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Abstract

The static contact angle is the only empiricism introduced in a Volume
of Fluid - Continuum Surface Force (VOF-CSF) model of bubbly flow and it
has previously been shown to have a relatively limited effect on the accuracy
of velocity and shape predictions in the case of large gas bubbles sliding un-
der inclined walls (1). Smaller ellipsoidal bubbles are known to display more
unstable dynamic behaviours with repeating bouncing when sliding under
inclined walls at certain wall inclinations (2). Under such conditions, the
onset and significance of the bouncing component is strongly influenced by
surface tension and the static contact angle is likely to have a more deter-
mining influence on the numerical prediction of the bubble dynamics. The
present paper reports on this influence for an air bubble of equivalent diame-
terDe = 3.4mm. The bubble Eötvös and Morton numbers are Eo = 1.56 and
Mo = 2x10−11 respectively, giving, according to the computational results,
Reynolds and Weber numbers in the ranges 295-707 and 0.35-2 respectively.
The computational results are achieved with a Piecewise Linear Construction
(PLIC) of the interface. They are reviewed with reference to experimental
measurements of bubble velocity and interface shape oscillations recorded
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using a high speed digital camera. Tests are performed at plate inclination
angles θ ∈ {10◦, 20◦, 30◦, 45◦} to the horizontal and computational models
consider three static contact angles θc ∈ {10◦, 20◦, 30◦}. The static contact
angle has been found to have a significant effect on the bubble dynamics but
to varying degree depending on the plate inclination. It is shown to promote
lift off and bouncing when the plate inclination angle reaches 30◦ in a way
that does not necessarily reflect experimental observations. A change to θc
by as little as 5◦ is also shown to deform the bubble and to affect the slide
velocity most notably at lower and higher plate inclination angles.

Keywords:
Gas-Liquid Flow; Sliding Bubble; Volume-of-Fluid; PLIC Method; SIMPLE
Algorithm

1. Introduction

The flow of gas-liquid mixtures occurs in a wide range of engineering ap-
plications such as steam generation, electronic cooling and chemical reactors.
The gas phase may result from phase change in power generation, thermal
management or refrigeration or may be injected as part of the process to en-
hance mixing. The formation and free rise of gas bubbles in liquid have been
studied extensively and are reasonably well understood (see (3) for a review).
Navier Stokes solvers coupled with Volume of Fluid (VOF) and Continuum
Surface Force (CSF) models have been shown to achieve accurate predic-
tions of bubble shapes and terminal velocity for single bubbles in free rise
(4), (5). By contrast, although bubble-wall interaction plays an important
role in most bubbly flow processes, it has been the subject of relatively few
studies. Several experimental and numerical investigations have considered
the flow of Taylor bubbles or slug flow in tubes and rectangular channels
where the gas phase fills a significant proportion of the space between the
confining walls (1, 6). For this type of large bubble, a VOF-CSF model has
been shown to achieve predictions of the bubble shape and slide trajectories
and velocities which are in good agreement with experimental observations
with little sensitivity to the static contact angle used to account for surface
tension at solid boundaries. Other numerical studies with VOF solvers have
achieved accurate models of Taylor bubbles in vertical pipes (7), (8) but in
this case the bubble interface remains isolated from the solid boundaries by
a thin liquid film. One experimental study by Maxworthy (9) has considered

2



large spherical cap bubbles sliding along inclined flat surfaces with no signif-
icant confinement.The Eötvös numbers (Eo = g∆ρD2

e/σ) considered were in
the range 60-300. With Reynolds numbers (Re = U0De/ν) greater than 650
this placed the free rise spherical-cap bubbles in the inviscid regime. Here, ρ
and ν are the density and kinematic viscosity of the liquid, U0 and De are the
velocity and equivalent diameter of the bubble and σ is the surface tension
of the liquid-gas interface. Maxworthy’s study showed that steady inviscid
flow theory also provides accurate predictions in the case of sliding bubbles,
giving bubble shape characteristics and velocities which are within the ex-
perimental scatter. The suitability of approximate numerical models in this
case can be explained by the fact that spherical cap and Taylor bubbles rise
steadily with predominantly rectilinear trajectories which remain parallel to
the confining wall.

