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ABSTRACT 
 Ambient air quality monitoring, modeling and compliance to the standards set by European 
Union (EU) directives and World Health Organization (WHO) guidelines are required to ensure the 
protection of human and environmental health. Congested urban areas are most susceptible to 
traffic related air pollution which is the most problematic source of air pollution in Ireland. Long-
term continuous real-time monitoring of ambient air quality at such urban centers is essential but 
often not realistic due to financial and operational constraints. Hence, the development of a 
resource-conservative ambient air quality monitoring technique is essential to ensure compliance 
with the threshold values set by the standards. As an intelligent and advanced statistical 
methodology, a Structural Time Series (STS) based approach has been introduced in this paper to 
develop a parsimonious and computationally simple air quality model. In STS methodology, the 
different components of a time-series dataset such as the trend, seasonal, cyclical and calendar 
variations can be modeled separately. To test the effectiveness of the proposed modeling strategy, 
average hourly concentrations of nitrogen dioxide and nitrogen oxides from a congested urban 
arterial in Dublin city centre were modeled using STS methodology. The prediction error estimates 
from the developed air quality model indicate that the STS model can be a useful tool in predicting 
nitrogen dioxide and nitrogen oxides concentrations in urban areas and will be particularly useful in 
situations where the information on external variables such as meteorology or traffic volume is not 
available. 
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1. Introduction 

Oxides of nitrogen are one of the major pollutants present in the ambient air. These oxides 
are harmful gaseous substances largely produced by the combustion of fossil fuels. Short-term 
exposure to nitrogen oxides can cause defective pulmonary function, with asthmatics being the 
most vulnerable, while long-term exposure can cause abnormal effects in the lungs, spleen, liver 
and blood.  The adverse effects of nitrogen oxides (NOx) exposure include changes in cell type in 
tracheobronchial and pulmonary regions, lung structure, metabolism and defense against bacterial 
and viral infection and emphysema-like symptoms (World Health Organization, 2000). Traffic 
emissions are the principal source of this pollutant. With the increasing numbers of vehicular traffic 
on roads, the development of regulations for limiting and controlling the levels of nitrogen oxides in 
ambient air is of utmost importance. 

To alleviate the adverse effects of NOx exposure, the level of nitrogen oxides in ambient air 
should be limited to an annual average of 30µg/m3 and for nitrogen dioxide (NO2) the annual 
average  should be limited to 40µg/m3 in Europe (2008/50/EC Directive, Council of the European 
Union). Compliance to the standards set by the EU directives (2008/50/EC Directive, Council of the 
European Union) and World Health Organization (WHO) guidelines are a part of national 
legislation in Ireland (2001/81/EC Directive, Council of the European Union and European 
Environment Agency, 2009). However at the current levels, Ireland’s production of oxides of 
nitrogen remains in exceedance of its limit by more than 10% (Minister for the Environment, 
Heritage and Local Government, 2002 & 2004). In order to reach and remain congruent with what 
legislation considers to be a suitable pollutant level for ambient air, an air quality management 
strategy must be implemented. This strategy must involve a method of predicting future pollutant 
levels, to allow preventative action to be taken in advance if the pollutant levels are in danger of 
exceeding legislative limit concentrations. It would also allow pollutant trends to be studied in order 
to enable implementation of long term strategies for reduction of pollutant concentrations. 

There exist various theoretical and statistical techniques to model and predict air quality. 
The theoretical techniques, such as atmospheric dispersion modeling, aim to identify the underlying 
physical and chemical equations controlling the pollutant concentrations and hence require detailed 
emissions data and meteorological information. Atmospheric dispersion modeling techniques have 
been applied to model NOx concentrations by Simpson et al. (1990). On the other hand, the 
statistical techniques aim to identify the dynamical behavior of the air pollutant level observations 
and often do not require detailed emission inventories. The well-known statistical techniques used 
for air quality modeling are regression analysis and Artificial Neural Network (ANN) algorithms. 
The Autoregressive Integrated Moving Average (ARIMA) model is a sophisticated regression 
technique which has been applied by Sanchez et al., (1997) and Hsu (1997) to model various air 
pollutants, including oxides of nitrogen. Sharma et al. (2009), Ghazali et al. (2010) have used 
regression based techniques to model NO2 concentrations, NOx concentrations and related ozone 
concentrations. Statistical learning algorithm based regression techniques (support vector 
regression) have been applied successfully to model oxides of nitrogen (Lu and Wang, 2005). These 
concentrations have also been modeled using various ANN based algorithms where predictions are 
often improved by utilizing information on other explanatory variables such as traffic volume or 
meteorological conditions (Lu et al., 2003, Chelani, 2005 and Hoffman, 2006, Cai et al. 2009). 

