’ bet’) at 3:1 odds can
expect to get $4 back if they win ($3 profit), but lose their $1 stake in the event
of a loss. The converse of backing is to lay a bet. In this case, the agent plays
the role of the bookmaker by taking up the bet of another agent. In the same
example, the layer must pay out $4 dollars to the successful bettor in the event
of a winning outcome, but retains the $1 stake in the event of a loss. Laying is
thus equivalent to betting against an outcome. The match-making is managed
with a double auction order book as with a regular financial market, except the
bid and ask columns are replaced with back and lay. It is important to note,
however, that unlike a stock market, a betting market has a definite conclusion.
The odds will inevitably move towards infinity or zero as the outcome becomes
a certainty.

The data used in our study is extracted from the on-line betting website,

Betfair.com2, based in London, England. Since Betfair was launched in June
2000, it has become the largest on-line betting company in the UK and the
largest betting exchange in the world. The website claims over 2 million clients
from all over the world.

Betfair acts as a kind of prediction market [1, 2]. Prediction markets are
speculative markets in which assets traded have a value that is tied to a partic-
ular event (e.g., will the next US president be a Republican). Previous studies
into prediction markets have shown that the market price of a contract can
provide a good reflection of the true odds of that event taking place, or at least
the mean market belief [1, 3, 4, 5, 6, 7]. One of the oldest and most famous
prediction markets, the Iowa Political Stock Market, has been shown to beat
opinion polls at forecasting the outcomes of presidential elections [7], however
differing viewpoints [8] do exist in the literature. One recent paper has studied
the returns of the Iowa Presidential Stock Market with an aim to compare and
contrast the dynamics of prediction market price changes with financial returns
[9]. Here, we perform a similar analysis in the case of betting market returns.

Our recent study of the dynamics of Betfair betting markets [10] for Cham-
pions League football matches showed that the volatility of odds fluctuations
exhibited long-range dependence, a phenomenon frequently observed for the
volatility of financial price returns. Furthermore, by studying the market dur-
ing half-time, we were able to identify statistical differences in market dynamics
between times when the game-play of the football match was underway such
that news of match events was reaching the market and times when news was
suspended. In this paper, we complement these findings with an analysis of
the probability distributions of betting market odds returns and we extend our
analysis to markets for Wimbledon tennis matches.

2http://www.betfair.com/



2 Data analysed

The data set used in this analysis comprises time resolved snapshots of the order-
book for the activity of Betfair markets for matches that took place during two
different sporting competitions. We have analysed 146 soccer matches from
the 2008 Champions League football tournament and 30 tennis matches from
Wimbledon 2008. Also included with each order-book snapshot, is a value for
the “odds” at which the last bet was matched during that second and the value
of bets matched to date for that outcome. We have chosen to look at these
particular data sets, as they are very popular, televised events which attract a
high volume of trading activity on the Betfair website

It is important to note that the odds with which Betfair users choose to back
or lay outcomes can only assume values from a specified set of numbers between
1.01 and 1000 imposed by the Betfair user interface. If a bet is matched at
a Betfair ‘odds‘ of 3.0, the backer will triple his/her money in the event of a
payout, such a payout would be more traditionally represented in the gambling
parlance as “2-to-17.

The market remains open for Betfair users to trade bets up until the very
end of a match, when the conclusion is known and the market odds naturally
move towards either 1.01 or 1000. A typical football data set is composed of
about 6500 1-second records representing the state of the betting market at each
second during the lifetime of the match. This typically includes ninety minutes
of play time, approximately three minutes of injury time and fifteen minutes of
half-time.

Since, unlike in football, the length of a tennis match is not fixed, a typical
tennis data set varies from 5000-15000 1-second records. We rescale the time in
our football and tennis matches to a dimensionless quantity between zero and
one, by dividing by the total match time.

The data was collected using front-end software which interfaces with Betfair

3
provided by Fracsoft .

3 Implied Probability Returns

We define the implied probability as the reciprocal of the current Betfair market
“odds”. Much like the price of a contract in a binary option market [9], the
implied probability is bounded between zero and one and reflects the proba-
bility of that particular outcome. Following [9], we consider the change in the
logarithm of this value with respect to time to be a stochastic variable analo-
gous to financial price returns and call it the implied probability log-return, r. In
Fig.(1), we have plotted the evolution of the implied probability for an example
football match which took place on the 9th of April during the 2008 Cham-
pion’s League football tournament. Manchester United, the home team, won
the match with a goal by Carlos Tevez in the 70th minute. This is reflected by a

Shttp://www.fracsoft.com/



large change in the implied probability at roughly t = 1400 seconds remaining.
The implied probability for the football teams Man United and Roma winning
(and the draw) are seen to move towards approximately 1.0 and 0.0 respectively
as the match ends and the result becomes known.
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Figure 1: The evolution of the implied probability (reciprocal of match odds)
for the three possible outcomes of a Champions League football match. As the
match draws towards its conclusion, the implied probabilities for the outcomes
tend towards 0 and 1 as the market odds tend towards 1000 and 1.01. We see a
large probability change for each outcome at the ¢t &~ 1400s mark corresponding
to a goal scored by Man Utd.