Very different dynamic properties have been observed with smaller ellip-
soidal bubbles rising under an inclined plate. Air bubbles of 4mm equivalent
diameter (Eo ≃ 2.16) have been found to both slide and bounce at wall
inclination angles of 65◦ and 77.5◦ (10). Smaller air bubbles of effective
radius 1mm (Eo < 1) have been shown to lift off and bounce repeatedly
without loss of amplitude for wall inclination angles greater than 55◦ (2). In
the latter study, the existence of a thin lubrication film between the surface
and the sliding bubble was also observed experimentally and corroborated
by lubrication analysis. The bubble slide velocity was shown to decrease
with a proportional thinning of the liquid film between the bubble and the
surface as the inclination angle is reduced. Experimental observations sug-
gested that for sufficiently low inclination of the flat plate, the drainage of the
thin film continues until it reaches a few micrometers and the van der Waals
forces become predominant (2). At that stage the gas-liquid interface may
reconnect with the solid surface affecting the process of energy restitution
due to the bubble deformation. Because of the difficulty in resolving both
the microscopic liquid film and the larger scale flow, most numerical studies
have not modelled the microscopic Van Der Walls interaction between the
fluids and solid surfaces (11). Surface tension is instead generally modelled
by imposing the apparent contact angle between the interface and the solid
surface (12) along with a no slip boundary condition for the mixture velocity.
Using the face normal velocity component to approximate the flux of one of
the phases means that the contact line typically moves relative to the solid
surface avoiding the stress singularity that would otherwise exist at the wall
due to the no slip boundary condition. This approach, however, also means
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that the solution cannot be grid independent.
The majority of computational studies of bubble flow have relied on the

VOF (13) or the Level-Set methods (14) to model the two-phase incompress-
ible flow, accounting for surface tension through the Continuum Surface Force
(CSF) model (15). The only numerical study of ellipsoidal bubble sliding
along a flat inclined surface known to the authors is a two-dimensional study
relying on a Level Set Method (16). The study considered the effect of the
Eötvös and Reynolds numbers as well as the surface inclination angle but
did not assess the model sensitivity to the interface contact line model and
considered relatively modest density and viscosity ratios, i.e. ρg/ρl = 0.01
and µg/µl = 1 respectively. The present study uses a VOF-CSF model cou-
pled to a SIMPLE Navier Stokes solver to assess the suitability of the static
contact angle formulation by studying the sensitivity of results to the input
parameters and by comparing predictions with experimental measurements.
The two-fluid mixture studied is air-water with ρg/ρl = 1.225 · 10−3 and
µg/µl = 0.018. The bubble studied is larger than that considered by (2) but
is still in the ellipsoidal regime with an initial diameter ofDe = 3.4mm and an
Eötvös number Eo = 1.55. The study considers conditions where the bubble
slides along the surface without repeated bouncing so tests are performed at
plate inclination angles θ ∈ {10◦, 20◦, 30◦, 45◦} to the horizontal. The com-
putational study considers three static contact angles θc ∈ {10◦, 20◦, 30◦}.

2. Numerical formulation

2.1. The governing equations

The governing equations for unsteady, incompressible, immiscible two-
fluid VOF-CSF model include the continuity, momentum and VOF advection
equations. They are written as:

∇ ·V = 0 (1)

ρ
∂(V)

∂t
+∇ · (ρVV) = − ∇p+∇ · τ + ρg + Fb (2)

∂f

∂t
+∇ · (fV)− f(∇ ·V) = 0 (3)

where ρ is the fluid density, V the fluid velocity vector, p the scalar pres-
sure, τ the viscous stress tensor, Fb a body force, g the acceleration due to
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gravity and f the volume fraction. Although the incompressible continuity
equation is used, spatial variations in density are accounted for in the mo-
mentum equations. In Eq. 3, the velocity divergence, ∇ ·V is retained since
its discrete approximation is not zero but a function of the continuity conver-
gence tolerance (17). The nonlinear advection term is written in conservative
form and the viscous stress tensor τ is defined according to the Newtonian
formulation:

τ = 2µS. S =
1

2

[
(∇V) + (∇V)T

]
(4)

where S is the rate-of strain tensor and µ is the coefficient of dynamic
viscosity. The mixed properties used in Eq. (2) can be defined as:

ρ = f ρg + (1 − f )ρl (5)

µ = f µg + (1 − f )µl (6)

where the subscript l denotes liquid and the subscript g denotes gas. The
scalar function f is generally known as the volume fraction or VOF function.
The discrete representation of the function f is equal to 1 in cells fully filled
by the liquid phase and equal to 0 in cells filled by the gas phase but takes
a value bounded by 0 and 1 in cells where the interface lies.