Another potential statistical method to model air quality is the Structural Time Series (STS) 
models. This is a class of time-series models, formulated based on state-space methodology and 
consequently utilizes the concept of unobserved components. The different unobserved components 
of a STS model are trend, seasonal fluctuations, cyclical and calendar variation together with the 
effects of explanatory variables and interventions (outliers and sudden changes). These unobserved 
components have a direct interpretation in terms of the temporal variability of a time-series dataset. 
Due to the recursive and Markovian nature of the STS model, it is easy to handle missing values 
and outlier values and it is also possible to back-predict past unobserved levels. In the past, STS 
models have been successfully applied for assessing the effects of the introduction of the UK 
seatbelt legislation (Harvey and Durbin, 1986), modeling urban traffic flow (Ghosh et al., 2009) and 
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modeling climatological observations (Visser and Molenaar, 1995), but it is a relatively unexplored 
concept in the area of air quality modeling. Similar techniques have been applied by Schlink and 
Herbarth (1997) to predict SO2 concentrations and by Zolaghadri and Cazaurang (2005) to predict 
PM10 concentrations. However, there is no instance of the application of STS methodology in 
modeling the oxides of nitrogen in a traffic-dominated urban environment. 

This paper will employ the STS methodology to develop an air quality model to predict 
concentrations of oxides of nitrogen (NOx and NO2). The originality of this application lies in the 
meaningful depiction of the different factors which influence variations in the concentrations of 
oxides of nitrogen utilizing the different components of the STS model. A case study in the city 
centre of Dublin in Ireland is performed to test the effectiveness of the proposed prediction model. 
The paper is organized in four sections. The next section describes the theory behind the STS 
modeling methodology. The third section discuses the developed STS air quality model and test 
NOx and NO2 data. The fourth section concludes the paper. 

 
2. Structural Time-Series Modeling 
 
2.1 Theoretical Background 
 The STS methodology (Harvey, 1989) is a particular time-series analysis which assumes 
that a time-series is made up of a number of unobserved components such as (deterministic and 
stochastic) trend, seasonal, regression elements and disturbance terms, which have direct 
interpretation from the time-series data. Each component can be modeled discretely, allowing their 
evolution over time to be studied, and their contribution to the final predictions can be observed 
clearly. 
 A univariate STS model for the observed time-series data (1×T)y  can be described by the 
following general equation 

t t t t t ty vµ γ ψ ε= + + + + ,  2~ NID(0, )t εε σ        t = 1,…,T    (1) 

where, ty  is the observed data at an instant of time t, tµ  is the trend, tγ  is the seasonal, tν  is the 

slope, tψ  is the autoregressive (AR) component, and tε  is the observation disturbance error or the 

random error component at the same instant of time. The disturbance errors are assumed to be 
normally and independently distributed (NID) with zero mean and variance 2

εσ . Equation (1) 

contains all possible temporal components of the STS model. In this paper, models containing 
different combinations of these components have been studied in order to achieve the most accurate 
prediction algorithm. 
 The first model evaluated is the Local Level Model; this contains a stochastic trend and an 
irregular component and formulates as 

t t ty µ ε= + ,  2~ NID(0, )t εε σ       t = 1,…,T      (2) 

The stochastic trend (level) component denotes the long-term movement of the time series which 
can be extrapolated into the future. A Markov model of the stochastic trend can be, 

1t t tµ µ ξ+ = + ,  2~ NID(0, )t ξξ σ
     

 t = 1,…,T      (3) 

where tξ  is the level disturbance; the variance of this component, 2
ξσ and the variance of the 

observation disturbance, 2εσ , are mutually uncorrelated. The level component denotes a linear trend 

when 2
ξσ = 0, and the local level model, described in equation (2) & (3), collapses to a Deterministic 

Level Model, whereby equation (2) changes to, 

1t ty µ ε= + ,  2~ NID(0, )t εε σ      t=1,…,T       (4) 

 The Local Linear Trend Model is obtained by adding a slope component the local level 
model. The slope component signifies the long-term change of the trend and is included in a model 
as follows: 
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where tν  is the slope component  and tς  is the slope disturbance. The Local Linear Trend Model 

will collapse into a Deterministic Linear Trend Model when the variance of the disturbance 
term, 2

ςσ  equals to zero. 

