|SAC:
a Case-Based Reasoning System for

Aircraft Conflict Resolution

Andrea Bonzano

A thesis submitted to the University of Dublin,
Trinity College, for the degree of
Doctor in Philosophy

April 1998

Declaration

The work described in this thesis is, except where otherwise stated, entirely that of the

author and has not been submitted as an exercise for a degree at this or any other university.

Signed:

Andrea Bonzano

April 1998

Permission to Lend or Copy

| agree that Trinity College Library may lend or copy this thesis upon request.

Signed:

Andrea Bonzano

April 1998

Acknowledgements

| would like to express my sincere thanks and gratitude to my supervisor Dr. Padraig
Cunningham for his involvement in this research, for the technical discussons and
particularly for his support and friendship throughout the course of my Ph.D. studies.

This research could not have proceeded without the help and support of Dr. Colin Meckiff
in Eurocontrol Experimental Centre, during the period | spent in Paris.

| am grateful to Kathleen Hanney and Barry Smyth for insightful discussions and advice in
CBR and Mark Keane for discussions on how to evaluate the system.

For the technical support, thanks to al the wonderful people in the Department of
Computer Science in Trinity College Dublin, Phil Gibbs, Steve Owen and Werner
Goettlinger in Eurocontrol and Luca Di Taranto from far Italy.

| am also very grateful to everybody of the Artificial Intelligence Group for creating an
environment where it is a delight to work, and to Michelle, Conor, John, Ronan, Shane and
Shaw who were “obliged” to proof read this thesis.

| would like to express my sincere gratitude to the controllers of the Eurocontrol
Experimental Centre: Andrew Barff, Peter Csarnoy, Ray Dowdall, Frank Dowling, Peter
Eriksen, Robin Hill, Diarmuid Houlihan, Paul Humphreys, Roger Lane, Leif Lundquist, Rod
McGregor, Hugh O’ Connors, John O’ Gorman (Dublin Airport), Guy Tod, Nigel S. Thorne,
Michael Weldon (Irish Aviation Authority), Paul Zabka and especially to Nigel Makins.
Finally, for friendship and mora support | want to thank Jimmy, with whom | enjoyed all
these years in Dublin, Luca, Gaio, Albillo, Chris, Louise and everyone else who made these

three years redlly enjoyable.

Thisthesisis dedicated to my parents and my sister Camilla

Summary

Case-Based Reasoning (CBR) has emerged from research in cognitive psychology as a
model of human memory and remembering. It has been embraced by researchers of Al
applications as a methodology that avoids some of the knowledge acquisition and reasoning
problems that occur with other methods for developing knowledge-based systems.
Previous attempts to use Artificia Intelligence in Air Traffic Control (ATC) have never
attained the level of confidence necessary for controllers to effectively use it in the red
world. This lack of success is due in large measure to knowledge engineering difficulties in
modelling ATC decison making. In this thesis we describe the successful application of
case-based reasoning to this problem. We describe what was required to make CBR work
and asses the knowledge engineering impact of CBR. The novelty of the approach
presented in this thesis is in the manner that artificial intelligence is used as an intelligent
assistant rather than an expert system, and in the technique used, which is CBR instead of
the standard rule-based systems (RBS).
The acronym ISAC stands for Intelligent System for Aircraft Conflict Resolution. It is a
CBR system that helps air traffic controllers to solve conflicts between sets of aircraft. The
three stages of the decision making process for conflict resolution are: selection of the
aircraft to manoeuvre, deciding on the type of manoeuvre and specifying of the details of
the manoeuvre.
ISAC assists the controllers in the first two stages of this decision process. ISAC is
interesting in itself because of the critical safety issues involved and because of the question
of what constitutes a case in this problem domain.
Severa issues were encountered during the development of ISAC. The most interesting
ones, that constitute the main contribution of thisthesis, are:

the analysis of the knowledge engineering problem,

the use of a hierarchical case-based reasoning structure;

the issues of case reuse and case representation;

the analysis of the discriminatory power of the case parameters.

Table of Contents

I 1Y 2SS 12
ASSOCIATED PUBLICATIONS ...ttt sttt sttt saeste e neestestesneeneesseseeeseeneensens 13
CHAPTER 1: INTRODUGCTION.iitiieieii st eeerie sttt eee e stestee e saestesseeeessessesseessessessesseessessesseenseseees 14
1.1 CASE-BASED REASONINGceiutititeiesteiestteesitee s teeeaseeesste e st e st e s b e sbe e e saneesane e e be e e aneeesnreennne e e reeennne s 15
1.2 EXPERT SYSTEMSVERSUS INTELLIGENT AGENTS ..ciittteitreerireesreeesreeesseeesireesneessseeesnneessneesnnesssneeesneees 16

I T8 1T 17
1.4 CONTRIBUTIONS OF THIS THESIS ...ttt ittteriteesiteestee e st sste e st e st e snee e smee e ssne e sne e nne e snne e snne e nnne e s nreeennne s 18
1.4.1 The Knowledge Engineering Problem ... e 18

1.4.2 The HierarchiCal SITUCIUINE........coiuiiiiiiie ettt e 18

1.4.3 Case REPIESENTALIONcoiueiiiiiiiieiiieit ettt st sttt st be e 19

1.4.4 Discriminatory Power Of the Parametersc.oieeiiiiiiiie e 19

1.5 SUMMARY AND STRUCTURE OF THIS THESISceiteiiteiesiteesreesreeesree s s e sne e snee s snne e s e e nneeennne s 20
CHAPTER 2: AIR TRAFFIC CONTROL ...ooitiiietsesieeee ettt sttt saesneenee e e 22
2.1 THE PROBLEM OF AIR TRAFFIC CONTROL ...ceeutteeiteesureesreeasseeessseessseesneesnesssneeessseesnneesanessnessnnesennnees 22
2.2 PRINCIPLES OF ATC ..ottt ettt ettt h et s e et e e n e e s be e e s a e s r e e en e e nneeennne s 23

2. 2.1 TYPES OF AITSDACE ...ccteeteeteeite ettt ettt ettt ettt e b e ettt et bt et ettt ettt e e beebeenbeenbe st enee 25

2.3 CONFLICTS AND CONFLICT RESOLUTION ...tviittieriteesureesreeesieeessseessseessnessnesssneeessneesnneesnessnesssneeennnees 26
24 THEHIPS SYSTEM ..ttt ettt ettt ettt sb et s st st e st e et e e an e e e s se e e s ar e e san e e s n e e e nneeennne s 27
2.5 CONFLICT RESOLUTION SUPPORT FOR HIPS ...ttt 29
2.6 EXPERTS SYSTEMS FOR CONFLICT RESOLUTION IN ATC ..ottt 30
2.7 THE FUTURE ...ttt ettt ettt ekttt e e bt e b e e bt oo a e e st e st e e e R e e e sbe e e s n e e s ar e e e ne e e nneeennne s 36
CHAPTER 3: CASE-BASED REASONINGcoiitiiitiaieiesesteee et see et ste st saesnesneeneeseenes 37
L CBR PRINCIPLES. ..ttt ettt e sttt e sttt e sttt stet ekttt e st e st e e b e e sh e e sa e e s b e e e b e e e R e e e sbe e e s nne e sar e e nn e e e nneeennne s 37
3.1.1 Representation and INAEXINGc.eereereeriiereenie ettt ettt e be bbb s 37

I L 1= | TSP R PR 38

TN RS e =10 =11 o o FO TSP PR 39

N O I T oo [PV R PR 40

S LE AN EXAIMPIE ..ottt et e b e b b 40

3.2 OVERVIEW OF RELEVANT CBR SYSTEMS ..ottt 41
B2 L THE CaSE-BaASE.vecueeieite ettt sttt et et st s e et e s eeseeene e tentesreeneetennens 42

3.2.2 The Case REDIESENTALIONc.eiiieieeie ettt ettt ettt et ettt et b b 43

3.2.3 The Retrieval MEChANISIMcooiiiiiiieie et et e et e e 45

3.2.4 The Adaptation Mechanism and Update Mechanism............ccccoveeriiiiiiine i 45

325 TiME CONSIIAINTSeeteeteeite ettt ettt ettt ettt ettt ettt ettt ettt et enbeenbe et e nbeenbe e b e 47
3.2.6 Introspective Learning and DisSCriminNatory POWEYcccvoiierienienie e 47
3.3 CONCLUSIONS. ...ttt ettt e sttt e st e sttt r et e bt rh e e s s bt e s s e e e b e e e b et e sh et e e s st e s R e e e aE e e e R e e e ebn e e s nRe e sar e e eneeenneeennne s 48

CHAPTER 4: STRUCTURE OF THE SYSTEM AND ACQUISITION OF THE PARAMETERS...49

4.1 THE ENVIRONMENT AND TECHNICAL INFORMATION ...ecieiteeiureesreeesreeesineesireessreessneessneeesnneesnreesneesnes 49
4.2 STRUCTURESAND FUNCTIONSUSED INISAC ...ttt 51
4.3 THE ACQUISITION OF THE PARAMETERSIN ISACottt e e e e e e e 56
4.4 IMPLEMENTATION LANGUAGE.cetittteriteesitee sttt ettt ettt ettt sn e st et e e n e nne e e snne e nnre e sneeenes 61
4.5 SUMMARY ...ttt ettt ettt et e sttt et et sh e e ss e sa bt e e s et e b e e £ ah et e eR R e e oa R e e e R e e R et e eR Rt e e AR e e e R et e R et e R et e nnne e reenre e nes 62
CHAPTER 5: CBR ISSUES..... .ottt sttt sttt st et ste s e eestesteene e tesbesbeeneenseseesneeneeseees 63
5.1 CASE REPRESENTATION ...ceettieuteesureeaseeesseeessseesuseesaseesseeaaseeessseessseesase e s ne e e anee e smneesaneesareenneeenreeennne s 63
5.1.1 Case F0ACE COVEIATEeeveieueierireeritee sttt rte e st e st e s b e e b e e ss e e ss b e e sr e e s re e e ane e e snneesnreesneeenes 65
5.1.2 Gold Standard Cases VersuS SPECITIC CASES......cviiveeriieriieie ettt et e 66
5.1.3 SOlULION REPIESENTALION.......eetieteeieeite ettt ettt ettt ettt ettt et et et be e 67
5.1.4 Meaning Of NIL VAIUBS........cciiiiiiieii ettt et et e 68
5.2 CBR VERSUSDECISION TREES......utttittteitetesittesireesreesstessssesessseessneesseesnessaneeesseeesnneesnnessnesssnenenneees 69
B.2. 1 P-1aSKS @GN0 SHASKSeetieitieitieite ettt ettt ettt ettt ettt et et et et et et be e 70
5.2.2 DISCIIMINALOIY POWEcotiiiiitieiteesie ettt ettt ettt ettt ettt et et ettt et et s be et 70
5.3 CASE STRUCTUREttt ttttestteesitee st e st et ste e skt e s st e s s e e e b e e e abe e e eb e e e aa st e s b e e e be e e R e e e abe e e nnne e sar e e e ne e e nneeennne s 73
5.3.1 The Canonical Form for Two-Aircraft CoONfliCtS.........oovieiiiiiiiiee e 74
5.4 HIERARCHICAL CBR FOR MULTIPLE AIRCRAFT CONFLICTS...ciiittterureerreesresesreeesineesineesneesneessneeennnees 76
5.4.1 Independent CBR SITUCLUI©ooitieitieieerie ettt ettt ettt ettt ettt ne e 79
5.4.2 LOOK ANEAA CBR SITUCKUNE.....coviiiieitt ettt ettt ettt et et ettt 79
5.4.3 Hierarchical CBR SITUCLUE........coiuiiiieitieite ettt ettt et et s 80
5.5 ADAPTATION L.ttiitetitee ettt stte e st e st e e s e e bt skt e s st e s bt e e b e e ab et e ah et e aa Rt e saR e e e R e e e R e e e eRe e e sn Rt e sar e e nan e e e nneeennne s 81
5.6 SUMMARY L.ttt ettt ekttt ettt e bt eh e e s s bt e s R et e b e e Rt ookt eea R e e e R et e e e e R et eRn e e na R e e e r e e e n e r e nnne s 82
CHAPTER 6: THE KNOWLEDGE ENGINEERING PROBLEMccccocviiiiiiieene e 83
6.1 GETTING STARTED (APRIL 1995) ...ttt sttt sttt sbe ettt sae b b e saeenaeas 84
6.2 INITIAL SYSTEM DESCRIPTION (FROM MAY 1995 TO MARCH 1996)covvviiiiiiiieiiieniee s 85
6.3 INTERIM REFINEMENTS DESCRIPTION (FROM APRIL 1996 TO JUNE 1996)ccvvriiiriieniieniieniie s 88
6.4 THIRD SYSTEM DESCRIPTION (FROM JULY 1996 TO SEPTEMBER 1996)......cc.ceieiriiiriieniieniee e 90
6.5 FOURTH SYSTEM DESCRIPTION (FROM OCTOBER 1996 TO JUNE 1997)eovuiiiiiiiiiiiiie e 92
6.6 HIERARCHICAL SYSTEM (FROM JUNE 1997 TO OCTOBER 1997)....cccutiiuiiiiiiniieiiie e 95
5.7 CONCLUSIONS. ... tetiuteeestee e sttt e ssre e st e st e e sbe e sk et e s s st e s s e e e s e e e ab e e e ehee e aa st e s R e e e R e e e an e e e abee e nnReesar e e s neeenneeennne s 96
CHAPTER 7: INTROSPECTIVE LEARNING OF PARAMETER WEIGHTS......ccceiiiivrveee 99
7.1 INTRODUGCTION ..utttiutetesteeessteessteessseeaseeesseeess e e ssneesase e e s e e e ase e e ah et e aase e s abe e e R e e e an et e sbe e e snne e sar e e naneeenneeennne s 99
7.2 BACKGROUNDuttietteeiuteesteeaaseeessse e st e sse e e abe e e ssee e sa st e s s e e e b ee e ahe e e aa b e e saR e e e be e e amee e ssbeesaneeeneeennneennreena 100