To compare the returns of markets with different volatilities, we normalise
the returns, r(t), in each market, M, by the standard deviation of the returns
for that market.

rO="0 R = e T e )
Such a normalisation procedure is frequently applied in financial market
literature [11, 12]. The scatter plot of normalised market returns as a function
of time as drawn from all football and tennis matches studied is shown in Fig.(2).
As was seen in [9], the returns are non-stationary with a volatility that increases
towards the conclusion of the market. This is visible in Fig.(3), in which we
display the average volatility of normalised returns, r*, as a function of match
time remaining for the two ensembles. Also clearly visible in Fig.(2) and Fig.(3)
is the half-time break in the case of Champions League data.
As in [9] we deal with this non-stationarity by employing a further normal-
ising procedure. We divide the normalised return at time ¢, r*(¢), by the local
volatility average, o*(t). We call this the detrended return, .

P(t) = (2)
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Figure 2: The ensemble of normalised implied probability log-returns, r*, for
the Champions League (left) and Wimbledon (right) markets. We see that the
returns typically grow larger as a match reaches its conclusion. We see a very
different behaviour in the football returns for the times between 0.45 and 0.55.
This corresponds approximately to half-time.
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Figure 3: The volatility of the normalised implied probability returns as a func-
tion of time remaining till settlement for Champions League (left) and Wimble-
don (right) markets. In these graphs, the volatility is measured as the standard
deviation of normalised returns, o*(t) = \/< r*2(t) > — < r*(t) >2, as calcu-
lated over 500-second non-overlapping time windows. In both tennis and foot-

ball, the volatility of returns is seen to steadily increase as the match reaches
its conclusion.




o*(t) is calculated by partitioning the time remaining till the end of the
match into time windows, T.

o2 (t) = (I (t)*)ter — (" (1)) fer (3)

We use 65 non-overlapping time windows between rescaled time ¢ = 0 and
t = 1 for Champions League returns, and 50 non-overlapping time windows
between rescaled time ¢ = 0 and ¢ = 1 for Wimbledon returns.

We now investigate the stationarity of the detrended returns for different
time windows during the course of the matches using the Kolmogorov-Smirnov
test on the tails of the distributions of returns drawn from each time window.
The Kolmogorov-Smirnov statistic is a measure which quantifies the difference
between two empirical probability distributions (see Appendix). If two samples
are assumed to be drawn from the same distribution, the P-value is the proba-
bility with which we would expect to see a larger value of the KS-statistic than
that which was observed. Low P-Values indicate a poor agreement.

The P-values for the KS-tests for Wimbledon and Champions League data
are displayed graphically in Fig.(4). The length of the time windows were cho-
sen as a compromise between maximising the temporal resolution of Fig.(4) and
maximising the number of samples, v, used in estimating the tails of the prob-
ability distributions of detrended returns drawn from each time window. v is
typically 300 for the Champions League data, and 100 for the Wimbledon data.

For the Champions League returns, we can identify two types of behaviour
corresponding to in-play trading activity and trading activity that occurs during
half-time. We also find that the distribution of detrended returns drawn from the
end of the football matches (¢t < 0.06), differs significantly from that of returns
drawn from other times in the matches, so we choose to neglect these returns in
the analysis which follows. In Fig.(5), we have plotted the distribution of half-
time returns along side in-play returns. We see a markedly different functional
form for the distributions. In particular the distribution of returns which take
place while the match is in-play exhibit fatter tails.

The difference in character between market returns that occur while the play
of a football match is underway, and those that occur during half-time when
no news is hitting the market has also been identified in [10]. We suggest that
the distribution of returns drawn from half-time is representative of endogenous
market behaviour, whereas the distribution of returns as sampled during the
in-play activity is instead reflective of the changing probability of the outcome
of the match which itself is dependent on the game-play and scoring of football.
This difference cannot be ascribed to a lack of trading volume, since as seen in
Section 4 (Fig. 8), trading volume remains significant during half-time.