2.2. Navier Stokes solver

The two-dimensional (2D) momentum and mass conservation equations
are solved iteratively using a SIMPLE algorithm (18) modified to include the
VOF advection equation. The equations are discretised by Finite Volumes on
an orthogonal staggered C-grid, where the pressure and fluid properties are
evaluated at the cell centers (i, j) while the velocity components ui+1/2,j and
vi,j+1/2 are evaluated at the centres of the cell faces which are perpendicular
to the x and y directions respectively. The convective flux coefficients are
derived by a first order upwind scheme while the diffusive flux coefficients are
obtained by central differencing and the equations are discretised in time by
implicit first order Euler differencing. The linearised momentum equations
are solved using a Krylov subspace, iterative method and the pressure cor-
rection equation is solved with a Multigrid solver. For any given numerical
test, the same iterative method is used as a smoother for the momentum
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equations and for the Multigrid scheme at all grid levels. The iterative solver
considered is an RILU preconditioned BiCGStab with an RILU parameter
of 0.95. The Multigrid iterations involve repeated calls of the µ - cycles until
the specified convergence criterion is met. The absolute residuals used to test
convergence are evaluated using a l2 norm and a continuity residual lower
than or equal to 10−4 is used to test convergence at each time step.

2.3. Surface tension force estimation

The dynamic stress balance is realised through the CSF - ALE model (15)
incorporated in the momentum equation by introducing a volume force Fb.
This localised volume force is calculated from the volume fraction data by

Fb = σκ(x)ñ
∇f̃(x)

[f ]

ρ(x)

[ρ]
(7)

where κ is the curvature of the interface and the ∼(tilda) denotes fil-
tered(smoothed) values and the square bracket denotes the difference between
the maximum and the minimum values of the function inside the brackets
and ρ(x) is the local value of the density obtained by Eq. (5).

The interface characteristic parameters, the outward normal vector ñ and
curvature κ, are calculated as

ñ = (ñx, ñy) = −∇f , n̂ =
ñ

|ñ|
(8)

κ = (∇ · n̂) = − 1

ñ

[(
ñ

|ñ|
· ∇

)
|ñ| − (∇ · ñ)

]
(9)

Brackbill et al. (15) have rewritten the curvature in terms of ñ and |ñ| to
ensure that the main contribution from the finite difference approximation of
κ comes from the center of the transition region rather than the edges. This
can be achieved by an Arbitrary Lagrangian Eulerian (ALE)-like scheme or
MAC method. In both approaches, the color function is chosen to be the
fluid density, which resides at the centre of the control volumes denoted using
the indices i, j. The curvature κi,j therefore also will be cell-centered. Both
approaches were tested and it was found that the ALE scheme works better
than the MAC method giving more stable flows and is used in this study.
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As the governing equations are discretised on the staggered grid and the
surface tension forces have to be calculated at the cell faces for the momentum
equations, it is found that an averaging of Fb from cell centers gives better
results.

The CSF method has the ability to use the smoothed or mollified VOF
function f̃i,j for the calculation of the curvature κi,j in the volume force of
Eq. (7), which is different from the unsmoothed function fi,j used to calculate
the normal vector in Eq. (8). This enables the algorithm to calculate a
smoother curvature for accuracy, and has been found to decrease the number
of pressure solution iterations.

The smoothed VOF function is computed by convolving f with a B-Spline
of degree l ( (19, 15)), β(l)(|X ′ −X|;H), (with l=2) where β(l) ̸= 0 only for
|X ′ −X| < (l + 1 )h/2 = 3h/2 . The smoothed VOF function is given by:

f̃i,j =
k∑

i′,j′=1

fi,jβ
(l)

(
x′
i′,j′ − xi,j ;h

)
β(l)

(
y′i′,j′ − yi,j ;h

)
(10)

where the sum gathers contributions from the nine values (for l=2 in 2-D)
of fi,j within the support of β2. Here, this formulation becomes simply:

f̃i,j =
9

16
fi,j +

3

32
(fi+1,j + fi−1,j + fi,j+1 + fi,j−1) (11)

+
1

16
(fi+1,j+1 + fi+1,j−1 + fi−1,j+1 + fi−1,j−1) (12)

This formula may be applied iteratively by multiple passes through the
mesh for increased degrees of smoothing. Tests have shown that one to three
passes are optimal, with most calculations carried out with one pass. A single
iteration was used in this study.

The face centered values of Fb i,j at the right and top faces are required
for the momentum equations and are calculated from cell centered values:

Fbi+0.5,j = 0.5× (Fbi+1,j + Fbi,j) (13)

Fbi,j+0.5 = 0.5× (Fbi,j+1 + Fbi,j) (14)
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2.4. The interface tracking algorithm

The interface tracking algorithm advances the solution of Eq. (3) in time.
It requires first that an approximation to the interface is reconstructed from
the known distribution of fn

i,j at time t = n∆n. In this work, the Piecewise
Linear interface calculation (PLIC) method due to Youngs (20) is used. It
represents the interface by line segments positioned to conserve the volume
fraction and to satisfy Eq. 8.