 The Local Level Model with Seasonal is formulated by adding a seasonal component,tγ  to 

equation (2) in the local level model 

t t t ty µ γ ε= + +   2~ NID(0, )t εε σ   t=1,…,T     (6) 

 The seasonal is the periodic component of the time-series; it may be 12 months, 24 hours or 
any other fixed period s. The seasonal component is modeled using a trigonometric specification, 
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      (8) 

where 2j j sλ π=  is the frequency in radians and ,j tω  and *
,j tω  are mutually uncorrelated random 

normal disturbances with zero mean and common variance 2
ωσ . The superscript * in (8) indicates the 

minimal realization of the state vector in the state space form (Durbin & Koopman, 2001). The 
seasonal component denotes a deterministic periodicity when 2 0ωσ = . The Local Level Model with 

Seasonal is described by equations (3) and (6)-(8).  The Deterministic Level and Seasonal Model is 
defined by equations (4) and (6)-(8). 
 As indicated in equation (1), an autoregressive component can be added to the time-series 
model. An Autoregressive Process of order p, AR (p) suggests that each observation is correlated to 
the previous p observations in the dataset. 

1 1 2 2 .............t t t p t p tψ φψ φ ψ φ ψ κ− − −= + + + + ,       2~ NID(0, )t κκ σ  t = 1,…,T   (9) 

where 1 2, ...... pφ φ φ  are diagonal matrices and tκ  is the disturbance of the autoregressive component 

and the variance of  tκ  is 2
κσ . A Deterministic Level and Seasonal Model with AR will be defined 

by equation (1) (excluding the tν  component), equation (3) and (7)-(9). The disturbances 

( tε , tξ , tς , ,j tω , tκ ) experienced by each component in the STS model are mutually uncorrelated and 

the variances of the disturbances  of each of the components (2
εσ , 2

ξσ , 2
ςσ , 2

ωσ , 2
κσ ) represents the 

degree to which each component stochastically varies with time and are termed as hyperparameters. 
Equations (1) to (9) are generally solved in state-space form using Kalman filter based algorithms 
(Harvey, 1989). The hyperparameters and the components are estimated using a maximum 
likelihood estimation method.  
 The general representation of the STS model in the state-space form is as follows: 
Observation Equation: t t t ty Zα ε= +            ~ NID(0, )t tHε                                                          (10) 

State Equation: 1t t t t tT Rα α η+ = +             ~ NID(0, ) 1,.......,Tt tQ tη =                     (11) where 

tα  is the vector of unobserved components, known as the state vector; tZ  and tT  are the state 

system matrices; tR  is the error system matrix, tη  is the state disturbance matrix and tH  and tQ  are 

the variance matrices. Equations (10) and (11) represent the general state form of the STS model. 
The different models described in the previous section can be represented in this form with the 
different vectors and matrices having different dimensions and values. For the purpose of analysis, 
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the Kalman filter provides a method of updating the state vector when a new observation becomes 
available. Forecasts are made by extrapolating the components estimated at the end of the sample 
set using the Kalman filter. 
 
2.2 Prediction Error Estimates 
 The prediction accuracy of the proposed models is estimated from the mean absolute 
percentage error (MAPE) and the root mean square error (RMSE) estimates.  
 MAPE is a measure of accuracy as a percentage and is defined as 

1

ˆ1 n
t t

t t

x x
MAPE

n x=

−= ∑
          (12) 

where n is the number of data points predicted,
 tx  is the observed value and ˆtx  is the corresponding 

predicted value. 
 RMSE is a measure of precision which is defined as 

( )2

1

1
ˆ

n

t t
t

RMSE x x
n =

= −∑
          (13) 

These error estimates permit comparison of the observed data and the forecasted data, to evaluate 
the prediction accuracy of the proposed models. 
 
3. Modeling Nitrogen Oxides Concentrations at Dublin City Centre 
 
3.1 Air Pollution Data 
 The proposed STS methodology has been applied to model nitrogen dioxide (NO2) and 
nitrogen oxide (NOx) concentrations as observed in ambient air at a road-side air quality monitoring 
station on Pearse Street, in Dublin City. 