T3 LEARNING POLICIES ... ciieeettee ettt ettt e ettt e e e e e et e e b s e e e e s eea b s s eeesee e bbb seeeseeesbananses 101

7.4 UPDATE POLICIES FOR LOCAL WEIGHTS ...ttt stte ettt sn s sne e nnne e e 103
7.5 UPDATE POLICIES FOR GLOBAL WEIGHTS....ciitiieitieeritee ettt sne e e ne e snne e nnne e 104
7.8 EVALUATION. ..ttt ettt ettt ettt ettt ettt b et h e s st e s b e e bt e ehe e e ea e e s R e e e b e e e eme e e sn b e e sane e e neeennneennreena 105
7.6.1Training the CaSE-BaSEccciiiiiiieiie s naeas 106

FA A O Y= o 11 Lo To [T PROPR PR 107

7.6.3 K-fOId Cross-Validationcoeeiiiiiiiiiiiesiiesiee et 108

A =S VT = TSP PP OURRPRR PRI 109
7.7.1L0CAl VEIrSUS GIODELeeitiiiieitieitie ettt naeas 110

7.7.2 Analysis Of CONLEXE SENSITIVITYeoivieitiiieieitie sttt 111

7.8 INTROSPECTIVE LEARNING WITH PIVOTAL CASES ...ccuviiiiiietie ettt nnne e 112
7.9 CONCLUSIONS ...ttt esitee sttt e atee sttt sat e e s e et e e ss et e s st e s b e e e b et e ahe e e aa R e e s E e e e b e e e amne e ssbeesane e e neeennneennreena 113
CHAPTER 8 RESULTSAND EVALUATION ...ccct ittt ste ettt seste st saenessessessenenns 114
o Il I o TP PPPPURRUSRPRRN 114
8.1.1 The People that Evaluated the SYStEM..........oiiiiiiiieiie s 115

o2 LN Y I I =1 T OO PP P PURRUURR PRI 116
BL3 INTERIM STEP ..ttt ettt ettt etttk e st e e b e e sh e e e s s e e s b e e b e e e saee e ssre e sane e e ne e e nnneennreenas 117
8.4 FINAL EVALUATION STEPutititeeesiteeritee st ee sttt ssse et et s s ate e snee e ss e e sne e s anee e snee e smneesaneeanneeennneennreenas 119
ST = | (P 120

8.5 MULTIPLE AIRCRAFT CONFLICTS TESTS ...utitiitetesireesireesteeesseeessee e st e sneessnes s snneessneesneessneesnnneennneenas 124
8.6 CONCLUSIONSttietteeitee sttt ettt sttt e st e et e et e e sh et e sa e e s b e e e b et e she e e es b e e s b e e e b e e e smee e smreesaneeeneeennneennreenn 127
CHAPTER 9: CONCLUSIONS AND FUTURE WORKocciiieiertsieeeesese e 129
O.1 LESSONS LEARNEDceiiteiititatete sttt esiree s e e st e sseeess e e s b e e b e e e ssee e ss s e e s ne e e ane e e ane e e ssneesaneeeneeennneennreenas 130

A Reliable Casa-Base iS ESSENLIAIcccoiiiiiiiieeee e 130
CBRis Better than RBS, but With CAVEALS...........ceeviiiiieiiiiiieee et e e e e e eavreee e e e s e s eeaaees 131

The Knowledge Engineering Problem............oiiiiiiiie et 132

The Evaluation of ISAC iS @ COMPIEX ISSUE.......ccuuiiiiiiiiii ittt 132
Different Controllers can Give Different Solutions to the Same Conflict...........c.coovvceiniiieccnnenn, 133

CBR can be Useful in the ATC DOIMAINcoieiiiiiiiiieiiee et 133

9.2 DIRECTIONS FOR FURTHER RESEARCHutiiitiiesiieesiteestee sttt sne e snee s sne e sne e nnneennne e 134
REFERENCESccct ittt sttt e e e st s te s aeseese s eeste e esestesbeneeneebeseessenenseseeneesenen 136
APPENDIX A: ACQUISITION OF THE CASE-BASE........cco ittt 147
AL STRUCTURE etteiitte sttt ettt ettt et e et she e e s st e st e e R e e e ab et e e R et e s ab e e saR e e e b et e b e e e ss bt e nnr e e sane e s nneeennne s 147
A.2 THE FORM FOR THE ACQUISITION OF THE CASE-BASEvvviiiiii i 147
A.3 THE PERL FILE PROCESS_FORM.CGI ...ccutetitetesteeesireesreesseesssesessseessseesnesasnesssneeessseesnnessnesssnesesnnees 150
A4 THE PROGRAM CONVERT ...ctitttetttesureesreeassesassseessseessseessesssseeessseesaseesasesaabesaaneeessneesaneesnessaneeesnnees 151

B.L DECISION TREE......cutuuitiiteeitttttuisseeesttessusssssstesstssseesstessasteestessssttesteesrsnteesreesrinnreeereessnn. 159
B.2 THE DISCRIMINATORY POWER IN ISAC AND CA.5....e ittt e e e e e e e eaaa 166

B .3 CONCLUSION ...iiiiitttttee s et eeeeeettee s s e eeseeetaaassseesse et baa s seasseessaaa s seaseeesbaasssesseesbaaasseesseessbaanssseeseennnen 166
APPENDIX C: CLASSES AND FUNCTIONSIN ISAC ... ettt e e s eratn e e e 168
(@R R I T T = oY 0= = 3 I = T 168
(@R I T T T Y 0] =2 = T 171
APPENDIX D: THE DATA FILES. ..o oo oeeeiiiieiiiiiieiieeeteeeeeeeeeeeeteeeesesesssessrnns 173
D1 THE FILE CASESTRUCT ..iiiiitttttitseeettetttuasssssssesstasassessstesssssssseestessssntsssseessasteesseesrsiansseeeseessnes 173
D.2 THE FILE SOLUTIONS 1uuutiitiittttttsseeeseessssasssssssesssassssssssssesssssssssesseesssssnsesessessssnnsseesreesrinnsseeereersnes 175
D3 THE FILE CASEBASE ... ettt ettt e e ettt s e e e e et et b s s e e e s e eet b sseeesseesbaa s eeessees bbb seeeseennses 175
APPENDIX E: THE CODEcooeiiiiiieiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessesssssssssssssssssssssssssesssssesssssssssasssssssssssnnrnns 178
it I =T T 1 178
FIlesSinthe dir€COry ISACottt sttt st s b e bt sb e e sbeesbeesbeenbeens 178
MAINLC .. 179
FINACASES.C....ccoeeeeeeeeeeeee 183
INtrOSPECHIVELEAINING.C ...ttt ettt et et bbb b e e e 185

E.2 FILESFOR THE INTERFACE BETWEEN ISAC AND GHMI ...ccvvviiiiiieeeeeeee et 189

L1 O = =T = T 189
[SAC_CAICUIALE.C ...ttt ettt ettt ettt ettt ettt et et et et et 190

L1 O 2 5 S 199

List of Figures

Figure 1.1: Dependencies Of the Chapters...........ooovviiiiiiiiie e 21
Figure 2.1: The radar SCrEEN.ooui i 24
Figure 2.2: A possible conflict repreSentation............cccoovveeenieenie e 27
Figure 2.3: How HIPS represents the CONFIICE.ooouveiiiiiieiiieeeee e 28
Figure 2.4 (a): The horizontal display in HIPS. ... 29
Figure 2.4 (b): The speed and vertical displaysin HIPS.c.ccooooiiiiiiiienecee 30
Figure 2.4 (c): The speed and vertical displaysin HIPS with the solved conflict. 31
Figure 3.1: Transformation adaptation has more coverage than substitution..................... 40
Figure 3.2: Some sample cases and associated rUIES.ccovveriiiiiinieeceeee e 41
Figure4.1: How ISACisembedded in HIPS.cooiiiiiie e 50
Figure4.2: The caseretrieval architeCture in ISAC.ooovviiiiiii i 51
Figure 4.3: The structure of the case-base iN ISAC. ... 52
Figure 4.4: The BranCheS SITUCIUIE.ooviiiiiiiieiieesee e 55
Figure 4.5: Retrieval time reduction when constraints are Used.cccccvevereeneeneenene 56
Figure 4.6: Retrieval time with spreading activation and with flat search.c.......... 56
Figure5.1: Different types Of Case SPACE COVEIBgE.ccuureueerreerieeeieesieeesieeseee e seee e 65
Figure5.2: Theroot classification of the casesin C. ... 71
Figure5.3: Types of Multiple Aircraft ConfliCtS..........coovveiiiiiiiiniiie e 76
Figure5.4: A SIMPIEMAC. ... et 77
Figure5.5: Independent CBR.ooiiiiiieie e e 78
Figure5.6: LOOK ANEAH CBR.ooiiiiiiiiiieiee ettt e 79
Figure5.7: HierarchiCal CBR.cooiiiiiieiee e 80
Figure 6.1: Development of aKBS........c.ooiiiiiiiii s 84
Figure 6.2 (a,b,c): Different structures for the knowledge engineeing process.................. 97
Figure 7.1: Pushing and pulling @ CBSE.coiiiiiieiie ettt 102
Figure 7.2: The componentsin the introspective learning Process.ccoovevveerveeninens 106
Figure 7.3: Ey and E for the “Without GUM” policy for local weights...........cccoccveeneees 107
Figure 7.4 (a, b): Ey and E for the combination “Without GUM” (global weights). 108
Figure 7.5: Error of globa and local weights for the “withoutGUM” combination. 110
Figure 7.6: Error of globa and local weights for the “WithoutBUU” combination. 110

10

Figure 7.7: The distribution of learned weights for the “LevelsAvailable’ parameter.111
Figure 7.8: The distribution of learned weights for the “ CloseToBoundaries’ parameter.111

Figure 8.1: The effectiveness of the constraints on the performance of the system.......... 116
Figure 8.2: Results of the evaluation.coceeiiieiii i 122
Figure 8.3(a): Types of manoeuvres used by controllersto solve the test conflicts. 123
Figure 8.3(b): Types of manoeuvres used by controllersin general.ccccoveeeiieeieen, 124
Figure 8.4: A multiple arcraft CONFIICE.cooiieiiiiiii e 125
Figure 8.5: Look Ahead CBR for the Sample MAC. ..o 126
Figure A.1: Theform as shown Dy the DrOWSES........ccceiiiiiiieiieeee e 149

11

Glossary

Al
ATC
BADA
BDM
BUU
CBR
GDU
GHMI
GUM
HIPS
KBS
KE
IL
ISAC
MAC
NN
RBS
TAC
TMA
TOD

Artificid Intelligence

Air Traffic Control

Base of Aircraft DAta

Bad Down Matching

Bad Up Unmatching

Case-Based Reasoning

Good Down Unmatching

Ground Human-Machine Interface
Good Up Matching

Highly Interactive Problem Solver
Knowledge-Based System
Knowledge Engineering

I ntrospective Learning

Intelligent System for Aircraft Conflict Resolution
Multiple Aircraft Conflict

Nearest Neighbour

Rule-Based System

Two Aircraft Conflict

TerMinal control Area

Top Of Descent

12

Associated Publications

An Incremental Retrieval Mechanism for Case-Based Electronic Fault Diagnosis,
Cunningham P., Smyth B., Bonzano, A., to be published in the Knowledge-Based
Systems Journal, January 1998.

Learning feature weights for CBR: Global vs. Local, Bonzano A., Cunningham P., Smyth
B., in Proceedings of the 1997 Conference of the Italian Association of Artificial
Intelligence, Springer Verlag Lecture Notes in Artificia Intelligence, September 1997,
pp.417-426.