The VOF advection equation (Eq. 3) is solved after the Navier Stokes
equations using the discrete velocity and the reconstructed line description
to approximate flux of f across the cell faces. A first order un-split advection
algorithm (17), which is based on the standard conservative finite difference
update of Eq. (3) provides the updated volume fraction fn+1

i,j from its value
fn
i,j at time tn = n∆t:

fn+1
i,j = fn

i,j +
∆t

∆x

[
Fi−1/2,j − Fi+1/2,j

]
+

∆t

∆y

[
Gi,j−1/2 −Gi,j+1/2

]
+∆tfn

i,j

[
(ui+1/2,j − ui−1/2,j)

∆x
+

(vi,j+1/2 − ui,j−1/2)

∆y

]
(15)

where Fi−1/2,j and Gi,j−1/2 for example are the approximated flux of f at
the west and south face of the (i, j)th cell respectively. Ordinarily the last
term in Eq. 15 would be zero if the continuity equation was satisfied but it
has been found desirable to include it numerically to account for the effect
of approximate convergence to the chosen tolerance.

2.5. The static contact angle boundary condition

When a bubble is in contact with a solid surface, surface tension influ-
ences the angle formed between the air-water interface and the solid surface.
For a static problem, the so-called apparent contact angle can be measured
relatively easily and is known to be a property of the two fluids and of the
solid surface. If the bubble is in motion, the contact angle is also influenced
by the dynamics of the interface, which itself depends on the interaction be-
tween inertia, surface tension and buoyancy forces. This dependence however
is neglected in computational models, when a fixed and constant contact an-
gle, written θc, is imposed rather than being a result of force balance. This
static contact angle formulation provides a wall boundary condition for the
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volume fraction function f . It is used instead of Eq. 8 to calculate the nor-
mal vector n̂. The surface curvature and then the surface tension force are
evaluated as normal from Eq. 9 and Eq. 7. This means that the contact
angle is not strictly imposed but rather it is its influence on the momentum
equation which is accounted for. This means that in a steady static case, the
interface angle will converge to the imposed static contact angle θc, but in the
unsteady case of a sliding bubble the interface angle will vary dynamically
as a result of force balance.

3. Problem definition

3.1. Computational setup

The 2D computational domain consist of a 80mm by 20mm rectangle
which includes a rectangular obstacle used to represent the immersed flat
plate (see Fig. 2.b for example). The axes of symmetry of the two rectangles
are parallel to each other. The domain is initially filled with stationary
water and an air bubble is intialised at t = 0s as a circular patch with its
centre positioned at a distance of 6.5mmmeasured perpendicular to the lower
surface of the plate. In cells containing the interface, the volume fraction
is estimated by approximating the circle intersection with the cell using a
piecewise linear reconstruction of the interface. This minimises curvature
variations and associated stability issues at the first time steps. No-slip
boundary conditions are applied at all confining walls and inclined plate
surfaces. Four plate inclination angles θ of 10◦, 20◦, 30◦ and 45◦ from the
horizontal direction are tested. The parameters used for these simulations are
listed in Table 1. Computations were performed with a grid of 800×200 cells
and a time step of 10−4s. The mesh decomposes the initial bubble with 34
cells across the bubble diagonal, which was shown to be sufficient to provide
free rise velocity predictions in agreement with correlations from (21). The
mesh is uniform and orthogonal with square cells of width and height equal
to 10−4 m. This gives a maximum Courant number based on the maximum
bubble velocity approximately equal to 0.2.

3.2. Experimental setup

Physical experiments were performed with water at 20 ± 0.5◦C giving
fluid properties which approach those described in Table 1. Although the
experimental results are used to provide reference data for the assessment of
the computational results, it is important to highlight the two fundamental
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Table 1: Test parameters

Parameters Symbols Values Units
Liquid density ρl 1000 kg/m3

Liquid viscosity µl 0.001 kg/m · s
Gas density ρg 1.225 kg/m3

Gas viscosity µg 1.8 · 10−5 kg/m · s
Surface tension σ 0.0728 N/m
Acceleration Gravity g 9.81 m/s2

Contact angles θc 20◦, 25◦, 30◦ -
Plate inclination angle θ 10◦, 20◦, 30◦, 45◦ -
Plate length, width Lp, Wp 0.073, 0.002 m
Tank length, width L, W 0.08, 0.02 m