 
Fig. 1 Air quality monitoring station. 

 
Pearse Street is a four-lane-one-way street situated in the centre of Dublin City, and is a major 
thoroughfare for traffic traversing the city centre from South to North. It has an approximate east-
west orientation and carries an average daily traffic flow of 60,000 vehicles, of which 10% are 
HDVs. The average speed of the vehicles during the daytime is approximately 20km/hr, rising to 
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approximately 35km/hr at night. The street can be characterized as a street canyon, with an average 
building height of 16m and a width of 21m. These conditions lead to reduced pollution advection 
and dispersion, and to the formation of a recirculating air vortex within the canyon whenever the 
roof-top wind direction is perpendicular or near-perpendicular to the street orientation. 
Consequently, observed ambient pollution concentrations are especially sensitive to short-term 
variations in emissions from vehicles on the street. The air sampling point was located 3.2m from 
the kerbside and 1.8m above street level. The campus of Trinity College Dublin is located to the 
South of the monitoring site, with the remainder of the surrounding area being commercial. 
 Hourly concentrations in units of parts per billion (ppb) of NO2 and NOx were observed 
during the summer months between May to September. In the case of an urban transport network, 
weekend traffic dynamics and related emission levels are inherently different from those occurring 
on weekdays. Hence, in this study, modeling is carried out on the data observed during weekdays 
only. Time-series plots of the NO2 and NOx hourly concentration levels for 20 days are shown in 
Fig. 2. 
 Nitric oxide (NO) and NOx concentrations were measured using an API Model 200A NOx 
analyzer (Teledyne Instruments, 2008), which estimates the concentration of nitrogen dioxide 
(NO2) as the difference of these. The measurement method determines NO from the light intensity 
of the chemiluminiscent gas phase reaction of NO and ozone (O3) which produces oxygen and 
electronically excited NO2 molecules. The energy from these excited molecules is released as 
photons, whose light intensity is directly proportional to the NO concentration. Any NO2 in the 
sample is converted to NO by heated molybdenum and the total NOx is measured. A sampling 
interval of one hour was employed. 
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Fig. 2 Hourly concentrations of NO2 and NOx. 

Nitrogen dioxide was monitored from the 8th of May 2006 until the 7th of July 2006. 40 days 
of data, or 960 observations of hourly NO2 concentrations during this time-period, were chosen for 
modeling purposes. This allowed 39 days to be fitted to the various time-series models, with the 
final day being used to compare the actual observations with the forecasts. Fig. 2 shows a plot of 
the observed concentrations of NO2 over 20 days of the monitoring period. The mean and standard 
deviation of the data set are 73.4ppb and 64.4ppb respectively. According to the aforementioned EU 
directives (2008/50/EC Directive, Council of the European Union), the hourly concentration limit 
for NO2 is 200µg/m3 or 106 ppb (annual exceedance limited to 18 hours per annum) in effect from 
1st January 2010. Fig. 2 shows that multiple exceedances of this hourly limit were observed during 
the data collection period. Hence, it is apparent that management strategies are required to be 
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developed to control and limit the frequency of high nitrogen dioxide concentrations at the study 
site. 

Nitrogen oxide concentrations were monitored from the 3rd of July 2006 until the 22nd of 
September 2006. 39 days were fitted to the various time-series models and the final day was used to 
compare the actual observations with the forecast observations. Fig. 2 shows a plot of the 
concentrations of NOx for 20 days during the monitoring period. The mean and standard deviation 
of these data are 101.5 ppb and 65.1 ppb, respectively. 

The Autocorrelation Functions (ACF) of the NO2 and NOx datasets are plotted in Fig. 3. It 
can be observed that the time-series observations of both datasets display a definitive periodicity 
over each 24 data-points of hourly observations, or over a day. From the plots in Fig. 3, it can also 
be noted that the time-series datasets are non-stationary in nature. In STS methodology, stationarity 
is not a requirement for modeling the time-series observations and hence unlike other existing time-
series analysis techniques no further treatment is necessary to ensure stationarity of the datasets. 
 
 

 
Fig. 3 Correlogram of the original 

time-series observations for NO2 and NOx. 
 
