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Abstract. The results of the enumeration of Costas arrays of order 29 are

presented: except for 16 arrays out of a total of 164, all other arrays found

are accounted for by the Golomb and Welch construction methods. These 16
arrays, however, cannot be considered to be new, as they were discovered in the

past through a semi-empirical technique. The enumeration was performed on

several computer clusters and required the equivalent of 366.55 years of single
CPU time.

1. Introduction

Costas arrays [3] are square arrays of dots/1s and blanks/0s, such that there
exists exactly one dot per row and column (that is, they are permutation arrays),
and such that a) no four dots not lying on a straight line form a parallelogram, b)
no four dots lying on a straight line form two equidistant pairs, and c) no three dots
lying on a straight line are equidistant. They were first proposed by J.P. Costas in
1965 in the context of SONAR detection in a GE technical report [1], and later in
1984 in a journal publication [2].

There are two known algebraic construction techniques for the production of
Costas arrays: the Golomb and Welch methods. Both are based on the theory of
finite fields and were introduced and proven in 1984 by S. Golomb and H. Taylor
[6, 8]. These methods successfully construct n×n Costas arrays for infinitely many,
but not all, orders n, and they remain the only generally applicable construction
techniques for Costas arrays available today.
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In this work we present the results of the enumeration of Costas arrays of order
29. These results come approximately eight months and 2.5 years after the results
of the enumeration of Costas arrays of order 27 [5] and 28 [4], respectively. This
presentation is meant to be read as a supplement to [4]: the reader is referred therein,
in particular, for all relevant definitions not included here.

2. Definition and basics

Let us begin with the definition of a Costas function/permutation [2, 3]:

Definition 1. Let [n] := {1, . . . , n}, n ∈ N and consider a bijection f : [n] → [n];
f is a Costas permutation iff

∀i, j, k such that i, j, i+ k, j + k ∈ [n] :

f(i+ k)− f(i) = f(j + k)− f(j)⇒ i = j or k = 0.

This condition is known as the Costas property.

Permutations correspond to permutation arrays by setting the elements of the
permutation to denote the positions of the (unique) 1 in the corresponding column
of the array, counting from top to bottom: f(i) = j ⇔ aj,i = 1. It is customary
to represent the 1’s of a permutation array as “dots” and the 0’s as “blanks”. The
terms “array” and “permutation” will henceforth be used interchangeably.

The Costas property is invariant under rotations of the array by 90o, horizontal
and vertical flips, and flips around the diagonals, hence a Costas array gives birth
to an equivalence class (EC) that contains either eight Costas arrays, or four if the
array happens to be symmetric; in the latter case, we say the EC is symmetric.
When presenting the results of the enumeration, we will give the lexicographically
minimal representative from each EC for brevity; the members of the EC of a Costas
array are often referred to as its polymorphs.

There exist two algebraic methods for the construction of Costas arrays, known
as the Golomb and Welch methods [3, 6, 8, 7], each actually comprising several
submethods: relevant to this work are Golomb methods G0, G2, and G3, and
Welch methods W0 and W2. A further semi-empirical method relying on these two,
known as the Rickard method and consisting of two submethods, is currently the
only additional method that has successfully led to the discovery of four previously
unknown Costas arrays, namely two of order 29 (through the Rickard Welch RW0

submethod), one of order 36, and one of order 42 [9]. A summary of all these
techniques can be found in [4]. Any additional Costas array not resulting from
these techniques will be characterized as sporadic.

As the Rickard method is not very well known, it is perhaps worth offering a
brief description here. Appending a blank row to an exponential W1 array and then
cyclically shifting its rows any number of times results in a non-square array with
the Costas property. If a column is then appended on either side with a single dot
corresponding to location of the blank row, a new permutation array is obtained,
which may have the Costas property (the same effect can be achieved by appending
a blank column to a logarithmic W1 array and then cyclically shifting its columns).
Similarly, appending both a blank row and a blank column to a G2 array and then
cyclically shifting both its rows and its columns independently any number of times
results in a new square array with the Costas property, which can furthermore
be turned into a permutation array through the placement of a new dot at the
intersection of the blank row and column, and which may have the Costas property.
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3. Enumeration results for order 29

The enumeration found in total 164 Costas arrays, divided into 23 ECs, 5 of
which are symmetric. More specifically, breaking down this set per construction
method (descriptions of which can be found in [4]), there are:

• 4 G0-arrays in 1 symmetric EC, constructed in F(29);
• 64 = 82 = φ2(30) G2-arrays in 10 ECs (4 symmetric), constructed in F(31);
• 24 G3-arrays in 3 ECs, constructed in F(32);
• 24 W0-arrays in 3 ECs, constructed in F(29);
• 32 W2-arrays in 4 ECs, constructed in F(31);
• 16 RW0-arrays in 2 ECs, constructed in F(29).