differences which characterise the two sets of results. First the computational
model rely on a two dimensional formulation and cannot resolve the complex
three dimensional vortices shed by the bubble, experimental tests however
have shown that the bubble slide trajectory is predominantly confined to a
2D plane perpendicular to the plate. Experimental measurements and data
analysis are performed assuming that the motion is indeed confined to a
plane. A NAC Hi-Dcam II digital high-speed colour camera (max resolu-
tion 1280 x 1024 pixels, dependent on frame rate and image size) is used to
capture the bubble position and its boundary. A frame rate of 250 fps with
an exposure time of 0.001s were found to be suitable. For bubble tracking,
two images are required in order to locate a bubble in any specific image;
these are the background image and an image containing the whole bubble.
Both images are first converted to HSV colourspace, working only on the
intensity part of the images. The bubble is isolated by subtracting the image
containing the bubble with the background image. Any element not com-
mon in both images shows up as a value greater than one, with all common
elements at unity. This is deemed the enhanced image. The enhanced im-
age is converted to binary by defining a threshold value, calculated by using
maximum and minimum enhancement values, everything above this value is
assigned a binary value one (white), everything else is assigned zero (black).
It is then possible to analyse the bubble properties including the projected
surface area, the centroid position, the centroid velocity and the bubble con-
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tour within the plane of motion. The area of the bubble is used to find the
equivalent diameter of the bubble De =

√
4× Area/π. Since this diameter

is calculated from a 2D projection we can expect variations as the bubble
detaches from the needle and slides or bounces along the plate after impact.
These variations however were found to be most significant just after detach-
ment from the needle tip and were generally less than 3% during the slide.
3D measurements of the equivalent diameter of the bubble projection also
showed a slow increase during the slide indicating that the bubble stretch in
the direction perpendicular to the plane of measurement reduces gradually
with time. We have assumed a constant equivalent diameter of De = 3.4mm
in the 2D simulation which closely approximates the observed experimental
diameter at the initial stage of the bubble slide.

Another difficulty relates to the injection of the bubble which needed to
replicate as closely as possible the initial conditions described in Section 3.1.
Accurate bubble volume injection is achieved by using an infusion pump and
a surgical syringe (kdScientific model 200). From this, air is supplied to a
machined medical needle, with an external diameter of 2.1mm, at a constant
flow rate of 0.05ml/min which is sufficiently slow to avoid any momentum
being transferred to the bubble at detachment. The needle is positioned so
that it is parallel to the direction of gravity, for all plate inclinations and with
its tip at a distance from the plate which enable a bubble detachment also
at a distance of 6.5mm from the plate. Detachment, however, is controlled
by surface tension at the intersection between the bubble interface and the
needle so that the initial bubble shape is not spherical but instead is stretched
towards the needle and along the needle axis as illustrated in Fig. 2.

4. Results

4.1. Assessment of Static Contact Angle Numerical Boundary Condition

Observations of sliding bubbles obtained from experiments for the four
plate inclination angles under consideration showed that the apparent contact
angle that the sliding interface forms with a solid surface when in contact
with it, is generally within the range 20◦ − 30◦. Similar apparent contact
angles were observed with a static bubble under a horizontal plate. The
present assessment of the effect of the static contact angle on the VOF-CSF
models considers three static contact angles within this range, i.e. (θc =
{20◦, 25◦, 30◦}).
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There are three main effects which can be anticipated to impact on the
shape and dynamics of the numerical bubble in ways that do not necessarily
represent actual physical processes. First, observations discussed in the fol-
lowing subsections indicate that by increasing the contact angle, the bubble
is forced to stretch in the direction perpendicular to the solid surface. This
impacts on the bubble hydrodynamic profile and can be expected to influence
pressure distribution around the bubble. Second, as soon as a small volume
fraction of air enters a wall adjacent cell, the model assumes that the inter-
face is in contact with the wall and surface tension attempts to impose an
orientation to the interface as a function of the contact angle. The resultant
force attracts the bubble towards the wall and may hinder lift off from the
surface and dampen the bubble bounce. This attractive force is a function
of the mesh size rather than a representation of the physical intermolecular
forces. The third effect results from the latter one. Since the contact angle
formulation promotes reconnection of the interface with the solid surface,
the thin liquid layer that has been observed experimentally (2) cannot be
captured accurately. Physically, the existence or otherwise of the lubrication
film can be expected to affect the way surface tension energy is restored after
deformation of a bouncing or sliding bubble with shape oscillations. The
numerical formulation will tend to suppress this.