3.2 Modeling of NO2 and NOx Concentrations (24 hours) 
 The time-series of NO2 and NOx concentrations have been modeled using STS methodology. 
The use of this methodology is inspired by its successful application in traffic flow prediction 
(Ghosh et. al., 2009) and the fact that the measured concentrations of oxides of nitrogen were 
obtained at a roadside monitoring station where the pollutant levels are strongly affected by the 
traffic volumes. As the effect of daylight hours on atmospheric stability also influences 
concentration levels, a daily periodicity has been observed and modeled. 
 The STS models of the NO2 and NOx concentration levels have been developed in a step-
wise fashion. For both the datasets, the models are built up from the basic Deterministic Level 
Model (equation (4)) and then subsequently local level, trend, seasonal and autoregressive 
components are added to obtain the most suitable model (equations (2)-(3), (5)-(9)). 
 The elegance of the STS model lies in the meaningful depiction of the components as shown 
in Fig. 4. In the figure, level, seasonality and the random error components (as obtained from the 
Local Level with Seasonal Component Model) are shown individually for NO2 concentrations in 
three different subplots. The local level component can be indicative of background pollution 
levels. Subplot (a) shows the stochastic level component as simulated and predicted by the proposed 
STS model. Subplots (b) and (c) of the figure show the seasonal component and the irregular 
component respectively, as simulated and predicted by the model. Subplot (b) shows that there 
exists a daily seasonality which is deterministic (2 0ωσ = ) in nature. 
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Fig. 4 (a) Stochastic level, (b) Seasonal and (c) Irregular components from the Local Level with 

Seasonal Model of NO2. 
 

 At each step of the model fitting, the residuals were analyzed for any remaining correlation 
between the residual data-points. Apart from that, the goodness of the model fitting has been 
checked using the Akaike’s Information Criterion. The criterion used is based on the formula 

AIC log( ) 2
T

m
PEV= +           (14) 

where PEV is Prediction Error Variance, m is the number of stationary components in the state 
vector plus the number of disturbance parameters estimated and T is the number of observations in 
the time series. The ACF values at lag 1, 2 and 3 of the residual data-points and the AIC value at 
each step of the modeling are listed in Table 1 for NO2 and in Table 2 for NOx. 
Table 1 Performance Estimates of NO2 Time-Series Model 

ACF of Residuals 
 AIC 

Lag1 Lag 2 Lag 3 
MAPE 

(%) 
RMSE 
(ppb) 

Deterministic Level Model 8.34 0.59 0.29 0.18 267.78 51.07 
Local Level Model 7.57 0.52 0.20 -0.12 129.23 68.71 
Deterministic Linear Trend Model 8.34 0.58 0.27 0.15 262.43 51.17 
Local Linear Trend Model 7.57 0.52 0.20 -0.12 129.29 68.51 
Deterministic Level Model with Seasonal 7.83 0.36 0.03 0.10 43.39 27.18 
Local Level Model with Seasonal 7.32 0.18 -0.09 -0.10 47.39 37.19 
Deterministic Level and Seasonal Model with AR1 7.18 0.09 0.08 0.07 28.54 27.13 
Deterministic Level and Seasonal Model with AR2 7.18 0.09 0.08 0.06 28.42 27.08 
 
 It can be observed from Table 1 that the AIC values for Deterministic Level and Seasonal 
Model with Autoregressive Components (AR1 and AR2) are the lowest making them the best-fit 
models to the NO2 concentration levels in ambient air. It can also be observed that the ACF values 
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for the residual data-points from both the models are considerably low and the residuals can be 
treated as white noise. 
Table 2 Performance Estimates of NOx Time-Series Model 

ACF of Residuals 
 AIC 

Lag1 Lag 2 Lag 3 
MAPE 

(%) 
RMSE 
(ppb) 

Deterministic Level Model 8.36 0.68 0.46 0.40 125.69 50.88 
Local Level Model 7.41 0.75 0.56 0.30 69.08 97.03 
Deterministic Linear Trend Model 8.36 0.71 0.50 0.46 127.74 50.93 
Local Linear Trend Model 7.41 0.75 0.56 0.30 69.32 97.30 
Deterministic Level Model with Seasonal 7.51 0.16 0.07 0.01 25.43 20.92 
Local Level Model with Seasonal 7.05 0.33 0.47 0.05 51.01 44.86 
Deterministic Level and Seasonal Model with AR1 6.92 0.13 0.06 0.04 18.59 20.36 
Deterministic Level and Seasonal Model with AR2 6.92 0.13 0.06 0.04 18.41 20.36 
 
 It can be observed from Table 2, that similar to the NO2 concentration model, the AIC 
values for Deterministic Level and Seasonal Model with Autoregressive Components (AR1 and 
AR2) are the lowest making them the best-fit models for the NOx concentration levels in ambient 
air. It can also be observed that the ACF values for the residual data-points from both the models 
are considerably low and the residuals can be treated as white noise. 
 