The lexicographically minimal polymorphs are shown in Table 2, while the two
RW0-arrays are plotted in Figure 1. As was the case for order n = 28, none of the
arrays found is sporadic. The total runtime of the project on a single CPU was
recorded to be approximately 366.55 years (about 5.2 times as long as the enumera-
tion of Costas arrays of order 28 recorded in [4]), but, due to high parallelization of
the tasks, the real time required was approximately 230 days, between 2010/06/08
and 2011/01/24. This shows that, on average, approximately 568 processors were
used throughout the run (though, briefly, at peak times, simultaneous use of up to
about 2,000 processors was recorded). The memory and storage requirements of
the code used were minimal.

Forbidden positions for Costas arrays of order 29 are shown in Figure 2: they
correspond to positions in which none of the arrays carries a dot. The resulting
cross-shaped region is similar to the cross-shaped regions appearing in the forbidden
positions of orders 25 and 27 [5]. There were no forbidden positions in order 28: the
cyclic shift property of W1-arrays, present in all orders n = p − 1, p prime (hence
28 as well), implies that the dots of a single such array along with all of its cyclic
shifts will span all elements of the array, leaving no gaps.

4. A brief description of the the procedure followed

Our code was essentially the same as the one used by our group for the enumer-
ation of Costas arrays of order 28 [4]. The project was run on several clusters in
Ireland:

• UCD’s Phaeton cluster, managed by UCD IT Services, and featuring Intel
Xeon E5450 and E5540 Quad Core CPUs, at 3.00GHz and 2.53GHz, respec-
tively. We were allocated a maximum of 200 CPUs, while jobs were submitted
through a custom-made task-farming Python PBS script.

• UCD’s SenseTile cluster, managed by members of UCD CASL, and featuring
AMD Opteron 8360SE Quad Core CPUs at 2.51GHz We were allocated 78
reserved CPUs, and jobs were submitted through a custom-made task-farming
Python SGE script.

• The Stokes supercomputer of the Irish Centre for High End Computing
(ICHEC), featuring Intel Westmere Xeon E5650 Hex Core CPUs at 2.66GHz.
We used a recorded total of 1.6 million CPU hours allocated through a Class A
ICHEC grant. Bundles of jobs were submitted to be run using Stokes’s built-
in task-farming facilities, each bundle allocated 288 CPUs and a walltime of
half a week (84 hours).
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Figure 1. The two lexicographically minimal Welch Rickard
Costas arrays of order 29, corresponding to permutations 3 21 23
22 8 15 26 6 16 11 28 5 2 18 10 14 12 13 27 20 9 29 19 24 7 1 4 17
25 (top) and 4 12 25 28 22 5 10 29 20 9 2 16 17 15 19 11 27 24 1
18 13 23 3 14 21 7 6 8 26 (bottom)

• Grid-Ireland, administered by members of Trinity College Dublin’s (TCD)
School of Computer Science and Statistics, and featuring a variety of C-
PUs located all across Ireland. Jobs were initially submitted through the
DIANE/GANGA queue submission system, but subsequently a new grid job
framework and workflow was developed to comprehensively handle bounded
job submission, job status monitoring with error handling, and output re-
trieval. A walltime of three days was individually applied to each job.

• Lonsdale, administered by the Trinity Centre for High Performance Comput-
ing (TCHPC), and featuring AMD Opteron 2350 Quad Core CPUs running
at 2.00GHz. Jobs were submitted through custom scripts handling SLURM,
the built-in job submission system.
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Figure 2. Forbidden positions for Costas arrays of order 29

Cluster Jobs run % CPU years run %

Stokes (ICHEC) 106,724 54.22 217.37 59.30
Phaeton (UCD) 63,473 32.25 79.72 21.75
SenseTile (CASL) 13,744 6.98 27.12 7.40
Grid-Ireland 10,358 5.26 36.88 10.06
TCHPC (TCD) 2,540 1.29 5.46 1.49

Total 196,839 100 366.55 100

Table 1. Statistics (number of jobs run and CPU time used) per cluster

Specific statistics per cluster are shown in Table 1. Runtimes of individual jobs,
when the latter are lexicographically sorted, are shown in 3 (top), while the corre-
sponding histogram is shown in Figure 3 (bottom). In the top figure, 13 individual
ramp-shaped parts are clearly discernible, corresponding to the starting integer (2 to
14) of the permutations tested. The high spikes in the second ramp (corresponding
to starting integer 3) are due to the slowest processors of Grid-Ireland.

5. Conclusion

Costas arrays of order 29 have been enumerated: there are 164 Costas arrays
divided into 23 equivalence classes, five of which are symmetric. Had it not been for
the publication of [9] in 2004, two equivalence classes would have been new/sporadic,
but, as it stands, no new/sporadic Costas arrays were found, as was the case for
order 28.
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