The purpose of the series of tests reported here is to assess the global
effect of changes to θc by comparing changes to the bubble shape and its
behaviour as well as the bubble slide velocity. The observations presented
focus on the sliding part of the trajectory ignoring the more complex tran-
sient phase following impact with the plate. Computational results are also
assessed with reference to experimental observations and measurements. Be-
cause of the 2D nature of the computations, this comparison is done primarily
to provide a reference to the expected physical behaviour without seeking to
evaluate precisely the relative difference between experimental and compu-
tational results. From a first inspection, no simple relationship between the
slide velocity average, the contact angle and the plate inclination can be
found and it is clear that multiple interacting factors affect the dynamics of
the bubble as predicted by the numerical model. The four plate inclination
angles are considered in turn as they provide some insight into three somehow
distinct phenomena.
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Figure 1: Velocity of bubble centre of gravity starting at injection for θ = 10◦

4.2. Gravitational flattening with a plate inclination angle θ = 10◦

When the plate is inclined at an angle θ = 10◦, the slide velocity decreases
slightly as the contact angle is reduced from 30◦ to 25◦ (see Fig. 1) but in-
creases significantly when it is further decreased to 20◦. This is most obvious
at t = 0.45s. In the present case, the low inclination angle of the plate means
that the flattening of the bubble under the plate due to buoyancy is most
significant compared to all other plate inclinations and tends to reduce the
pressure drag experienced by the sliding bubble by minimising the frontal
cross section area. Increasing the contact angle can be observed to stretch
the bubble in the direction perpendicular to the plate surface countering the
buoyancy effect on drag. Comparing the numerical predictions as the contact
angle is increased from 20◦ to 25◦ shows that this results in a decrease in the
slide velocity. This observation is consistent with the earlier conclusion that
an increase in the frontal cross section area leads to higher drag and lower
slide velocity. A further increase in the contact angle however is found to
reduce the velocity, although by a lesser extent. Figs. 2b, c and d show a
slight gradual tilting of the bubble forward as the bubble is stretched in the
direction perpendicular to the plate by increasing the contact angle. The
increase in slide velocity can be assumed to infer that this elongated and
tilted bubble shape predicted with θc = 10◦ presents a more more favorable
hydrodynamic profile and hence a decrease in the added mass and inertia
of the bubble which allows a more rapid acceleration. The slide velocity is
clearly shown here to be very sensitive to the contact angle and observations
suggest that this is due to surface tension forces being of a similar order of
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(a)

(b)

(c)

(d)

Figure 2: Bubble interface plots with plate inclination angle θ = 10◦ at time intervals
∆t = 0.04s; (a) Experimental; Computational with varying contact angle (b) θc = 20o,
(c) θc = 25o and (d) θc = 30o.
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Figure 3: Velocity of bubble centre of gravity starting at injection for θ = 20◦

magnitude as pressure and buoyancy forces.
Periodic oscillations in the velocity are noticeable with all contact angles

but these are shown to decay with time so that the slide velocities converge
to relatively steady values at t = 0.45s. The initial oscillations reach their
highest value shortly after collision and can be seen on Fig. 2 to occur at
the same time as oscillations in the bubble shape as surface tension energy is
restituted during the slide along the plate surface. They are clearly triggered
by the bubble collision and the resulting deformation and can be assumed to
be sustained by the interchange between the kinetic energy of the liquid mo-
tion, the surface tension energy and the gravitational potential energy. The
relatively sustained pattern of oscillations suggests that surface, potential
and kinetic energies are of comparable magnitude in the present case. The
damping with time of both shape and velocity oscillations can be attributed
to viscous dissipation which appears not to be significantly affected by the
static contact angle.

4.3. Uniform slide with a plate inclination angle θ = 20◦

When the plate is inclined at θ = 20◦ the trends in the bubble velocity
predicted by the numerical model, with the different contact angles, are quite
different from those observed with θ = 10◦ as shown in Fig. 3. The bubble
velocities are almost equal for θ = 25◦ and 30◦ and oscillations after impact
are very quickly dampened and the velocity plots shows equally rapid con-
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(a)

(b)

(c)

(d)

Figure 4: Bubble interface plots with plate inclination angle θ = 20◦ at time intervals
∆t = 0.04s; (a) Experimental; Computational with varying contact angle (b) θc = 20o,
(c) θc = 25o and (d) θc = 30o.
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Figure 5: Velocity of bubble centre of gravity starting at injection for θ = 30◦

vergence to a near steady value. This is not the case with the larger contact
angle of θc = 30◦, for which the velocity oscillations are shown to decay more
slowly. The contour plots on Fig. 4.d show that the contact angle does in-
deed have a noticeable effect on the stretching of the bubble away from the
plate surface. As a result the bubble is shown to rock forth and back while
maintaining a slight forward tilt. Since the stretching does not lead to a re-
duction in the velocity as observed with the lower plate inclination, it must
be assumed that the lesser significance of gravitational flattening of the bub-
ble allows it to evolve into a more hydrodynamically profiled shape thereby
balancing the increased transverse surface area and related drag due to in-
creased contact angle. Comparison with the experimental velocity suggest
that the slide velocity is over-predicted but only slightly. A comparison of
the experimental and numerical interface plots, however, are giving the first
indication of the non negligible effect that the contact angle has on the accu-
racy of shape prediction. This is most notable with θc = 30◦, in which case
the bubble assumes a shape which is clearly different from the experimental
bubble. These differences will be discussed in more detail in Sec. 4.4.