3.2.1 Prediction from STS model applied to the air pollution data (24 hours) 
 The NO2 and NOx concentrations in ambient air are modeled using STS methodology. The 
effectiveness of the models is tested by comparing their prediction accuracies. For both NO2 and 
NOx, 39 days of data are used to predict 1 day (24hours) ahead. In Fig. 5, the original observations 
along with the forecasts for the NOx concentration levels are shown as an example. 
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Fig. 5 Original observations and predicted values for STS model, ANN model and SVR model for 

NOx data. 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
10 

 
 It can be observed that the predicted values match the original observations closely. The 
forecasting precision of the proposed models are estimated from the MAPE and RMSE values. 
Tables 1 & 2 present these values for each model. Based on the MAPE, RMSE and AIC values, the 
Deterministic Level and Seasonal Model with Second Order Autoregression component produces 
the most accurate predictions for both NO2 and NOx. The models produce reasonably accurate 
forecasts for both datasets without using any other external information such as wind speed or 
traffic volume, etc. The STS model developed with NOx observations provides more precise 
forecasts than the model developed using NO2 observations. The coefficient of variation of the NO2 
observations is 69.2%, while for NOx observations the value is around 51%, which could be a 
potential reason for the lower accuracy of the STS model predictions developed for NO2 
observations. However, the physical phenomenon influencing this variability in precision cannot be 
identified from the model. As NO2 is a secondary pollutant formed by photochemical reactions in 
the atmosphere, a more complex STS model including hourly concentrations of ozone in ambient 
air as an external variable might provide a more complete solution. 
 The predictive performance of the developed STS model has been compared with an ANN 
model and a Support Vector Regression (SVR) model. A back-propagation feed-forward neural 
network based algorithm (Cai et al., 2009) and a SVR algorithm using spline kernel (loss function: 
ε-insensitive) (Lu and Wang, 2005) have been employed for this purpose. The prediction results 
from all three models are plotted in Fig. 5. Both the ANN and SVR models perform poorly 
compared to the STS model, especially in the off-peak periods. This could be expected because 
existing ANN and/or SVR models used for predicting 24 hour NO2 and NOx levels often use other 
meteorological and traffic related information as input, which improves the accuracy of the 
modeled results. However, to achieve an appropriate comparison with the developed STS model, 
only pollutant concentration levels have been used as input to all three models. As a result, the 
ANN and SVR models perform less effectively. This illustrates that the STS model represents a 
useful technique for predicting ambient pollutant concentrations when other information is not 
available due to financial or operational constraints. 
 
3.3 Modeling of NO2 and NOx Concentrations (Peak hours) 
 As the highest air pollutant concentrations occur during peak traffic conditions, pollutant 
concentrations recorded during morning and evening peak traffic have been extracted from the 
same NO2 and NOx data series, in an attempt to improve upon the results obtained when modeling 
an entire day (24 hours). Morning and evening peaks are modeled separately, with morning peak 
and evening peak hours considered to be from 07.00hrs to 10.00hrs and 16.00hrs to 19.00hrs, 
respectively. For each data set, the models are built up from the basic Deterministic Level Model 
(equation (4)), adding the various components to obtain an appropriate model. 
 For each model fitted, the residuals at each step are analyzed for any remaining correlation 
between data-points, and the AIC is considered to check the goodness of fit of the model. The ACF 
values at lags 1, 2 and 3 of the residual data-points and the AIC values for each model are listed in 
Tables 3-6 for the morning and evening peak of NO2 and NOx. 
 