Using introspective learning to improve retrieval in CBR: a case study in air traffic
control, Bonzano A., Cunningham P., Smyth B., in Proceedings of the 1997
International Conference on Case-Based Reasoning, Springer Verlag Lecture Notes in
Artificia Intelligence, July 1997, pp.291-302.

ISAC: a CBR system for decision support in air traffic control, Bonzano A., Cunningham
P., Meckiff C., in Proceedings of the 1996 European Workshop on Case-Based
Reasoning, Springer Verlag Lecture Notes in Artificial Intelligence, November 1996,
pp.44-57.

Areview of CBR for use in Air Traffic Control, Bonzano A., Cunningham P., EEC Internal
Report, April 1997.

An Incremental Case Retrieval Mechanism for Diagnosis, Cunningham P., Bonzano A.,

Smyth B., Technical Report, TCD-CS-95-01, Dept. of Computer Science, Trinity
College Dublin.

13

Chapter 1

Introduction?

Despite the fact that modern aircraft are packed with sophisticated electronic equipment, air
traffic control (ATC) has aways been more of an art than a science. Ground-based control
essentially consists of people following the progress of aircraft represented by points
derived from radar data and displayed on aflat display screen. The simple nature of the data
available means that the controllers themselves are required to build and maintain a mental
picture of extrapolated 4D traffic based on experience and other rather ill-defined heuristics.
Having done this, the controller must mentally compare every pair of predicted trajectories
to determine whether any pair of aircraft will pass within the minimum permitted separation
- inwhich case he isrequired to intervene in some way to resolve the potential conflict.
Such an unscientific approach to ATC is, however, becoming less and less acceptable.
Pressure for change is coming from two sources. firstly, the ATC world, as elsewhere, is
undergoing an information explosion - controllers potentially have access to gigabytes of
data of every sort, and have the possibility to communicate with aircraft and other ground
systems in ways, and at speeds, which were unimaginable when their practices were
conceived. Secondly, airlines are demanding greater efficiency and quality of service from
the air traffic control providers:. efficiency, because ATC currently accounts for about 15%
of the price of a ticket, and quality of service to alow airlines to increasingly fly their
preferred and presumably near-optimal flight paths.

The problem cannot be approached from a uniquely technical viewpoint. Removal of the
“artisanal” aspects of ATC, particularly with regard to the task of preventing contact
between aircraft, touches the very heart of the profession. This, therefore, means that any
enhancement of the controller's skills with automation must be done in a way which is

sympathetic to current practices and therefore acceptable to controllers.

! This Ph.D. research has been funded by Eurocontrol Experimental Centre in Paris, the European Centre
for Air Traffic Control.

14

Previous attempts to use Artificial Intelligence in ATC have never attained the level of
confidence necessary for controllers to effectively use it in the real world. This lack of
success is due in large measure to knowledge engineering difficulties in modelling ATC
decison making. In this thesis we describe the successful application of case-based
reasoning (CBR) to this problem. We describe what was required to make CBR work and
asses the knowledge engineering impact of CBR. The novelty of the approach presented in
thisthesisisin the function of artificial intelligence used as an intelligent assistant more than
an expert system, and in the technique used, which is CBR instead of the standard rule-
based systems (RBS).

1.1 Case-Based Reasoning

“Case-based reasoning means reasoning based on previous cases or experiences. A case-
based reasoner uses remembered cases to suggest a means of solving a new problem, to
suggest how to adapt a solution that does not quite work, to warn of possible failures, to
interpret a new situation, to critique a solution in progress, or to focus attention on some
part of asituation or problem” (Leake, 1996).

The CBR cycle rarely occurs without human intervention. For example many CBR tools act
primarily as case retrieval and reuse systems. Case revision, i.e. adaptation, is often
undertaken by human managers of the case-base. This should not be viewed as a weakness
of CBR but as an encouragement for human collaboration in decision support (Watson,
1994).

CBR is a step ahead of the traditional RBS. The early systems, like DENDRAL, MYCIN
and PROSPECTOR, all operated in domains where there were good underlying models.
Unfortunately, in a commercial environment and outside of the Universities, many people
make decisions without reference to first principles and underlying causal or statistical
models. These people solve problems by using their experience (Watson, 1996).

CBR makes it possible to give solutions even if the domain is open-ended or ill-defined
(Leake, 1996). This seems to be one of the characteristic of ATC. Usually a controller
solves a conflict by referring to situations that he has already seen. Moreover, training on a
specific sector is essential to get used to the environment and more importantly to learn the
patterns of traffic that should automatically trigger the solution. For these and other
reasons, ATC seems to be a suitable domain for the application of CBR.

However the represent-retrieve-reuse model of CBR is often difficult to apply even in

situations where human competence is obvioudy reuse-based. This difficulty is almost

15

always associated with the granularity of retrieval and the question of what constitutes a

case leads to the knowledge engineering problem.

1.2 Expert Systems versus Intelligent Agents

An expert system is a computer program that has the same competence as a human expert.
Moreover, it can increase its expertise on the domain and update its knowledge base while
in use. Expert systems are often used for the resolution of problems, for planning and for
design.

It should be pointed out that an expert system, like the maority of artificia intelligence
systems, is competent only in the domain that it has been taught. An expert system
competent in the ATC domain does not necessarily have to be competent in any other
domain. This is the purpose of artificia intelligence: finding algorithms to build computer
programs that can learn and apply the acquired knowledge, and not the commonly
perceived notion of building generic thinking machines. Deep Blue, the program that beat
Kasparov can be considered an artificia intelligence application speciaised in the chess
domain. Criticisms of the type: “it beat Kasparov but it cannot talk” show that people still
have not understood the purpose of artificia intelligence. If people want to talk about
thinking machines, it is to cognitive science and not artificial intelligence that they should
refer. Artificial intelligence provides agorithms to cognitive scientists, but the domains are
different. In Al the performance is essential whereas in cognitive science, the imitation of
the brain is the main issue.

Lately, a new concept has appeared in the Al domain, the concept of Intelligent Agents. An
expert system tends to act as a substitute for humans whereas an intelligent agent helps and
co-operates with the human (Maes, 1994). In ATC it is not possible to substitute controllers
first of al for safety reasons, but for legal reasons, too.

If an expert system which is in charge of a production line makes an error, the worst thing
that can happen will result in a loss of time and money. Even if not desirable, this is
acceptable and the occasional loss of money is compensated by the savings that the
computerised system offers. Whenever an error from the expert system could cause either
injuries or loss of lives, its use must be considered very carefully. ATC is one of those
domains: there must always be a human to take the responsibility for the decisions taken.
But this human can be helped in making decisions by an intelligent agent. The use of an
intelligent agent will not only reduce the controller’s workload, but also reduce human

errors and biases (Kitano, 1996). Typica of an intelligent agent is the possibility of

16

introducing thresholds that indicate how confident the system is about the solution that it is
presenting. The two thresholds usually present in an intelligent agent are called: “do-it” and
“tell-me” thresholds (Maes, 1994). Above the “do-it” threshold the agent automatically
executes an action without asking the user. Between the “do-it” and the “tell-me”
thresholds the agent gives a suggestion that is usually correct and below the “tell-me”
threshold the agent does not know what to do. This oncept, even if dightly modified, has

been used in the construction of our system®.

1.3 ISAC

The acronym ISAC stands for Intelligent System for Aircraft Conflict Resolution. It is a
CBR system that helps air traffic controllers to solve conflicts between sets of aircraft. The
three stages of the decision making process for conflict resolution are:

selection of the aircraft to manoeuvre,

decision on the type of manoeuvre and

specification of the details of the manoeuvre.
The choices made depend on severa factors: the geometry of the conflict, the capabilities of
the aircraft, their position relative to the destination, etc. ISAC is an intelligent agent that
assists the controllers in the first two stages of this decision process.
The advantages of early conflict prediction and resolution are the reduction of the
controller’s workload, relaxation of ATC restrictions and the possibility of having more
aircraft flying with a direct route and at preferred altitude profiles. It means that, with the
same congtraints, both the controllers and the pilots will be more satisfied (Shively and
Schwamb, 1994).
In ISAC we introduce a new threshold, called “don't do” threshold, which is coded inside
the system: if the similarity between the case and the target is below the “don’t do”
threshold, the system does not suggest any solution. The “tell-me”’ threshold is not in
ISAC’s code, but it is up to the controller to decide whether the solution is acceptable
(above the “tell-me” threshold) or not acceptable (below the threshold). This means that the
“tell-me” threshold, even if not explicitly stated, isimplicitly used by the controller.
Finaly, ISAC isinteresting in itself because of the critical safety issuesinvolved and because

of the question of what constitutes a case in this problem domain.

2 |SAC is considered an intelligent agent even if it does not operate autonomously, which is a characteristic

common to severa intelligent agents.

17

1.4 Contributions of this Thesis

Severa issues were encountered during the development of ISAC. The most interesting
ones, that constitute the main contribution of ISAC, are:

the analysis of the knowledge engineering problem,

the suggestion of a hierarchical case-based reasoning structure;

the issues of case reuse and case representation;

the analysis of the discriminatory power of the case parameters.

These points, explained below, will be treated in more detail in the next chapters.

1.4.1 The Knowledge Engineering Problem

The Knowledge Engineering (KE) problem is not always treated in the intelligent agents or
expert systems literature because often the databases used for the evaluation of these
systems are toy-databases, i.e. databases that have been created especially with the purpose
of testing that particular system or databases that are already available. This was not the
case for ISAC, a system that had to be built to solve area world problem widely known for
its complexity. This means that the power of ISAC is mainly in its database and in the
parameters used to describe it.

All the steps of the KE process are described explicitly in Chapter 6 and implicitly in all the
thesis: the understanding of the domain, the definition and acquisition of parameters, the
different approaches to important CBR issues and successive changes of direction, the
acquisition of the data with solutions for the construction of the case-base etc. are al
different aspects of the knowledge engineering problem. The last issue, i.e. the construction
of the case-base, has probably been one of the most problematic. The availability of the
flight plans of al the aircraft flying above Europe means that it is possible to easily extract a
lot of conflict descriptions. The problem is that these conflicts, to be stored in a case-base,
need a solution that has to be given by a controller, an operation that requires a lot of time.
This bottleneck shifted the focus from the effective acquisition of the case-base to the

development of a hierarchical structure and a different case representation.

1.4.2 The Hierarchical Structure

The need of solving multiple aircraft conflicts inspired the hierarchical structure. A multiple
arcraft conflict can involve 3 or more aircraft. It would be too difficult to build different
case-bases for three aircraft conflicts, four aircraft conflicts etc. For this reason, the conflict

has to be decomposed into two aircraft conflicts, but some high-level anaysis has to be

18

applied because the solution to a multiple aircraft conflict is not necessarily one of the
solutions of the component two aircraft conflicts. A hierarchical structure would allow
ISAC to use the same case-base for both two aircraft conflicts and multiple aircraft conflicts

with big savings in space and time.

1.4.3 Case Representation

The choice of the structure for a case is not obvious. A case could contain the description of
al the aircraft involved in a conflict or, aternatively, for each aircraft involved in the
conflict a new case could be created. While the first choice is more intuitive and closer to
the way the controllers think, the second one is more extendible. Having one case for each
aircraft facilitates the generalisation of the case-base to multiple aircraft conflicts because
the same cases containing one aircraft conflicts could be used for solving both two aircraft
or multiple aircraft conflicts. The problem with this case structure is that, by splitting the
conflict into two separate cases, there is the risk of loss of information.

Please note that two types of case reuse have been mentioned: case reuse with a hierarchical
structure and case reuse with the case representation. Those are two different approaches to
the same problem. The hierarchical structure reuses two aircraft conflicts for solving
multiple aircraft conflicts, independently of the structure used to represent a case. A
different approach is to change the case structure with the purpose of reusing each single
aircraft description in any type of conflict. Both the approaches have been devel oped.
Having al the aircraft described in the same case gives rise to the problem of deciding the
order in which the aircraft are described. For this purpose either al the combinations of the
aircraft could be stored as independent cases or a “canonical”, i.e. standard, form has to be

found. Again, both these approaches have been devel oped.

1.4.4 Discriminatory Power of the Parameters

Not necessarily all the parameters that describe a case have the same importance. Using
decision trees or calculating directly the discriminatory power of the parameters is away of
better understanding the case-base under construction. Those two methods simply indicate
what are the most important parameters in the case description and could be useful to purge
some useless parameters or to better specify very important parameters in the case
description.

The task of effectively finding the weight of a parameter is quite difficult if it is up to a

human expert. A lot can be learnt about what parameters are important for retrieval by

19

comparing sSimilar casesin a case-base. It can be automatically determined which parameters
are necessary in predicting outcomes and weights to parameters can be assigned
accordingly. In the same manner it can be discovered which parameters are used in specific
contexts and determine localised parameter weights that are specific to individual cases. The
property of a parameter changing weight depending on the value of other parameters is

called context sensitivity.