If our hypothesis is true that in-play returns are indeed representative of
the game-play and scoring of the sport on which the market is based, then we
may expect two different sports to have a different probability distribution for
in-play returns. The scoring in football is poorly resolved, matches will often
end nil-nil or with a low number of goals scored. In tennis however, a match
may be 5-sets long, each of which potentially contain 13 games, each of which
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Figure 4: The P-Values for the Kolmogorov test on the tails of the distributions
of detrended returns drawn from different time windows. The time windows
for the Champions League data represent lengths of 100 seconds. The length
of the time window for a Wimbledon tennis match is typically approximately
200 seconds. A black square (P = 0) in the matrix indicates a poor match
between the distribution of returns drawn from the corresponding time windows.
A white square indicates a very good agreement (P = 1). The black bands
which criscross the matrix indicate that the market returns during half-time in
a Champions League football match have a different distribution to those drawn
from other times during the match.
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Figure 5: The distribution of detrended returns, P(#), as drawn from the in-
play activity of all champions league market compared with the distribution of
returns which occur during half-time. The complementary cumulative distri-
bution function, ccdf(R) = [5 P(£F)d#, for the positive and negative tails of
both data sets are shown in the inset. We find the in-play activity exhibit fatter
tails. We suggest that the returns distribution which results from returns during
half-time are representative of endogenous market behaviour, whereas the re-
turns we see while the match is underway reflect the game-play and mechanism
of scoring in football.



may involve any number of points scored. Thus, we expect a goal scored in
football to make a much more dramatic impact on the probability of a given
side winning than the impact that a single point scored may have in tennis. We
should then conclude that the distribution of changes in probability of a side
winning in a football match should exhibit fatter tails than that for tennis. This
is what is observed in Fig.(6).
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Figure 6: The distributions of the (in-play) detrended implied probability return
for Wimbledon and Champions League markets. The complementary cumula-
tive distribution functions, ccdf (R) = [~ P(£#)d?, are shown in the insets. We
pool together the normalised returns from in-play (excluding half-time) to gener-
ate the histograms for Champions League returns. We see a different functional
form for the returns distributions for the two sports. The Champions League
distribution appears to have fatter tails, indicating that large changes in the
probability of outcomes may be a more common occurrence in football than in
tennis.

This reasoning is also supported by the observed difference between the
distributions of returns taken from the end of a football match and those taken
from the rest of the match. Due to the relatively low frequency with which goals
are scored in football, it is likely that by the final minutes of the match (when a
score-line can be often 2-0) the outcome becomes an almost certainty, and the
market odds will be typically already at 1000.0 or 1.01 with little probability
of changing. Furthermore, in the case of teams drawing, in the final minutes of
the match, the implied probabilities can take dramatic changes as depicted in

Fig.(1).

We now turn our attention to the returns, rg, drawn from the region iden-
tified as half-time. We do not normalise and detrend these returns as defined
by Eq.(4) and Eq.(2) but only normalise by dividing each return, rg, by the
standard deviation of half-time returns from the market, M, that it is drawn
from.



ri*(t) = UZI((JQ) or(M) = (ru()*)rpwem — ra®)*,,iem (4

The complementary cumulative distribution function, cedf (Rj;) = [ R, P(|rg])d|ryl

for the magnitude of normalised half-time returns, |r};|, from all Champlons
League football markets is shown in Fig.(7).
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Figure 7: The tail of the complementary cumulative distribution function for
the absolute value of normalised half-time returns r3j;. The shape of the tail
on the Log-Linear inset suggest the tail decays slower than exponential. The
dotted line is the slope of the power law fit, P(|r¥;| > x) ~ 27, for o = 2.82.
We conclude that the power-law is not an adequate fit to the tail.

To investigate power-law scaling in Betfair returns, as observed in the case
of returns from the binary option prediction market of [9], we attempt to fit
a Pareto law, P(|rj;| > x) ~ 7% to the tail of the distribution function for
half-time returns.

Using maximum likelihood estimation, we estimate an exponent o = 2.82 +
0.022 for normalised returns with |r3;| > 2.70. Despite a reasonable visual fit to
the data, for 2.7 < r}; < 10, the tail of the distribution decays more exponen-
tially for r3; > 10 and using the more rigorous statistical analysis provided by
the methods of [13] we must reject the null hypothesis of a power-law tail. As
suggested in [9], this departure from power-law form may be a consequence of
partisan trading, as follows.