Table 3 Performance Estimates of NO2 Time-Series Model (Morning Peak) 

ACF of Residuals 
 AIC 

Lag1 Lag 2 Lag 3 
MAPE 

(%) 
RMSE 
(ppb) 

Deterministic Level Model 8.29 0.36 0.09 0.10 13.09 25.67 
Local Level Model 8.26 0.17 -0.13 -0.06 11.21 16.83 
Deterministic Linear Trend Model 8.28 0.36 0.10 0.11 10.68 17.08 
Local Linear Trend Model 8.27 0.15 -0.15 -0.05 12.04 17.46 
Deterministic Level Model with Seasonal 8.29 0.37 0.09 0.09 13.10 23.10 
Local Level Model with Seasonal 8.24 0.16 -0.15 -0.08 8.91 12.23 
Deterministic Level and Seasonal Model with AR1 8.10 -0.03 -0.10 0.03 12.72 22.33 
Deterministic Level and Seasonal Model with AR2 8.09 -0.03 -0.10 0.03 12.99 22.69 
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Table 4 Performance Estimates of NO2 Time-Series Model (Evening Peak) 

ACF of Residuals 
 AIC 

Lag1 Lag 2 Lag 3 
MAPE 

(%) 
RMSE 
(ppb) 

Deterministic Level Model 7.06 0.48 0.16 0.05 50.47 41.88 
Local Level Model 6.99 0.17 -0.22 -0.12 29.49 29.11 
Deterministic Linear Trend Model 7.07 0.48 0.15 0.05 42.19 37.76 
Local Linear Trend Model 7.00 0.09 -0.23 -0.11 29.53 29.61 
Deterministic Level Model with Seasonal 7.05 0.52 0.23 0.06 41.81 36.92 
Local Level Model with Seasonal 6.90 0.08 -0.16 -0.10 19.74 21.20 
Deterministic Level and Seasonal Model with AR1 6.71 0.02 -0.04 -0.01 23.98 26.17 
Deterministic Level and Seasonal Model with AR2 6.71 0.00 -0.03 0.01 26.44 27.34 
 
Table 5 Performance Estimates of NOx Time-Series Model (Morning Peak) 

ACF of Residuals 
 AIC 

Lag1 Lag 2 Lag 3 
MAPE 

(%) 
RMSE 
(ppb) 

Deterministic Level Model 7.65 0.54 0.27 0.21 10.30 17.36 
Local Level Model 7.31 0.14 -0.20 -0.16 43.51 43.35 
Deterministic Linear Trend Model 7.65 0.04 0.01 0.01 73.22 58.94 
Local Linear Trend Model 7.32 0.12 -0.23 -0.18 41.68 42.20 
Deterministic Level Model with Seasonal 7.62 0.60 0.42 0.23 7.32 12.21 
Local Level Model with Seasonal 7.18 0.08 -0.04 -0.24 27.23 29.40 
Deterministic Level and Seasonal Model with AR1 7.08 -0.06 0.06 -0.15 3.00 5.31 
Deterministic Level and Seasonal Model with AR2 7.18 -0.03 -0.12 -0.11 23.58 26.37 
 
Table 6 Performance Estimates of NOx Time-Series Model (Evening Peak) 

ACF of Residuals 
 AIC 

Lag1 Lag 2 Lag 3 
MAPE 

(%) 
RMSE 
(ppb) 

Deterministic Level Model 7.66 0.55 0.21 0.14 24.10 36.99 
Local Level Model 7.46 0.14 -0.30 -0.20 29.66 52.80 
Deterministic Linear Trend Model 7.62 0.56 0.22 0.16 27.76 49.79 
Local Linear Trend Model 7.47 0.13 -0.31 -0.20 29.85 53.54 
Deterministic Level Model with Seasonal 7.62 0.60 0.30 0.16 19.74 29.41 
Local Level Model with Seasonal 7.31 0.08 -0.22 -0.21 33.65 53.70 
Deterministic Level and Seasonal Model with AR1 7.14 0.04 -0.07 -0.06 21.84 31.83 
Deterministic Level and Seasonal Model with AR2 7.15 0.04 -0.07 -0.02 23.85 35.11 
 
 It can be seen from Tables 3-6 that the AIC values suggest the ‘Local Level Model with 
Autoregressive Components (AR1 and AR2)’ to be the best fitting models to the data. The residuals 
obtained from these models also have considerably low ACF values and therefore these residuals 
can be treated as white noise. 
 