4.4. The onset of numerical bouncing at a plate inclination angle θ = 30◦

When the plate is inclined at θ = 30◦ the trends in the bubble velocity
predicted by the VOF-CSF model show little difference between θc = 20◦ and
θc = 25◦ as shown in Fig. 5. However, large velocity oscillations appear with
θc = 30◦. These can be linked to the onset of bubble lift off from the solid sur-
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(a)

(b)

(c)

(d)

Figure 6: Bubble interface plots with plate inclination angle θ = 30◦ at time intervals
∆t = 0.04s; (a) Experimental; Computational with varying contact angle (b) θc = 20o,
(c) θc = 25o and (d) θc = 30o.
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face and the repeated bouncing motion that follows. It can be seen that once
the bubble detaches from the surface, its velocity reaches a local maximum.
For example the 10th contour plot shown in Fig. 6.d, which corresponds to
the time t = 0.36s, can be matched to the velocity peak at the same time in
Fig. 5. Interestingly, the velocity is similar to that predicted with the other
contact angles when the bubble slides without bouncing. These results how-
ever make it clear that if one is interested in the convective mixing induced by
the bubble, the bouncing component can have a very significant effect on the
surrounding flow. The largest oscillations modelled in this case are approx-
imately 45% of the velocity average. The onset of lift off can be explained
by stretching of the bubble due to an increase in the contact angle. As the
static contact angle is increased, the bubble shape is increasingly stretched
away from the plate surface with a corresponding reduction in the apparent
contact area between the bubble and the plate. This can be observed by
comparing Figs. 6b-d. These plots also show how the bubble stretches and
leans forward when the contact angle is increased forcing water between the
bubble and the solid surface which in turns leads to a detachment of the
bubble from the wall.

By contrast the experimental bubble is shown in Fig. 6.a to slide along the
plate without detaching. The bubble shape is also characterised by a fore-
aft symmetry which is maintained for most of the slide. The only contact
angle which gives reasonable comparison showing less stretching of the bubble
shape in the streamwise direction is the θc = 20◦, while the larger θc the more
the bubble deforms. Similar observations can be made from results with a
plate inclined at 40◦ (not shown here). It is worth noting, as discussed in
Sec.4.1, that what appears to be a contact area between the bubble and the
solid surface in Fig. 6.a is in fact a lubrication area. It corresponds to the
portion of the bubble which is flattened by the plate and provides a channel
for the lubrication film. Lubrication analysis has shown ((2)) that the lift
force induced by this lubrication flow is sufficient to balance buoyancy force
from the bubble and avoid direct contact between the bubble and the solid
surface when the bubble slides along the plate.

4.5. The onset of experimental bubble shape distortion at a plate inclination
angle θ = 45◦

Increasing the plate inclination by increments of 5◦ in the experiments
shows that unsteady changes in the bubble shape following collision with
the plate start occurring at a surface inclination θ = 45◦. Below this angle,
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Figure 7: Velocity of bubble centre of gravity starting at injection for θ = 45◦

including at θ = 40◦, the bubble settled into a steady shape with fore-aft
symmetry as illustrated for example on Fig. 6.a. At θ = 45◦ the bubble
shape is shown to stretch and rock forth and back during the slide (see
Fig. 8.a) leading to periodic oscillations in the velocity of the bubble centre
of gravity (see Fig. 7). The bubble is also shown to detach from the surface
most notably at t = 0.16s but also at t = 0.24s and t = 0.36s, although the
amplitude of the bounce appears to reduce along the slide. By comparison
with lower plate inclination, the apparent lubrication area between the sliding
bubble and the solid surface (when not detached from the surface) has also
reduced significantly. These observations suggest that further increase in the
plate inclination will lead to sustained bouncing of the bubble which in (2)
was shown to occur for surface inclination greater than 55◦.

Comparing the experimental results with the computational predictions,
it is clear again that the static contact angle formulation induces more
stretching of the bubble. With θc = 30◦ ( Fig. 8.d) the bubble detaches
fully from the surface and bounces repeatedly but with the smallest contact
angle θc = 20◦ ( Fig. 8.b) it remains attached to the surface throughout the
slide albeit only by a small section which holds the bubble back leading to a
fore-aft stretching which is much larger than observed experimentally. This
observation is consistent with earlier discussions (Sec. 4.1) on the effect of
the numerically induced attraction due to the static contact angle boundary
condition. Note that the numerical formulation means that if the interface
remains attached to the solid surface it will be advected at the mean velocity
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(a)

(b)

(c)