It is unlikely that all traders on Betfair play the market objectively by back-
ing and laying outcomes equally, based only on whether they believe the market
odds of the outcome are undervalued or overvalued. There are likely to be biased
traders who truly believe their favourite team is going to win. Since partisan
traders are unable to or simply choose not to accomodate new information as
it hits the market, they have a constant willingness to bet on their favourite
team (or conversly lay the opposing team) which may prevent returns with a



large magnitude from occurring. In [9], the authors propose the hypothesis
that partisan trading leads to more exponentially decaying returns. A similar
phenomenon may be occurring in the case of the Betfair implied probability
returns.

4 Trading Volumes

In financial markets it is often found that the tails of the probability distribution
function for share trading volume (number of shares traded per unit time on
a particular asset) exhibits a power-law form [14]. In this section we aim to
test that hypothesis on time series of trading volumes extracted from Betfair
markets.

Since certain matches or outcomes are more popular and draw larger trading
volume than others, following [11], we normalise the trading volumes, V', in each
market, M, by their medians, V.

- (5)
Vm
where the median is calculated over all 1-second trading volumes, V', recorded
for a given market M. As in the previous section we investigate the stationarity
of the trading volume observable in Fig.(8) by plotting the average trading vol-
ume as a function of time remaining till the conclusion of the market. We factor

out the trend evident in Fig.(8), by dividing the normalised trading volume V*
by the local median, V*()

V*

V() = - (6)
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Figure 8: The average 1-second trading volume, V, as a function of time remain-
ing till settlement for Champions League (left) and Wimbledon (right) markets.
The average is calculated over all markets for 500-second non-overlapping time
windows.
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where V*(t) is calculated for 65 non-overlapping time windows between
rescaled time ¢ = 0 and ¢t = 1 for Champions League data and 50 non-overlapping
time windows between rescaled time ¢ = 0 and ¢ = 1 for Wimbledon data. We
then pool together all the detrended trading volumes V from each market to
create one large sample from which to calculate a normalised trading volume
probability distribution, P(V') for each sport studied. R

We find the bulk of the resulting trading volume distributions, P(V'), for

both sports can be described very well by a log-normal distribution.

N 1 _nV—w?

P(V)= ———e = 27 7
V) Vov2r @)
To perform the fits, we calculate the mean,
w=(U) (8)
and standard deviation,
o= (U —(U)? (9)

of the logarithms of the detrended 1-second trading volumes, U = InV.
Since we expect the distribution of logarithms of log-normally distributed vari-
ables to be normal, we overlay the functional form of a Gaussian with mean, p,
and variance, o

GU, o) = — = 58" (10)
s My O'\/%

on the empirical distribution for the logarithms of the 1-second trading vol-
umes, U. As seen in Fig.(9), we find very good agreement. The Kolmogorov-
Smirnov statistic for the comparison between the empirical trading volumes and
the fitted log-normal distributions is 0.022 in the case of Champions League
trading volumes and 0.017 in the case of Wimbledon trading volumes. These
values are too large to accept the null hypothesis of the Kolmogorov-Smirnov
test, but it is important to note, that with a very large number of samples, as
in the case of our Betfair trading volumes (The Champions League normalised
trading volumes distribution was drawn from 587,993 points, and the Wimble-
don distribution as drawn from 168,598 points), the Kolmogorov-Smirnov test
will reject the null hypothesis with only minor deviations from the model dis-
tribution. A log-normal functional form is consistent with some experimental
distributions of daily stock market trading volumes observed in [15, 16]

However, in Fig.(9), we see that the log-normal function which fits the bulk
of the distribution misses the tails. We investigate the presence of a power-law
tail, P(V > X) ~ X~ in the Champions League and Wimbledon trading
volumes, using the methods of [13]. For Wimbledon trading volumes we must
reject the hypothesis of a power-law tail. But for Champions League trading
volumes, we estimate a tail exponent of o = —2.60 £ 0.12 for values of V' > 226
using maximum likelihood estimation (and bootstrapping) and cannot reject
the hypothesis of a power-law tail for V > 226 with a P-Value of 0.89.

11



However, since the Betfair market functions via the medium of the Betfair
website, http://www.betfair.com/, we cannot rule out the effect of network
traffic dynamics in shaping the statistics of trading volumes. In [17], the authors
find a log-normal fit to the distribution for network traffic. Furthermore, they
conclude that it is the dynamical process related to the inter-arrival time of
network packets that plays the key role in the formation of the observed log-
normal traffic distributions. It may be that the trading volume distributions we
observe in Fig.(9) are influenced by network traffic dynamics.