1.5 Summary and Structure of this Thesis

In brief: the next two chapters deal with ATC and CBR. After a chapter with the technical
description of ISAC, the mainly theoretical chapter treating al the CBR issues is presented.
Then the chapter on knowledge engineering shows the process of building the system, the
chapter on introspective learning analyses this technique and finally the evauation of the
system and the conclusion chapters judge whether the system has been successful in
marrying CBR and ATC.

In more detail: Chapter 2 introduces the reader to the basic concepts of air traffic control
and to HIPS which is a computer aided tool that helps the controller in the visualisation and
resolution of a conflict. The approach of other intelligent systems to the problem of ATC is
analysed and the points that could be useful for ISAC are highlighted.

Chapter 3 gives the background to case-based reasoning. The steps that constitute the
typica CBR system are explained, then a prototypica example is described. The related
literature is analysed to raise the CBR issues that will be treated in Chapter 5.

In Chapter 4 some technical issues like the interface between ISAC and HIPS, the structure
of the system and of the web of pointers used during the retrieval process are treated. The
parameter acquisition and the changes adopted during the knowledge engineering process
are judtified. Of al the choices presented in Chapter 3, the most suitable for ISAC are
explained in Chapter 5. Issues like the case representation, the case structure, the coverage
of the case space with the alternative between a few gold standard cases and lots of noisy
cases, the possible solutions and the “don’t care” values are treated. Talking about the
importance of the parameters: the discriminatory power and the decision trees are treated in
Chapter 5 whereas Introspective Learning techniques will be analysed in Chapter 7. Finaly,
the hierarchical structure for the resolution of multiple aircraft conflicts is analysed here,
applied in Chapter 6 and evaluated in Chapter 8.

The knowledge engineering problem is discussed in Chapter 6 with al the steps done to
build arealistic and robust system that could satisfy the controller’ s needs.

20

In Chapter 7 a comprehensive set of techniques for learning local and global parameter
weights are described. These techniques are evaluated on the ATC case-base and with other
case-bases. It is shown how introspective learning of parameter weights improves retrieval
and how it can be used to determine context sensitive local weights. Introspective learning
does not work well in case-bases containing only pivotal cases because there is no
redundancy to be exploited. It is shown that local weights are better than global weights in
the ATC domain and which update policies are most effective. Findly it is discussed how
the overfitting problem, common in introspective learning, can be avoided.

The evaluation of the different versions of the systemsisin Chapter 8. The possible ways of
evaluating are analysed: “LeaveOnelN”, “LeaveOneOUT”* and real test with traffic samples

from real time simulations. Some genera conclusions on the performance of the system and

on the applicability of CBR to ATC are here and in Chapter 9. Figure 1.1 gives the plan of

the thesis.
Chapter O Chapter 2 Appendlx E
(Introduction) T Chapter 3 (ATC) (code)
(CBR)

Chapter 4

(technicalities)

Appendix C Appendix D
(Classes and (files)
Functions)
Discriminatory Hierarchical

Chapter 5 Power CBR
(CBRissues) " -----. : ’

CBR

Chapter 8
(Evaluation)

Y

v

Chapter 7
(Introspective
Learning)

Hlerarch|ca| CBR

Appendix B
(parameter

Chapter 6
(Knowledge
Engineering)

weight)

Appendix A Chapter 9
(case-base (Conclusions)
acquisition)

Figure 1.1: Dependencies of the chapters.

% Ina“LeaveOnelN” simulation all the cases in the case-base are used as a target, but the target is |eft in the
case-base. When the case used as a target is taken out of the case-base the simulation is called

“LeaveOneQUT".

21

Chapter 2
Air Traffic Control

2.1 The Problem of Air Traffic Control

Traditionally, the stated objective of air traffic control is the safe, orderly and expeditious
flow of ar traffic. Nowadays, it is necessary to add that air traffic control should be
impartial, cost effective, noise abating and fuel conserving. Current and future air traffic
control systems must meet these additional requirements without any sacrifice of the vita
essential safety, orderliness and expedition (Wiener and Nagel, 1988). This point of view is
the same as Shively and Schwamb in AIRPAC (1984): the solution to a conflict must
provide the minimum separation, achieve fuel efficiency, minimise the number of commands
and minimise the delay.

These conditions have to be respected by the controllers and obviously by any system that
tries to help them. Systems thinking is very similar to Human Factors thinking: it often
requires a statement of the obvious and to ook outside the lines. The problem is that if the
obvious is stated people consider this simplistic and “obvious’, if the obvious is not stated it
is often missed and some expensive design errors can be made that only become apparent
when an accident occurs. When designing any ATC component, apart from the technical
aspects and feasibility, there is the need to examine the wider systems perspective to fully
understand its value and impact. An example can make this need more clear.

The following report of a flight on an Airbus 340 confirms what is being reported
elsewhere, i.e., A340s have a problem fitting into a congested organised track system, like
NOPAC (North Pacific Track structure), dominated by faster aircraft such as Boeing 747s,

because of their cruise speed.

The trouble began on the ground. The scheduled departure time was 5:15 p.m., but we had to
wait for a clearance because the ATC wanted to get faster traffic out ahead of us. At 5:35,
ATC told us they could give us a clearance up to flight level (FL) 280 then or we could get the
FL340 we wanted in about half an hour, so we took FL280, and took off 20 min behind
schedule.

After about an hour, we were cleared to go up to FL300, but still not FL 340 we wanted. The
reason is two B747s were trailing us, and they had been given higher atitudes. The flight

22

crew kept requesting higher atitudes, which they did not get because the ATC would not
place a dower airplane (A340 at Mach 0.82) ahead of faster ones (B747s at 0.85). The crew
spent the first half of the flight trying to figure out away to get up to FL340. Finally they gave
up and called their dispatch office and got a new flight plan.

When we landed, the actual fuel on board was 9 tons versus 10.4 according to the original
flight plan. Since the winds were on the mark, the cost of flying at the lower altitude was

about 1.4 tons of extrafuel burn.

Thus we have an aircraft that may well be technically excellent and very economica to
operate, but in densely utilised airspace it will not be easy to achieve those economies
because of the wider system requirements. This is an example of how not fully applying a
systems view can lead to inefficiencies that probably appeared outside the scope of the

designers brief.

2.2 Principles of ATC

Commercid aircraft are controlled by ground-based air traffic controllers from the moment
the engines are started at the origin of the flight to the moment the engines are stopped at
the destination (Field, 1985). To facilitate the control task once the aircraft is en-route, the
airspace is divided into horizontally and vertically bounded sectors, each sector normally
being the responsibility of two controllers. The size of a sector depends on the amount of
traffic to be processed, the number of aircraft per hour normally being limited to around 30.
This means that in areas of high traffic density the sectors will tend to be smaller giving an
average transit time of around 6 or 7 minutes, whereas in low density areas with larger
sectors, transit time can be around 20 minutes.

Sector capability is an indicator of how busy a sector is, but it is difficult to calculate it
correctly. The capability of a sector used to indicate the maximum number of aircraft that
can enter a sector in one hour. This measure was too vague because the aircraft could arrive
at regular intervals or could enter the sector at the same time. More sophisticated measures
consider not only the number of aircraft that entered a sector but also the number of aircraft
who exited it. In this case the capability of a sector is the maximum number of aircraft that
can be in the sector at the same time.

Apart from national boundaries, the shape of the sector is normally a function of route
structure, a sort of road system in the sky normally followed by commercia aircraft. The
route structure has been designed so that major route crossing points do not occur near the

edges of the sectors to avoid co-ordination problems.

23

In Europe, aircraft going Northbound, i.e. with heading from 0° to 180°, fly at odd levels,
i.e. 25, 27, 29 thousand ft, whereas aircraft going Southbound fly at even levels. In France
the separation is between Eastbound and Westbound aircraft because the majority of the
traffic through France is Northbound and Southbound.

Unidirectional airways are an exception to this rule. An example of unidirectiona airway is
between London and Paris where 3 levels one above the other are used for aircraft going in
the same direction, making it easier for the controllers to change level to an aircraft without

crossing tragjectories of aircraft going the other direction.

Figure 2.1: Theradar screen.

Figure 2.1 shows atypical radar screen: the sector under examination (above the North Seq)
is in a darker grey. Two aircraft with their trgjectories are shown. The darker segment
indicates aloss of separation between the two aircraft DLH407 and CCK177.

When an aircraft is about to enter a sector, the controller responsible for that sector is
notified of its arrival, and this should correspond more or less with its appearance on the
radar display. A short time later the controller assumes responsibility for the aircraft, a

complementary release of responsibility having taken place in the upstream sector. The

24

bilateral agreement of the conditions for transfer from one sector to another is known as co-
ordination, and actually represents a substantial part of the controller’ s workload.

It is then up to the controllers to see the flight through the sector and clearly the main
concern is that the aircraft transits the sector conflict-free. There is however a secondary
requirement which is to provide the aircraft with a cost and time-efficient passage.

A controller needs a licence specific to the sector to work on it. This, with the fact that the
licence is not valid if not used for six months, shows how important the training on a

particular sector is.

2.2.1 Types of Airspace

When a commercia aircraft takes off, the planning of the trgjectory has already been done.
People tend to think of the control tower as the normal air traffic control workspace. In
fact, only those controllers handling air traffic in the immediate vicinity of the airport have a
direct view of the air traffic; most have no outside view at al. There are three types of
commercial airspace: en-route sectors, TerMinal control Area (TMA) and tower airspace.
There are 65 ATC centres in Europe and 400 in the USA that control the non-military
airspace. Military airspace is not considered in this work because of the different procedures
and prioritiesin use.

Traffic usually gets into an en-route sector already cruising and usually exits still cruising.
There are few level changes because sector exit levels have to be achieved and there are few
aircraft in evolution. When there is a conflict, the best manoeuvre would be a dight
horizontal turn, usually no more than 10-15°. When the controller is not too busy, an
aircraft can be put on purpose on a wrong level which is called Opposite Direction Level
(ODL). The workload cannot be too high because an aircraft in an ODL has to be
monitored by the controller. For example, above Ireland each morning there is a flow of
aircraft going from the USA to London, but not the other way around: the unused
westbound levels are reserved for eastbound traffic and the following sectors are ready to
accept aircraft at ODL.

TMA sectors are around airports and they are limited by a maximum flight level. Approach
controllers decide the arrival sequence and it is up to them to decide to have parallel
landings. In a TMA sector there are a lot of aircraft in evolution. A radar, i.e. horizontal,
solution is often used and an horizontal turn can be up to 60°. Because there are a lot of
aircraft in a restricted space, there are a lot of opposite direction conflicts and the

turbulence effect is even more important because the aircraft are close to each other. Speed

25

differential could be useful for sequencing but not for conflict resolution. In general, en-
route sectors are simpler to control than TMA sectors.

Finally, there are the tower sectors that surround aerodromes. Separation is often kept with
direct sight, without the need of the radar. The separation between aircraft depends on their
type because each type generates a different turbulence. Usually there must be three minutes
between two aircraft landing or taking off. In Heathrow, where the traffic is more intense,

the separation has been reduced to two minutes.

2.3 Conflicts and Conflict Resolution

Internationally agreed rules exist defining separation standards below which aircraft are said
to be “in conflict”. The values of these separations vary according to a number of factors
such as the type of controlled airspace. Minimum horizontal separations are typicaly 5
nautical miles (Inm = 1852m) in radar controlled regions and either 1000 ft or 2000 ft
vertically, depending on atitude. In areas not covered by the radar the horizontal separation
is bigger, reaching even 40 nautical miles like in Turkey or 120 nautical miles like in Iran,
i.e. 15 minutes of horizontal separation. In (ICAO,1994 and ICAO,1996) the rules of the air
and air traffic services are explained and standardised.

Note that “conflict” is not synonymous with “collision” but is rather the infringement of the

applicable separation minima as can be read from the Daily Telegraph, August 1997:

Two British Airways jets, carrying more than 300 passengers, came within seconds of a mid-
air collision because of an error by an air traffic controller. The near-miss happened as the
two Boeing 757s were in a holding pattern awaiting permission to begin their approaches to
Heathrow.

One, flying from Paris with 165 passengers, was told to descend from 11,000 ft. It reached
10,400 ft before the crew realised that the second aircraft, at 10,000 ft, was maintaining its
dtitude. The pilot of the higher plane quickly levelled out and turned sharply away from the
other, which was carrying 150 passengers from Geneva, before returning to his previous
atitude. The Civil Aviation Authority inquiry established that the emergency had occurred
because the controller handling the two flights had “inexplicably” issued the descent
instruction to the wrong aircraft.

At the time, the flights were so close that their atitude and flight number data on the
controller's radar screen were overlapping and “virtually indecipherable”. By the time the
control centre's “conflict aert” sounded, the descending pilot had aready taken evasive
action. The captain of the Paris flight told investigators that if his plane had been fitted with
automatic collision avoidance systems, he would never have begun the descent. Such

equipment, called TCAS, will not be compulsory in Europe until the year 2000.