(d)

Figure 8: Bubble interface plots with plate inclination angle θ = 45◦ at time intervals
∆t = 0.04s; (a) Experimental; Computational with varying contact angle (b) θc = 20o,
(c) θc = 25o and (d) θc = 30o.
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of the cell adjacent to the surface. This will be noticeably slower than at a
few cells removed from the surface and the effect is the observed reduction
in the bubble velocity when it is in contact with the surface. The experi-
mental bubble velocity is also significantly larger over most of the slide (see
Fig. 7). The velocity first peaks after collision with a magnitude of 0.25m/s
instead of 0.166m/s in all computations. Experimental results at lower plate
inclination gave peaks of similar order of magnitude varying from 0.207m/s
with θ = 10◦ to 0.218m/s with θ = 30◦. What is different in this case
when compared to lower plate inclination measurements is the fact that the
bubble does not slow down after this first peak but its velocity continues
to oscillate with several peaks at about 0.22m/s. Although the amplitude
of velocity oscillations is generally larger in the numerical case, similar vari-
ations are measured experimentally. Towards the end of the measurement
window however, the experimental bubble velocity decreases significantly as
the bouncing component vanishes. It can be seen, by correlating the velocity
to the interface contour plots, that the numerical velocity peaks when the
bubble detaches from the surface that is when the interface does not con-
nect with the solid surface. The numerical bubble velocity is then seen to
approach the mean experimental velocity, reflecting again the drag effect due
to the contact angle formulation. See for example the circled peaks in Fig. 7
and the corresponding bubble position in Fig. 8.d.

A last observation relates to the shape of the bubble when fully detached
from the surface as a result of the bounce. In this case the computational
and experimental contour plots show good agreement. This suggests that
the suitability of the VOF-CSF method as confirmed by studies of single
bubbles in free rise ((4), (5)) can be quickly recovered once the influence of
the boundary condition is reduced.

5. Conclusion

The impact and slide of an ellipsoidal air bubble of 3.4mm equivalent
diameter along an inclined plate was studied to assess the validity of the static
contact angle boundary condition in a VOF-CSF formulation for accurate
modelling of bubbles of low Eötvös and Morton Number. This was achieved
by varying the inclination angle of the solid surface from 10◦ to 45◦ and
assessing computational results with reference to experimental measurements
and observations. Three static contact angles θc = {20◦, 25◦, 30◦} were tested
for each plate inclination. Several conclusions can be drawn from this study.
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• The dependence of mean slide velocity on surface tension is most signif-
icant at low plate inclination when the inertia, drag and surface tension
forces are of similar magnitude with up to 22% difference (θc = 20◦ used
as reference) in the modelled terminal slide velocity.

• Increasing the static contact angle stretches a bubble in the direction
perpendicular to the solid surface when it is in contact with a solid sur-
face. This is observed for all plate inclinations but at higher inclinations
significant changes to the bubble dynamics results from increase of as
little as 5◦ in the contact angle. As the bubble reaches higher velocities
with increased plate inclination, this stretching is shown to promote
bubble deformation leading to bubble detachment from the surface.
This detachment occurs at lower plate inclination than expected from
experiments.

• A bubble which is detached from the surface accelerates rapidly reach-
ing a velocity which agrees well with experimental measurements, whereas
a sliding bubble tends to be at lower velocity. This can be attributed to
a reduction in pressure drag experienced by the bubble which is allowed
to deform more freely when its interface is not constrained by the wall
boundary condition. Also as the bubble bounces away from the surface
the no-slip boundary condition will have a lower impact on magnitude
of interface advection. Once brought back in contact with the wall
under the action of buoyancy the bubble slows down until it detaches
again leading to a periodic bouncing trajectory and corresponding os-
cillations in the bubble velocity. Similar repeated bouncing is known
to characterise ellipsoidal bubbles sliding under inclined flat surfaces
but the static contact angle has been shown to promote early lift off.

• The static contact angle does not maintain the thin lubrication film be-
tween the bubble and the surface and instead assumes that the bubble
interface intersect the plate surface as soon as it is in a cell adjacent to
the wall. This was shown to hold the bubble back under certain condi-
tions for some contact angles. At the initial impact with the wall the
bubble is forced against the wall and a change in the contact angle is
found to have a limited effect on the velocity or bubble shape. However,
once the bubble accelerates under buoyancy after impact, it is clearly
shown to be held back (slowed down) by the part of its interface which
is in contact with the wall. This is particularly noticeable at the lower
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contact angles which do not promote lift off and is clearly linked to a
lower bubble slide velocity.

• when the bubble detaches from the surface as it bounces during the
slide, good agreement between the experimental and predicted bubble
shape and velocity are observed.
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