Champions League ‘Wimbledon
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Probability Density
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Figure 9: The probability distribution, P(U), for the logarithm of the nor-
malised 1-second trading volumes for Champions League (left) and Wimbledon
(right) markets. The dashed lines represent log-normal fits with mean p = 0.046
and variance o = 1.79 for Champions League data and p = 0.016 and ¢ = 1.96
for Wimbledon. To investigate power-law scaling in the tails of the distribu-
tion, we have plotted the complementary cumulative distribution functions,
cedf (V) = I P(V)dV, below. The tail falls away exponentially in the case
of Wimbledon trading volumes, however, for Champions League volumes, we
cannot reject the null hypothesis of power-law behaviour for V' > 226. The
confidence intervals for the power law fit are depicted with dotted lines.

5 Summary and Conclusions

We have investigated some basic statistical properties of market observables in
Betfair betting markets with an aim to compare and contrast with known results
for financial market data. Unlike financial markets, in which traders buy and
sell financial assets, on Betfair it is bets that are instead ‘backed or ‘laid‘. We
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draw parallels between the Betfair betting market and binary option prediction
markets and employ a similar method presented in [9] to process the returns.

For football market returns, we identify a difference in tail behaviour between
the distribution of returns drawn for times when game-play is underway and
from half-time when match play has ceased. We argue that the returns we
observe during half-time are representative of endogenous market behaviour,
whereas when the match is underway and news is hitting the market, the returns
are instead driven by the evolution of changing probabilities in a competitive
event. We further compare the in-play returns of football with those drawn from
tennis match markets. We find much fatter tails in the distribution of football
match returns than in the distribution of tennis match returns, and this agrees
qualitatively with expectations considering the differences in game-play and
scoring of these two sports.

Following [9], we have investigated power-law scaling in the tails of the dis-
tribution of returns that occur at half-time, which we have associated with
endogenous market behaviour. We find that although much of the distribution
appears to obey a Pareto law with exponent o = 2.8, the extreme tails are char-
acterised by a more exponential decay. We hypothesise that partisan trading
may be preventing large magnitude returns from occurring, as suggested by the
authors of [9].

We have also analysed the distribution of the 1-second trading volumes for
Betfair market trading. We find that this distribution can be fit well to a log-
normal function in the case of markets for both sports studied. Furthermore,
we observe power-law scaling in the tails of the trading volume distribution for
football returns. However, since Betfair market trading occurs over the medium
of the World Wide Web, via the Betfair website, http://www.betfair.com/, we
must concede that the trading volume statistics we observe may be influenced
by network traffic dynamics.

6 Appendix : Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test is a non-parametric test used to evaluate the
likelihood that a given sample of empirical data is drawn from a given model
distribution (or to evaluate the likelihood that two empirical distributions are
drawn from the same distribution). The Kolmogorov-Smirnov statistic, D,,, is
defined as the maximum difference between the empirical distribution function
of a given sample of n observations X;,

1 n
Fy(z) = Y Ixi<a (11)
i=1

and the cumulative distribution function F(z) of the model distribution
(or empirical distribution function of the second sample). Here, Ix,<, is the
indicator function, equal to 1 if X; < x, and equal to 0 otherwise.
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Dy = sup|Fy(z) — F(x)| (12)

Under the null hypothesis that the sample data are drawn from the model
distribution F(x), then

lim /nD, = sup |B(F(t))| (13)

n—oo +

where B(t) is a Brownian bridge, a stochastic process whose probability
distribution is the conditional probability distribution of a Wiener process, given
the condition that B(0) = B(1) = 0.

The P-value for the test is,

P =1-V(ynDn) (14)

Where V(z) is the cumulative distribution function for the maximum de-
viation from zero of a Brownian bridge. We reject the null hypothesis at the
5% level, if P < 0.05, corresponding to 95% of the maximum deviations from
zero, of a Brownian bridge being greater than our empirical value of D,,. If
comparing two empirical samples of size n; and ns, then

P =1 V(ym7Dy) (15)

where

nin2
n1 + na

Neff = (16)

In this paper, we use the Kolmogorov-Smirnov test to evaluate how similar
the distributions of normalised implied probability returns taken from different
time windows in our data sets are. However, because of the limited resolution of
the recorded Betfair market returns (e.g. the Betfair user interface only allows
you to back and lay at specified odds: 1.01, 1.02, etc.), small changes in odds are
forced to take on the nearest allowable values. This leads to a poorly resolved,
’spiky’ implied probability returns at its centre. To avoid this issue at the
centre of the distributions, we only compare the distributions for magnitudes of
detrended returns greater than 1.5.
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