3.3.1 Prediction from STS model applied to the air pollution data (peak hours) 
 Both AM and PM peak hour STS models for NO2 and NOx concentrations in ambient air 
utilize 39 days of 4-hour peak period data to predict the 4 hours of peak period concentrations on 
the following day. The MAPE and RMSE values as shown in Tables 3-6 indicate the effectiveness 
of each model. Based on the MAPE and RMSE values in Tables 3 and 4, the Local Level Model 
with a Seasonal Component produces the most accurate predictions for the morning and evening 
peak period model for NO2 concentrations. On the other hand, the MAPE and RMSE values suggest 
that the Deterministic Level Models with an Autoregressive Component produce the most accurate 
predictions for the morning and evening peak period model for NOx concentrations. 
 For illustrative purposes, the forecasts from the peak-period models for NOx concentrations 
have been plotted in Fig. 6 (a) and (b) along with the corresponding forecasts obtained from 24 hour 
models for NOx concentrations. The peak period models provide more accurate peak hour forecasts 
than the 24 hour models. 
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Fig. 6 Comparison of 24 hour, AM peak and PM peak models against observed NOx peak hour 

data. 
 
3.4 Management of Missing Values within the Air Pollution Data using STS Methodology 
 As problems can often occur during data collection, which may prevent data from being 
recorded, the modeling methodology must be capable of managing missing observations. In STS 
modeling using a Kalman filtering process, missing data is handled in a similar way as forecasting. 
To illustrate this, a 24 hour period (observations of day 33) has been removed from the NO2 
concentration dataset. These 24 data points have been regarded as ‘missing’ observations. 
  
Table 7 Actual Observations and Missing Observation Estimates Values for NO2 
Time (Hours) 1 3 5 7 9 11 13 15 17 19 21 23 
Actual Observations 
(ppb) 

26 15.8 15.1 201 188.7 111.1 104.2 89.6 121 79.2 33 61.2 

Missing Observation 
Estimates (ppb) 

19 10.1 12.5 101 126.3 124.2 113.6 82.3 89.6 73.1 49 59.5 

 
 The missing observations have been estimated using a STS model with deterministic level, 
seasonal and AR2 components. The MAPE and RMSE values calculated by comparing the actual 
observations and missing observation estimates are 26.185% and 39.685ppb respectively. 
 
3.5 Management of Outliers within the Air Pollution Data using STS Methodology 
 An outlier is an observation which is inconsistent with a model, usually an abnormally large 
value of the irregular disturbance at a specific time. STS can detect and manage outliers within the 
system to reduce the negative effects they can have on a forecast. As shown in Fig. 7 six outliers 
have been selected from the NO2 air pollution concentration time-series data. STS removes these 
outlier values and replaces them with more congruent values gained from applying the Kalman 
filtering process. 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
13 

 

10 20 30 40
0

100

200

300

400

Time (days)

H
ou

rly
 N

O
2 

C
on

ce
nt

ra
tio

n 
(p

pb
)

 

 

 
Fig. 7 Outliers within the NO2 time-series data. 

 
4. Conclusion 
 In this paper, a univariate STS methodology has been applied to model and predict traffic-
related NOx and NO2 hourly concentration levels at a city center road-side location. This is the first 
successful application of STS methodology to the prediction of ambient NOx and NO2 
concentrations. It is also the first instance of modeling 24 hour continuous air pollution data 
acknowledging the presence of deterministic periodicity in the data. In the developed STS model, 
the temporal evolution of each individual component (level, seasonality, etc.) of the pollutant 
concentrations can be traced separately. The STS model developed in this study has three main 
components, a level component, a deterministic seasonal component and an irregular component. 
The level component is an indicator of background concentration; the seasonal component shows 
the within-day dynamics of nitrogen oxide levels which are influenced mainly by the traffic flow 
and the day light hours. The irregular component indicates day-to-day variation which signifies or 
reflects the local changes in the pollutant levels. The STS model is superior to other existing 
statistical techniques in its meaningful depiction of the different factors which influence the 
variation in nitrogen oxide concentrations. 

The developed model can provide one-step and multi-step ahead (a season ahead) forecasts 
without any major loss of accuracy. When the model considers daily seasonality, it can predict a 
season or 24 steps ahead into the future, owing to the fact that the forecast function solely depends 
on the current estimates of the seasonal effects. Apart from that, checking for stationarity is not 
critical for the STS models. 

The model can handle missing observations and outliers without any major complications 
and this adds to the attractiveness of the STS model. 
 Overall, the analysis shows that a STS model can be a useful tool in predicting traffic-
related NOx and NO2 hourly concentrations in urban areas and is particularly useful if the 
information on input variables such as meteorology and emissions are not available and also if 
missing values or outlier values exist within the data set. The model has obvious potential benefits 
by offering improved air quality forecasting for environmental and public health management. 
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