26

The incident took place in November 1996, a week after the world' s worst mid-air crash when
a Saudi Arabian jJumbo collided with a Kazakh cargo plane near Delhi. AlImost 350 died.

In practice controllers will often apply separations significantly larger than 5 nautical miles
or 1000 ft, mainly due to the difficulties they have in accurately visudising future
trgjectories and conflict situations. This has a number of implications: for example a
manoeuvre applied to resolve a conflict may end up significantly larger than is actually
necessary (i.e. non-optimal) and indeed, there will often be unnecessary intervention where,
had the aircraft continued on their existing trajectories, there would not actually have been a
loss of separation.

One of the most important advances in computer support for air traffic controllers in the
next few years will be the provision of relatively accurate predictions of future aircraft
trgjectories. Such a development should in principle alow clearer visudisation of where
aircraft will go, and in particular whether they will be in conflict. Even with such

information, however, it is not immediately obvious how controllers could useiit.

2.4 The HIPS System

One system which presents all this information in a usable way is HIPS (Highly Interactive
Problem Solver) (Meckiff and Gibbs, 1994), a system developed at the Eurocontrol
Experimental Centre in Paris. HIPS is a novel support tool which comprises two main parts:
firstly, it displays conflict Situations relative to one selected aircraft in a time-independent
way, and secondly, it provides a means for the controller to modify trajectories and to find
solutions to these conflicts. A smple example follows which will help illustrate HIPS
techniques.

EEC123

start of turn
\ loss of separation
—3 planned tracks dternative tracks

Figure 2.2: A possible conflict representation.

27

In Figure 2.2, the aircraft which interests us, EEC123, is traversing the airspace from left to
right. Its trgjectory isin conflict with that of another aircraft, EEC456, which istravelling in
a northerly direction. The part of the trgjectory for which there is a loss of separation
between EEC123 and EEC456 is marked with a thicker line. If we imagine that we wish to
solve this conflict by changing EEC123's heading, we could attempt various new headings
assuming a certain point as our start of turn and for each one we could check for conflicts
and again mark any loss of separation in bold.

Having tried a number of possibilities the next step is to group together all the bold lines to
produce a single “no-go” zone as shown in Figure 2.3. This provides an immediate and
powerful visual device by which the controller can rapidly see that in this case the conflict
can be solved by arelatively small southward or alarger northward deviation to EEC123.
The example assumes linear constant-speed trgjectories with the start-point of the
manoeuvre aready known. Unfortunately these assumptions are unredlistic in real life which
means that the techniques used for generating the diagrams are quite complex. As well as
generating a horizontal view, a similar approach can be used to produce diagrams for

vertical and speed dimensions, giving atotal of three pictures.

EEC456 EEC123

S~

No-go zone

Figure 2.3: How HIPSrepresents the conflict.
Figure 2.4 (a) and (b) show two screen shots with the three HIPS windows and the no-go

zones. The display of Figure 2.4 (a) is similar to the radar screen shown in Figure 2.1. The
difference is in the red no-go zone that indicates the loss of separation between the two
aircraft. The green and black trgectory belongs to the aircraft DLH407. Between the
waypoints 3 and 4 this aircraft isin conflict with the aircraft CCK177. In Figure 2.4 (b), the
speed (above) and vertical (below) views are displayed. It is shown that the conflict happens
when the aircraft DLH407 descends from flight level 370 (37,000 ft) to 330.

The controller can try to solve the conflict by pulling the trgjectory out of the red no-go
zone. In this particular situation, the best manoeuvre is to keep the aircraft DLH407 at level
370 because the controller knows that the aircraft is too far from destination, o it is too

early for a descent. The applied solution is shown in Figure 2.4 (c). The no-go zone is now

28

yellow because it is not a conflict anymore, but is a potential conflict. The modified

trgjectory isin white.

DLH407 EDDF
370 DOGGA 52
270 330

Figure 2.4 (a): The horizontal display in HIPS.

2.5 Conflict Resolution Support for HIPS

HIPS does not, of itself, attempt to present complete solutions. It presents information to
the controller in a way that he can understand, and it is then up to him to find solutions.
This approach has been important in gaining a degree of acceptance. However, there are
still a number of steps to be taken between the time when a potential conflict is recognised,
and the implementation of the solution. In particular, the controller must:

evaluate the conflict situation and decide which aircraft he is going to manoeuvre,

decide which type of manoeuvre is appropriate and

determine the details of the manoeuvre (e.g. turn right 10°, go 0.1 Mach faster etc.).
These decisions imply the examination of the horizontal, altitude and speed display for each
aircraft involved in the conflict. The am of ISAC is to automatically highlight the display
corresponding to the best manoeuvre of the best aircraft. This means that ISAC has to
decide which aircraft has to be manoeuvred and the type of manoeuvre to avoid the conflict.

The given solution can be accepted by the controller who will complete it with a deeper

29

specification of the manoeuvre, alternatively, it may be discarded because it is considered
not adequate. If this happens, the controller will choose another display of the six available.

The main purpose in having an intelligent system behind HIPS is to reduce the controller’s
workload. Moreover, the system could suggest a manoeuvre that did not come to the
controller’s mind, but is more efficient. Finaly, HIPS and ISAC could be used as a training

tool for non-expert controllers. The technical description of ISAC isin Chapter 4.

DLH447 ELDF
270 DOCGA 52
370 330

FAMED DOCEEH
Ardi 143 152 =5 4313

LcokT177

FAMED
CEET

Figure 2.4 (b): The speed and vertical displaysin HIPS.

2.6 Experts Systems for Conflict Resolution in ATC

Air Traffic Control is one of the domains where Al is applied with some reticence because a
wrong decision could imply a loss of lives. That is why a characteristic common to al the
Al systems applied to ATC is that they help and support the controller but they never try to

substitute him. Some expert systems used in air traffic control are analysed below.

30

AIRPAC

AIRPAC (Shively and Schwamb, 1984) is another rule-based system for aircraft conflict
resolution written in LISP. In contrast with ASTA, AIRPAC gives an explanation on how
the solution is reached. After the suggested manoeuvre has been applied, the conflict is

checked again to ensure that the solution does not generate new conflicts.

DLH407 EDDF

270 DOGGH 52
37 230

DOGGH
11205
|

Figure 2.4 (c): The speed and vertical displaysin HIPSwith the solved conflict.
Three groups of parameters have been identified to describe a conflict: conflict description,

constraints on resolution and goals of resolutions. The conflict description contains two

subclasses:

conflict situation with parameters like geometry, distance from unsafe separation,
aircraft relative position and speed,

31

aircraft situation with parameters like speed, manoeuvre status at conflict and type of
aircraft.
A congtraint can be generated by either the aircraft, e.g., maximum atitude, climb rate,
speed, pilot ability to comply, aircraft not subject to manoeuvre, or by the environment,
e.g., neighbouring aircraft, special-use airspace, severe weather, boundary considerations
etc.
Different goas of resolution have been identified. In absence of special aspects of the
conflict situation, AIRPAC reverts to a conflict resolution policy good for any type of
situation. As soon as a good solution is found the search is stopped.
Two sources of uncertainty are examined: the uncertainty due to the input data and the
uncertainty due to the heuristic knowledge. Input data could be incorrect because of the
estimation of aircraft flight paths based on flight plan data. Heuristic knowledge is not
always complete and consistent because of both general and specific problem solving
methods. Some parameters used in ISAC come from the list of rules used in AIRPAC.

ASTA

Another rule-based system that was intended to be part of ARC2000 is ASTA (Tumelin,
1990). It is written in PROLOG and its am is to help the controller by giving him in
advance all the conflict-free trgjectories and a proposed exiting altitude for al the aircraft
entering the sector.
In ASTA only two aircraft conflicts are considered and are classified in three classes that
depend on the horizontal geometry of the conflict: converging, catching-up and facing. The
“status’ of an aircraft depends on its atitude profile and can be: cruising, climbing or
descending. Fourteen different conflict configurations are obtained from the combination of
the horizontal geometry and the atitude status. This categorisation was adopted with some
changesin the first version of ISAC’s case-base.
Three types of manoeuvres are considered in ASTA:
change of the horizonta position (6 different manoeuvres like heading change,
maintaining heading for alonger period, direct route etc.)
change of the vertical position (9 manoeuvres: level change, anticipate-delay descent-
climb etc.)
change of performance (7 manoeuvres. speed change, increase-decrease climb-descent
rate).

32

In ISAC this approach is smplified. There are only 3 possible manoeuvres. horizontal,
vertical and speed manoeuvre. When similar solutions are found in ASTA, an algorithm
chooses the solution that reduces most the length of the trgectory. This choice is not
optimal and a cost function would work better.

ASTA does not always find a solution. From ISAC’'s point of view, this is acceptable,
because it operates as a support tool always under the supervision of the controller. A
problem with ASTA is that the solution given cannot be immediately understood by the
controller because it is often difficult to find the rules that brought to the solution. This is
typical of al the rule-based systems.

In ASTA two different cost functions are examined: the controller’s cost function and the
aircraft’s cost function. The parameters considered for the aircraft function are the safety,
the flight time increase, the fuel consumption and the respect of the scheduled arrival time.
For the controller’s cost function, the number of manoeuvres to avoid the conflict and the
environmental conditions are considered. These parameters should be kept in mind in case

the construction of a cost function in ISAC will be necessary.

ARC2000

In ARC2000 (Nicolaon and Tumelin, 1992), a system developed in Eurocontrol
Experimental Centre, Paris, the shortest path around the no-go zones is found
algorithmically. The system tries to move the selected aircraft from its trajectory to a new
one with a change in atitude, speed or horizontal position. ARC2000 defines the priorities
between flight phases and between aircraft and the manoeuvres to apply to the selected
aircraft. All the possible manoeuvres are successively tried and a cost is associated to each
solution. Then, the least expensive solution is chosen. The algorithms for the search of the
manoeuvre and the rules for its evaluation are implicit in the ARC2000 program code,
making it difficult to test, maintain or adapt to new problems. The actua weather is given
with wind speed and wind direction for 8 arbitrary atitudes and with temperature and
pressure at sea-level. All given values are constant over the whole simulation area and over
time. There are four vertical flight phases: climb, descent, pre-descent, cruise. In ISAC, no
difference is made between the pre-descent and the descent phases.

The rule-based system in ARC2000 gives the basic structure for the rule-based system in
RAMS, a Reorganised ATC Mathematical Simulator, (Model Development Group, 1995),

an analysis tool to increase the simulation capabilities.

33

GEARS Conflict Resolution Algorithm

Also GEARS, Generic En-route Algorithmic Resolution Service, has as background the
ARC2000 research. The agorithm combines the two steps of finding the right manoeuvres
and putting them into the trgjectory with the idea of the no-go zones (Irvine, 1997). Two
similarities with ISAC are that the algorithm needs a conflict detector and that the trgjectory
predictor must provide reliable data

The algorithm, that has applications in free-flight simulations, makes use of the concept of
preferred manoeuvre, candidate manoeuvres and avoiding manoeuvres (Irvine, 1997). The
right manoeuvres are recursively searched and the good ones are used to construct a set of
conflict-free tragjectories. The Rubber-Banding heuristic proves to be particularly powerful
in avoiding the construction of sub-optimal trgjectories. This heuristic comes from the idea
of threading a rubber band between fixed obstacles and then stretching it around the no-go

Zones.

OASIS
The OASIS air traffic management system (Ljungberg and Lucas, 1992) performs tactical

air traffic management. In order to alleviate air traffic congestion the system maximise
runway utilisation. OASIS is agent-oriented: its magor components are independent agents,
each solving a part of the overall problem. The system’s flexible behaviour results in part
from this co-operative problem solving approach, and in part from the multiple levels of
feedback employed between agents in the system and between the system and its
environment. OASIS computes the landing sequence using an any-time algorithm and is
implemented using the Procedural Reasoning System (PRS), a real time reasoning system

capable of reasoning about and performing complex tasks in arobust and flexible manner.

Other Systems

The most exotic Al techniques have been applied to ATC, from genetic algorithms
(Gotteland, 1995) to the use of the potential field method (Zeghal, 1994). In both these
approaches the conflict is simplified by considering only horizontal manoeuvres and aircraft
flying at the same level. Moreover, Gotteland assumes that the aircraft are cruising at the
same speed. When using the potentia field method, the goal, which is the destination in the
ATC domain, produces an attractive potential which pulls the aircraft towards it, while the
obstacles, i.e,, the other aircraft involved in the conflict and the environmental aircraft,

produce repulsive potentials which push the aircraft away from them.

Another rule-based system that gives a solution in the form of a conflict free trgjectory is
Aera (Hamrick, 1991). The possible manoeuvres given by the system are: vertical,
horizontal or speed change, a combination of the two, or a solution that involves two
aircraft. Approximately 100 rules are used to search for all the possible manoeuvres and to
rank them in a best-worst list. The system, written in LISP, is able to generate aternative
resolutions in case a pilot cannot accept the initial resolution. Aera's algorithm takes into
account statistical uncertainty in the prediction of the future aircraft positions.

PLATONS (Ly, 1987) is a rule-based system written in PROLOG for altitude level
allocations planning. This is usualy the job of one of the two controllers that monitor a
sector while the other tries to re-route aircraft to improve efficiency. In PLATONS, the
negotiation with the pilot is very important and the final decision depends on this.

In (Bayles et al., 1993), CBR is used to capture and analyse experiences of Traffic Flow
Management (TFM). The goal of TFM isto organise complex air traffic flows through busy
areas like airport sectors. ATC becomes relevant when TFM fails and there is a potentia
conflict. Because ATC is different from TFM, the indices that describe a case are different:
in the system for TFM, more stress has been put on the weather conditions, on the day of
the week and on the period of the day. Moreover, the scope is not limited to only two or
three aircraft but to an entire group.

The typical CBR issues are treated. In particular, the domain of applicability which has been
limited to a specific situation. This happened because in a more general situation too many
parameters would have been necessary. The authors agree that CBR has some advantages
over RBS, but admit that “CBR must be complemented with other systems such as RBS to
build successful application, including our application” (Bayles et al., 1993).

Suggestions on the use of bayesian networks and fuzzy logic for conflict resolution are in
(Meckiff, 1994). The steps that compose the model are: definition of the inputs, definition
of fuzzification functions for the inputs, definition of the relationships and development of a
graphical model and assignment of conditional probability values to the relationship. This
model has not been implemented yet.

From the overview of all the systems it can be seen that the mgjority of them use either and
algorithmic approach or a rule-based approach. In both the situations the authors reported
problems, for example during the extraction of the knowledge from the knowledge base and
for the maintenance of the system. Case-Based Reasoning can help in these bottlenecks.
Even if it does not solve all the knowledge engineering issues, as reported above by Bayles,

it helps in reducing them. In the next chapters it will be shown how CBR reduces

35

considerably the steps that come after the understanding of the domain, i.e. the need to

identify causal modelsin the problem domain is reduced.

2.7 The Future

Some of the biggest changes in the future of ATC will dea with the Human Machine
Interface (HMI) field like frequency congestion that indicates the difficulties in voice
communication between pilots and controllers. Some english controllers admitted that when
faced with a conflict involving, for example, an English and a Chinese aircraft they tend to
manoeuvre the English aircraft because they are sure that they will be better understood.
The apparent solution to frequency congestion will be digital data link (Perry, 1997). Some
of the areas not related to the HMI domain where the most effective changes will take place
are the introduction of the Reduced Vertical Separation Mode (RVSM), the introduction of
free flight and having controllers that will control some aircraft for al their journey and not
anymore only when the aircraft passes above a particular sector.

Nowadays, aircraft have a vertical separation of 1000 ft when they are below 29,000 ft and
2000 ft above this level because the higher an aircraft goes, the less precise the altimeter is.
RVSM has become possible now that aircraft have more precise instruments on board and
will imply a separation of 1000 ft even above 29,000 ft.

With the introduction of on-board tools like TCAS (Traffic aert and Collison Avoidance
System) in the USA since 1993 and in Europe from year 2000 the possibility of having
aircraft going on a straight line from departure to destination seems more feasible. In the
ATC communities there is a big debate on whether introducing free flight as it has aready
been done in the USA above a certain flight level (40,000 ft). The problem is that
controllers do not feel at ease in a scenario where aircraft can arrive from anywhere and go
wherever they want because the controller cannot any more easily recognise conflicts. On
the other hand, the advantage of free flight would be in time and fuel saving because of the
reduction of the trgjectories. Finally, with the new technology improvements, the new radar
have a much wider range and nowadays they can easily follow an aircraft aong al its flight
path. Moreover the idea of having sectors that usually have different standards above each
country starts being considered obsolete. Mainly for these two reasons the controller might
change his function. He will not be anymore bounded by the sector’s borders having to
control only the aircraft the overfly it, but he will take care of the same aircraft for al the

duration of the flight, from departure to destination.

36

Chapter 3

Case-Based Reasoning

Case-based reasoning has emerged from research in cognitive psychology as a model of
human memory and remembering. It has been embraced by researchers of Al applications as
a methodology that avoids some of the knowledge acquisition and reasoning problems that

occur with other methods for devel oping knowledge-based systems.

3.1 CBR Principles

The basic assumption of CBR is that, rather than solve a problem from first principles, it
may be easier to retrieve a similar problem and transform the solution to that problem. The
main issues to be considered in developing a CBR system are:

representation and indexing,

retrieval,

adaptation,

learning.
One of the central advantages in using a case-based approach to developing knowledge-
based systems (KBYS) is that CBR systems can be developed without encoding a strong
domain theory for the problem domain. This means that CBR should avoid much of the
knowledge engineering bottleneck that is such a problem in KBS development. In the next
chapters it will be shown that athough this might be true for toy systems, it is not
completely true for areal world application like ISAC.

3.1.1 Representation and Indexing

Problem solving episodes are represented as cases, the key part of the case being the set of
parameters that characterise it and the possible values that each parameter can assume. The
case description is then completed with its solution that can be either atomic or compound.
Thisis an important issue, since the performance will depend on the representation adopted

and a lot of knowledge engineering is needed. The parameters must represent all the

37

knowledge necessary for the distinction of a case from the closest ones with a different
solution. Cases may be indexed on key parametersin order to facilitate retrieval.

Solutions to the case can be atomic, compound or compound-manipulable. An atomic
solution cannot be decomposed whereas a compound solution can be decomposed into one
or more components by some problem decomposition process (other than adaptation). A

compound-manipulable solution has components that can be manipulated during adaptation.

Incremental-CBR

An analysis of the use of CBR in different domains illustrates that the structure of
conventional CBR is very rigid when compared with the flexibility of reuse that humans
exhibit in problem solving. For some CBR tasks, like diagnosis, a full case description may
not be available in advance of case retrieval. The standard CBR methodology requires a
detailed case description in order to perform case retrieval and this is often not practical as
the case can be characterised by a large set of parameters, not all of which are required in
order to make a diagnosis. Moreover, many of these parameters will be expensive to
determine so it is desirable that the number required to deliver a good solution should be
minimised.

In this situation a technique called Incremental-CBR (Cunningham, Smyth and Bonzano,
1998) can be used. The incremental CBR mechanism can initiate case retrieval with a
skeletal case description which is used to retrieve a matching subset of the case-base. This
retrieved set is anaysed to determine discriminating tests that the operator is asked to
perform. The Incremental-CBR technique proved capable of retrieving good matches while

requiring aminimal case description (Cunningham, Smyth and Bonzano, 1998).

3.1.2 Retrieval

The choice of the retrieval agorithm can increase or decrease the retrieva time but more
importantly, can influence the selected cases that lead to the final solution. The smplest and
most common retrieval agorithm is the Nearest Neighbour algorithm which is a lazy
learning flat search algorithm. A learning agorithm is lazy when the processing is deferred
to run-time. A consequence to this is that all the knowledge base has to be completely
searched every time the system is asked for a solution. Lazy learning algorithms do not
require any training period but are slow because the knowledge base has to be re-examined
at run-time.

As opposed to lazy learning algorithms we have eager ones. Eager learning algorithms
build a structure that represents the knowledge base before run-time. Approaches like

38

Neural Networks (Naughton, 1995), (Micarelli and Sciarrone, 1996) or Decision Trees
(Quinlan, 1986) are of this type. They are very fast because the knowledge base is accessed
only during the training but not anymore at run-time. One disadvantage is that the training
period could be long. The two main alternatives for retrieval are k-NN retrieval and D-

Trees.

3.1.3 Adaptation

When the retrieved case is not a perfect match for the problem in question, it must be
adapted to fit the new situation. A lot of research has been done on adaptation even if in
(Barletta, 1994) it is argued that adaptation should be kept as ssimple as possible and should
not be essential for the success of a CBR system.
A preliminary analysis of the CBR literature suggests that CBR adaptation might be divided
into three categories arranged in order of increasing complexity as follows (Smyth and
Cunningham, 1993).

Substitution Adaptation: this is the simplest type of adaptation and merely involves

adjusting or substituting some of the parameters in the solution.

Transformational Adaptation: this adaptation is more complex and involves structural

changes to the solution.

Generative Adaptation: this is the most complex adaptation and involves a reworking of

the reasoning process in the context of the new problem situation. Generative Adaptation

is also known as Derivational Analogy.
These different adaptation categories are appropriate for problems of different complexity.
Substitution Adaptation will only work for comparatively simple problems where the
solution statement is simple or atomic, e.g. it is expressible as a single price or a fault
category. Transformational Adaptation can work where the solution has a more complex
structure like in a plan but the components of the solution are not very interdependent.
Transformational Adaptation offers more coverage than Substitution Adaptation because
cases can be transformed into a wider variety of solutions but a more complete domain
model is required to do so (see Figure 3.1). This implies a deeper knowledge model. For
problems where the solutions are made up of interdependent components, as occurs in
design for instance, solutions are too brittle to be transformed in this manner. Instead, it is

necessary to re-generate solutions asis done in Derivational Analogy.

39

Substitution Transformation
Solution Space Solution Space

ieooiliSe00
O,
alk

Figure 3.1: Transformation adaptation has more coverage than
substitution.

3.1.4 Learning

Once new problems are solved with the aid of the CBR system, it may be useful to add them
to the case-base. This mechanism, which is caled the update mechanism, reflects quite
closely human learning behaviour. From this point of view, the advantages of CBR over
Rule-based Systems (RBS) are noticeable. A new case can be added to the case-base with
no particular precaution, whereas a consistency check has to be done before adding arule to
the knowledge representation of a RBS.

The extreme situation when two cases with identical descriptions but with different
solutions are introduced in the case-base should cause the system to give a double possible
solution without generating any inconsistency. Thisis one of the situations where the human
intervention is essentia in the decision process as aready mentioned in Chapter 1.

A policy is needed to decide whether it is worthwhile or not to update the case-base. If all
the new solved problems are added as cases, the case-base could become too big and the
retrieval process too sow. Moreover the solutions given by the system might not

necessarily change for the better if the updating is not supervised.

3.1.5 An Example

The Breathalyser (Doyle, 1997), a Web-based CBR application that predicts the blood
alcohol content, is an example of the CBR cycle presented above. A case is stored as a flat
parameter record and five parameters are used to characterise it: the gender and the weight
of the person, the units of alcohol consumed, whether the person consumed some food and
the duration of the drinking session. These five parameters come from the medical literature
on the subject. Each parameter has an importance weight which is fixed a priori by the

expert and remains the same for al the cases. In Chapter 7 we show how it is possible to

40

automatically extract weights from a given case-base and to determine the context
sensitivity of the parameters.

In the Breathalyser process, the two main steps are retrieval and adaptation. The retrieval
engine retrieves the closest case to the input case, then the solution to this case is adapted
using adaptation rules automatically learned from the case-base (Hanney and Keane, 1996).
When applicable adaptation rules are found, the system is fairly accurate but when no
applicable rules are found, it is not as accurate, the accuracy depending on how close a
match for the case input is found in the case-base. As the case-base used with this project is
quite small, there are usually no very close matches athough adaptation makes up for thisin
alot of situations. The information given when a solution is returned by the system gives
some indication of the accuracy of the answer.

Some sample cases and associated rules are shown in Figure 3.2.

CaseNane nl CaseNane n55 CaseNane n3 Casenane n33
CGender mal e Gender mal e Gender f emal e Gender femal e
FranmeSi ze 1 FranmeSi ze 1 FranmeSi ze 4 FranmeSi ze 6
Amount Consuned 1 Amount Consuned 3 Amount Consuned 4 Amount Consuned 3
Meal snack Meal snack Meal full Meal full
Dur ati on 60 Dur ati on 120 Dur ati on 90 Dur ati on 90

Sol uti on 0.2 Sol ution 0.7 Sol ution 0.8 Sol uti on 0.5

The rule generated by comparing casesn1 and n55 aboveis:

rO: if the units of alcohol consumed changes from 1 to 3 and the duration of the session changes from 60 to
120, then increase blood alcohol content by 0.5.

The rule generated by comparing cases n3 and n33 aboveis:

r25: if the frame-size changes from 4 to 6 and units of alcohol consumed changes from 4 to 3, then decrease
blood alcohol content by 0.3.

Figure 3.2: Some sample cases and associated rules.

The domain in which the Breathalyser works is a “wesk theory” domain, i.e., there are no
applicable algorithms or formulee to compute blood alcohol content from the five
parameters used to describe the cases. Therefore reasoning from cases is the only option.
The performance of the system support the assumption that CBR works well in “weak

theory” domains.

3.2 Overview of Relevant CBR Systems

In (Hanney et al., 1995) 53 case-based reasoners have been examined to build a taxonomy
of systems and tasks useful in the initial stages of the design of a CBR system. Four
dimensions for the classification of the CBR systems are identified.

Whether adaptation is present or absent.

41

The solution is extrapolated from either a single or multiple cases.

The solution is either atomic, compound or compound-manipulable.

There may be considerable interaction between solution components constraining the

effectiveness of naive manipulation during adaptation.
This classification and the initial understanding of the ATC domain from Chapter 2 give us
some directions on how to apply CBR to conflict resolution in ATC. Some of the hints from
the literature are useful, some others seemed to be useful at the beginning, but as our
understanding of the problem improved during the making of the system, they could not be
applied. In the next sections the initial approach to the system is presented, whereas in
Chapter 6 all the final choices are presented and justified. The technical aspects of the
system are discussed in Chapter 4.

3.2.1 The Case-Base

In areal world application such as this, there is a strong argument for populating the case-
base with hand-crafted high quality cases (gold standard cases). By doing this the system
should be able to fulfil its double function of helping the controllers in taking solutions and
teaching non-experts the steps to take the right solution. It seemed that a small set of cases,
30 to 50, would have been adequate, but when the rea complexity of the system was
discovered the dimension of the case-base had to be increased of at least one order of
magnitude.

The alternative to the gold standard cases option is the use of learned cases. This option is
valid when certain situations will recur regularly and it is desirable that the system should be
able to learn good solutions as they are developed. For example, if two flights systematically
conflict in a particular configuration, it is desirable that the system is able to learn a good
solution to this conflict.

Learning from failures like in PROTOS (Bareiss, Porter and Murray, 1989) or storing
unsuccessful cases as done in CADET (Sycara and Navichandra, 1989) could be useful
when the system will focus on the solution of conflicts on a particular sector. If a particular
conflict configuration happens often and the most obvious solution is known not to be the
correct one, it could be useful to have a message that says: “do not choose this manoeuvre”.
This approach does not work in a very general situation because there would be too many

exceptions.

42

Hierarchical Structure

As it will be explained in the next chapter, ISAC’s solution has two components. which of
the aircraft involved in the conflict has to be manoeuvred and the type of manoeuvre that
has to be applied. It seemed that because of this double solution each case could be broken
into two sub-structures, each one dealing with one part of the solution as done in APU
(Bhansali and Harandi, 1993) and ARCHIE (Domeshek and Kolodner, 1992). The
aternative of having one solution that includes both the components at the same time is
simpler and proved to work as well.

Very often in the ATC domain a conflict involves more than two aircraft. If this happens we
have a multiple aircraft conflict that can be decomposed into two aircraft conflicts. The
problem is that the resulting conflicts do not necessarily have solutions independent to each
other. Maybe a common solution could solve the multiple aircraft conflict more efficiently,
e.g., by manoeuvring the aircraft which is in conflict with all the other aircraft in the
conflict. With a multiple aircraft conflict a hierarchical structure of the same type as the
system DgaVu (Smyth and Cunningham, 93) can be used and in Chapter 5 we show how.
We reuse the case-base of the two aircraft conflict by building some abstraction hierarchy as
donein CADET (Sycara and Navichandra, 1989).

3.2.2 The Case Representation

This proved to be the key issue in ISAC. A concrete case representation is available from
the host system that is the basis of the actual case representation, so the initial set of
parameters will be acquired from the host system as is done in Archie (Domeshek and
Kolodner, 1992). Many of the parameters are represented numerically but sometimes the
representation is expanded to produce some more abstract symbolic parameters that support
useful reminding in the case retrieval process. A similar approach for the conversion of
numeric parameters into symbolic ones with the use of rangesis used in CLAVIER (Hinkle
and Toomey, 1994). The parameters for the case representation come from the controller’s
habits in solving a conflict. An accurate description of some of these typical habits, called
“preferences’, isin (Meckiff, 1994).

In the original case representation we had two kinds of parameters: some used for the
retrieval of the case, others for the case adaptation and for building the solution. This
approach, inspired by the system D&&Vu (Smyth and Cunningham, 1993), has been

smplified after the first discussions with controllers because it became clear that al the

43

parameters had to be taken into account for both the case retrieval and the solution.
Moreover our adaptation mechanism is almost non-existent (see next section).

In the system JULIA (Hinrichs, 1988), the unsolvable parameters are either weakened or
not considered. Thisis a quite common situation in the air traffic control domain, where, for
example, data and performance about an aircraft might not be available. If this happens the
controller uses his background knowledge. Our system can either retrieve the missing
information from a common database or simply assign a“don’t care” to the missing value. If
the database is well structured, the retrieval of the missing data should not take too long.
The case solution has, in Hanney’ s terms, a compound manipulable structure (Hanney et a.,
1995) because it contains the name of the aircraft to manoeuvre and the kind of manoeuvre
and it can be extracted from more than one case. The option of storing the sequence of
manoeuvres necessary to solve the conflict as done in PRIAR (Kambhampati and Hendler,
1992), will be considered if the system will be asked to give more specific solutions. If more
than one case is retrieved, some control rules as used in PRODIGY (Carbonell and Veloso,
1988) could be useful.

Granularity of the Case Representation

In situations of increased traffic the future ATC scenario implies more complex conflicts
involving more than two aircraft. A key design criterion has been to develop a case
representation that will be extendible from two aircraft conflicts to conflicts involving three
or more aircraft. This militates against having a single conflict as the basic unit of retrieval,
i.e. the case (Bonzano, Cunningham and Meckiff, 1996). For reasons of economy in case
coverage, we want solutions in two-aircraft conflicts to be reusable in three-aircraft
conflicts, and so on. This means that conflicts should be decomposable so that the basic unit
of retrieval is an individua aircraft in a conflict. This problem of representing cases
describing two conflicting entities has aready been faced in the CBR literature, for example
in two classical systems, Mediator (Simpson, 1985) and Persuader (Sycara, 1987), and
more recently in Truth-Teller (Ashley, 1995). In all these systems, perhaps because they
describe interaction between humans, there is a vocabulary to characterise the “type” of
conflict and this is critical in determining the solution. This is less true in ATC where the
solutions depend on the arrangement of the aircraft and the context of the individual aircraft
as described by their flight plans. The conflict between two aircraft can be described roughly
with one or two global parameters but the final solution depends on a lot of dependent

variables related to a single aircraft. For this reason the approach adopted in ISAC is

somewhat different to the above systems, with an emphasis placed on some parameters that
describe an aircraft on its own. While our ultimate objective in developing ISAC isto have a
single aircraft as the unit of case retrieval, we have considered three case organisations in
detail. We have evaluated two aternatives with two aircraft per case and one alternative

with one aircraft per case as shown in Chapter 5.

3.2.3 The Retrieval Mechanism

The two serious alternatives for case retrieval have been presented in Section 3.1.2.
Retrieval may be based on a sequentia search of the case-base using a tailored similarity
metric as a basis of comparison. Alternatively, the cases can be stored in a decision tree of
depth k, where k is the number of parameters considered in assessing similarity. Flat search
has the advantage that sophisticated similarity measures can be used like the Foot-Print
metric (Veloso and Carbonell, 1991) but it has the disadvantage that retrieval time increases
linearly with case-base size. This is particularly a problem if the case-base is to be alowed
to grow as may be the casein ISAC. Decision trees have the advantage that retrieva timeis
practically constant as the case-base grows. However the search may prove to be myopic
with cases excluded from consideration because they do not match on a particular
parameter. The spreading activation mechanism used in ISAC is an hybrid approach
between the lazy learning mechanism and the eager one and is explained in detail in Chapter
4,

The way of calculating a similarity metric changed during the development of the system,
e.g., the way of considering a “don’'t care” value and the numeric parameters similarity
policy, changed severa times. There are different ways of calculating the similarity metric
depending on whether the parameters is symbolic or numeric. We use a more elaborate
version of the direct matching metric described in PRODIGY (Veloso and Carbonell,
1991): two parameters match either if they are equal or at least in the same range of values,
or if each argument of parameter A is of the same type of the corresponding argument of
parameter B. The Foot-Print metric is not used. This method identifies the set of weakest
preconditions necessary to achieve the goal. Then it recursively creates the Foot-Print of the
problem that has to be solved by projecting back its weakest preconditions into the initia
State.

45

3.2.4 The Adaptation Mechanism and Update Mechanism

In our work, the adaptation is not very important because we assume that our case-base is
dense enough to always provide a case close enough to the problem that has to be solved.
In the conclusions we show that our assumption is wrong, the case-base is too complex and
can only be partially covered for one sector. Nevertheless adaptation is not used because if
there is adaptation there is a rule-based system behind it. If adaptation is too strong, the role
of CBR isreduced as seen in (Hanney and Keane, 1996) and (Doyle, 1997). The aim of our
research was to see how suitable CBR was for the ATC domain and for this reason we
wanted to keep the influence of any RBS at the minimum. This view is supported by
(Barletta, 1994) and from the development steps of the system CLAVIER (Hinkle and
Toomey, 1994). In CLAVIER case adaptation was performed only in its first version, but
the process was too error prone and in the final version it was up to the user to manually
adapt the case.

Adaptation requirements could be met using a small set of heuristic rules that adjust the
solution parameters. We would not aim to support any significant solution transformation in
the adaptation process. It appears that the basic substitutional adaptation will be adequate in
this situation. Case-base coverage should be sufficiently extensive that any structural
transformations will not be required if not at the beginning when the conflict, e.g., amultiple
aircraft conflict, has to be loaded for the retrieval as done in KRITIK (God and
Chandrasekaran, 1989).

An updating mechanism as used in PROTOS (Bareiss, Porter and Murray, 1989) would be
useful but in certain circumstances. The need to provide a learning facility in the system
introduces a problem of consistency. Different air traffic controllers may provide different
solutions to similar situations. Each controller has his own point of view depending on his
habits in solving conflicts.

If the system is to incorporate such a learning facility it will also introduce problems of
controlling case-base size. Prodigy is the only system where the time problem is treated
analytically, with a distinction between the retrieval time and the adaptation time (Veloso
and Carbonell, 1991) and advices for increasing the system performances, for example, by
changing the retrieval mechanism. An updating function will try to reduce the sum of these
two periods, by not keeping in the case-base solutions to problems that are easily and
correctly adapted (i.e. with a short adaptation time). By doing this, the retrieval time is not
increased because the case-base is not changed. Moreover, there will be a need to estimate

the coverage of individual casesin order to control redundancy in the case-base.

46

It would be useful to be able to measure solution quality in order to rank different solutions.
This might be achieved by estimating the cost of different manoeuvres by using smple
estimates of fuel use and time use. In CASEY (Koton, 1988) such evaluation function
consists of arule-based system which is, again, a problem due to the complexity of the rules

necessary to determine how good a solution is.

3.2.5 Time Constraints

The genera architecture of a CBR system is discussed in (Hinrichs and Kolodner, 1991): all
the functions that constitute the system should be integrated to minimise redundancy and to
maximise efficiency. Information hiding and modularity should be achieved with a layered
architecture. Inheritance should be used to propagate some vaues to different cases
belonging to the same group. These guidelines have been useful for the definition of ISAC's
structure. ISAC has to give the conflict solution as soon as the conflict is seen on the radar
screen. Potential conflicts are automatically recognised 20 minutes in advance, but this does
not mean that the system has 20 minutes to solve them because afterwards the controller
has to complete the solution with more details and this will need some more time.
Moreover, it is likely that other conflicts will appear and they may interfere with each other.
So the time for the retrieval of the case and for its adaptation is very short as in the real time
system ACBARR (Ram et al., 1992), where a robot under control cannot stop waiting for
the system to take the correct decision. In ACBARR the system cannot stop to update the

case-base because of the time constraints.

3.2.6 Introspective Learning and Discriminatory Power

REBECAS (Rougegrez-L oriette, 1994) predicts the fire behaviour in awood. In this system
it is necessary to choose what are the most important parameters because there are so many
that it is impossible to check al of them. This implies the need of an expert to decide
priorities in the list of parameters. This is not a user friendly approach and the automatic
ways of learning the importance of the parameters given a case-base are more effective.
Two similar methods are shown in Chapters 5 where the discriminatory power of the
parameters is calculated and in Chapter 7 where an Introspective Learning mechanism is

presented.

47

3.3 Conclusions

In this chapter we highlighted the theoretical basis of the work that we will describe in the
next chapters. As pointed out in Ram et al. (1992), the five points that have to be pursued
for the success of a CBR system are:

the case-base must be complete,

the case representation must contain all the relevant parameters,

an efficient retrieving mechanism is needed,

an efficient adaptation mechanism is needed,

the solution must be evaluated in order to update the case-base or not.
The first three points listed above will be our list of priorities for the future work. The last
two points, adaptation and update could be either treated or not, depending on how the
other points are successful. We will see that the most difficult issue will be to have a well
covered case-base. Different approaches will be tried but no one will prove to be better than

the effective coverage with cases coming from the real world.

48

Chapter 4
Structure of the System and Acquisition of the

Parameters

In this mainly technical chapter the architecture of ISAC is presented and the choices made
are justified. The spreading activation mechanism is compared with the standard flat search
mechanism and the advantages of the first are proved with some experiments. It is explained
how ISAC has been interfaced with the system that provides the radar screen and the
detection of the conflicts.

As it will be said in the next chapters, the process of the decision and acquisition of the
parameters involved severa steps. Some parameters introduced at the beginning of the
knowledge engineering process have been discarded and other more descriptive parameters
have been introduced. The final part of this chapter is dedicated to the analysis of these
changes and the way these parameters are extracted from the data available. The reasons
why the language used to write ISAC is C++ are explained in the last section together with

some simplifications and assumptions.

4.1 The Environment and Technical Information

ISAC is a module of HIPS. HIPS, presented in Chapter 2, is embedded in a system called
GHMI* that gives the controller a realistic environment to work. This system GHMI is
shown in Figure 2.1. When HIPS is called from GHMI the three HIPS windows appear with

all their usua functions, as seenin Figures 2.4 a, b and c.

* The Programme for Harmonised Air Traffic Management Research in Eurocontrol (PHARE) is a multi-
year work programme, the objective of which is “to organise, co-ordinate and conduct - on a collaborative
basis - studies, experiments and trials aiming at proving and demonstrating the feasibility and merits of a
future air-ground integrated ATM system in al phases of flight”. Ground Human Machine Interface
(GHMI) is part of PHARE Demonstration 3 and consists of the development of guidelines for, and
prototyping of, a common man-machine interface to improve efficiency in the combined use of ground

functions.

49

When a conflict is detected in HIPS, its description is sent to ISAC: i.e. the flight plan and
performance of the aircraft involved, the shapes of the no-go zones etc. Using this data,
ISAC selects the aircraft to manoeuvre and the type of manoeuvre which it sends back to
HIPS. Then HIPS can either highlight the display to be used by the controller in determining
the final details of the manoeuvre, or can smply open a window with a message for the
controller. Throughout this process, the controller has full visibility of al the data and has
full responsibility for the manoeuvre that will be communicated to the pilot. ISAC merely
suggests the “best” manoeuvre, based on the conflict solutions stored in its knowledge base.
The conflict resolution process with the interaction between HIPS and ISAC is shown in
Figure4.1.
Name of aircraft Selected

) & manoeuvre window decision
conflict

— HIPS —|SAC —HIPS — Controller —

Problem

representation updating

Figure 4.1: How ISAC is embedded in HIPS
|SAC needs a supporting system with the ability to detect and describe the conflict. HIPS is

this system in the prototype presented here, but another similar system could be used. The
interface between ISAC and the supporting system varies depending on the data that the
system can provide. This means that the case description could change if the supporting
system is changed.

The current version of ISAC operates as a decision support system. It is certainly important
for its acceptance in the ATC culture that it should be a support system rather than an
expert system. The retrieval process is shown in Figure 4.2. A key criterion in the design of
the retrieval mechanism in ISAC is that it should be fast because it will be required to
operate in a red time environment. When a controller selects a conflict in HIPS for
resolution, ISAC must immediately suggest a solution. The retrieval mechanism that has
been settled upon is a two stage process. These two stages reflect the fact that the case
parameters are divided into constraints and ordinary parameters. The characteristics of the
domain dictate that there are some parameters that must be matched if cases are to be
considered similar. These parameters are considered constraints and the base filtering stage
selects cases that match on these constraints.

During the GHMI and HIPS start-up, ISAC loads the case-base into memory and builds a

network of pointers among the cases that will speed up the retrieval process. The Base

50

Filtering mechanism discards from the case-base al those cases whose constraints do not
match those of the target exactly. This step is necessary because of the characteristics of the
domain but it also has the advantage that it reduces the size of the case-base before the
comparatively expensive spreading activation stage. The choice of constraints could
influence the competence of the system significantly because, as will be explained in Chapter

5, constraints cause cases to be diminated from consideration.

Filtered
Case-Base

CaseBase

; solution
& Pointers

I nitial
Filtering
constraints

Spreading
Activation
features

—

tar get target ____ |

Figure4.2: The caseretrieval architecturein ISAC.
The objective of the next stage is to select cases that match the target best on the remaining

parameters. The outcome is equivalent to k-Nearest Neighbour (k-NN) retrieval but is
implemented as a spreading activation process for reasons of speed. The pointers link all the
cases that have the same value for a given parameter. During retrieval, activation is
calculated through these links. The importance of the different parameters is weighted and
activation is proportional to this importance. A more detailed description of the functions
executed by ISAC and the corresponding classes can be found in the next section.

In ISAC the solution can come from one or more cases and is compound manipulable
(following the convention introduced in Hanney et al., 1995). At the moment there is no
adaptation because the solution required does not specify the details of the manoeuvre and
the case coverage should be sufficiently extensive that any structural transformation is not
required. There is still some complexity in the reuse process in the aggregation of solutions
when different cases with different solutions are retrieved. The policy adopted is explained
in the section devoted to Solutions in Chapter 5.

4.2 Structures and Functions Used in ISAC

ISAC reads the case structure with the function ReadCaseSt r uct , then the case-base
with the function ReadCaseBase and findly the targets with the function
ReadAl | Tar get s, where “target” is the conflict that has to be solved. The function
Bui | dWebOf Poi nt er s builds aweb of pointers from the data read, then the retrieval is
started by the function Fi ndCases. All of these functions are now examined in more
detail. The header files that contain all the classes and functions used in ISAC are in
Appendix C.

51

The Case-Base and the Target(s)

In the case-base file, the symbol “@"” marks the beginning of a case description and its
name. The symbol “@” marks the end of the case and its solution. All of the parameters are
identified by a couple:

(Parameter Name - Paraneter Value).

The case-base and the target are stored in memory using the class OneCase, which
contains a list of parameters, each one stored in the class OneFeat . The structure of these

classesis shown in Figure 4.3. All the classes are defined in the file header 1. h.

OneCase — OneCase — OneCase
Case Name Case Name Case Name
. . next . . next . . next
activation case activation case activation case
Solution Solution Solution
Feature List Feature List Feature List
OnefFeature
Feature Name

Numeric Vaue
Symbolic Valug

OnefFeature

next feature

Feature Name

v

Numeric Vaue
Symbolic Valug

OnefFeature
next feature Feature Name

Numeric Vaue
Symbolic Valug

next feature

Figure 4.3: The structure of the case-base in ISAC.
The functions defined in OneCase and OneFeat are used to get or store data and to

automatically scan the case-base to retrieve the desired information. In the class OneCase,

the field Acti vat i on, not depicted in the figure because it is used internaly, is used

52

during the retrieval. In the class OneFeat , only one of the fields Nuner i cVal ue and
Synbol i cVal ue is used depending on the type of the parameter. This is memory
consuming, but it is acceptable like other non-standard choices because the system is ill a
prototype.

All thelists can be of any length, and the field next of the last element of each list points to
NULL. The target uses the same class used for storing the cases (OneCase), the only
difference being that the field Sol ut i on is left empty or, for evaluation purposes, stores a
solution suggested by the controller that is compared to the one found by ISAC. The two
functions that read the data from a file and create this structure are ReadCaseBase and

ReadAl | Tar get s:

OneCase *Caseli st =ReadCaseBase(Fi | eWt hCaseBase, StructLi st);
OneCase *TargetLi st=ReadAl | Targets(Fil eWthTargets, StructList).

The function ReadCaseBase reads the file Fi | eW t hCaseBase, where dl the cases
are stored. The structure St r uct Li st is used to check that the names of the parameters
and their values are acceptable. The function returns a pointer, Caseli st , to the structure
shown in Figure 4.3.

The function ReadAl | Tar gets reads the file Fi | eWt hTar gets, where al the
targets are stored. The structure St r uct Li st isused again to check that the names of the
parameters and their values are acceptable. The function returns a structure similar to the
one returned for the CaseBase. The file CaseStructure is used to store al the
information concerning the parameters: the name of the parameter, whether it is a numeric
or symbolic value, whether it is a constraint or a normal parameter, its weight and, if itisa
symbolic parameter, the possible values. The weight field implies that a weight is assigned
to each parameter by an expert. In Chapter 7 a technique that automatically assigns the
weights to the parameters is described. When in evauation mode, the file
Fil eWthTargets is atificialy generated by an evaluation program and contains the
description of a conflict used to test the system. When in operation mode, the file
Fil eWthTargets is directly generated by HIPS and contains the description of the
conflict which is visualised on the radar screen. The files CaseSt r uct ur e, CaseBase

and Sol ut i ons for the fina version of the case-base used by ISAC arein Appendix D.

The Web of Pointers

The web of pointers is built during start up to speed up the retrieval process. For each

possible value of each symbolic parameter, a list that contains pointers to al the cases that

53

have that value for that parameter is created. It would be inefficient to build the same kind
of web for numeric parameters by dividing the numeric values into ranges.

The web is built using the function Bui | dWebOf Poi nt er s:

branch *Branches=Bui | dWebCOf Poi nt er s(Struct Li st, CaseLi st).
An empty branch is built for each symbolic parameter’s value as read from St r uct Li st .

The case-base is then searched to find al the cases that have that particular value and a
pointer to that case is stored in the branch. The function returns a pointer, Br anches, to
the structure shown in Figure 4.4.

ISAC automatically eliminates any possible ambiguity between identicaly named values of
different parameters by prepending on each value the name of the corresponding parameter.
For example, if both the parameters “faster” and “slower” have the same possible value
“easy”, these two values are represented as “faster-easy” and “slower-easy” in the web of
pointers.

The web speeds up the retrieval process because it takes less time to find all the cases that
have the same value for a certain parameter by starting from Br anches, rather than having

to scan the entire case-base.

The Retrieval Mechanism

Theretrieval of the best matching cases is executed by the function Fi ndCases:
voi d Fi ndCases(CaselLi st, Target Li st, Branches, StructList).
In Tar get Li st there could be either one or two targets depending on the case

representation. This function consists of a set of instructions that are executed for each
target present in Tar get Li st .

For each target, the case-base is filtered according to the constraints, using the function
BaseFi | t eri ng. The pruned case-base is returned with the pointer SubLi st . If there
ae no constrants, al the cases in the case-base are kept. The function
Spr eadi ngAct i vat i on caculates how similar each case isto the target. This returns a
pointer, Fi nal Li st, to the list of al the cases that are equally most similar to the target
under examination. This list is passed to the function Anal yse that extracts only one
solution for the target.

When these steps have been executed for all the targets, ChooseFi nal finds the best
solution for the conflict by examining the solutions for each target. This solution is either
displayed on a window or it is sent back to HIPS, which highlights the window

corresponding to the best manoeuvre.

branch branch

Feature Vaue Feature Vaue
List of Cases with same feature value / List of Cases with same feature value

next

next

SimCase
next — SimCase
Pointer to case next — > SimCase

next

Pointer to case

Pointer to case

)

Figure 4.4: The Br anches structure.

Case
Base

Retrieval Time Reduction with Constraints and with Spreading Activation

As it can be seen from Figure 4.5, the retrieval time when there are two constraints instead
of oneis smaller because less cases are passed to the function Spr eadi ngActi vati on.
Different tests with case-bases of different dimensions have been performed and the
corresponding retrieval time is shown in the figure. CPU time rather than the clock time has
been used in both time simulations because it is more reliable. The problem of losing some
useful cases with the introduction of the constraints will be treated in Chapter 5.

In Figure 4.6, the retrieval time reduction using spreading activation is compared to that
using flat search. Four different situations have been tested: flat search with symbolic and
numeric parameters (F.S. N+S), flat search with only symbolic parameters (F.S. S),
spreading activation with symbolic and numeric parameters (SA. N+S), spreading
activation with only symbolic parameters (SA. S). The figure shows that the spreading
activation mechanism is faster than the flat search mechanism. Spreading activation only
works for symbolic parameters and does not work for numeric parameters. This explains
why the retrieval time with numeric and symbolic values is greater than that with only
symbolic vaues, (seefigure).

The curves are not linear because in ISAC there are some functions that can only use flat
search, e.g., the function that resets al the activation values before a new simulation. These

functions will not be used in the real time system but are used here for evaluation purposes.

55

A list of “activated cases’ is not built because it would take too much time to check if an

activated caseis already inthe list.

6.E+06
]
4.E+06 +
[}
E —O—2 constraints
) —{— 1 constraint
& >
O
2.E+06 +
0.E+00 ¥ 1 1 1 1 1 1 1 1
o o o o o o o o o o
o o o o o o o o o o
N < © [ee] o N < © [e°] o
- - - - - N

number of cases

Figure 4.5: Retrieval time reduction when constraints are used.

3.E+06

2.E+06 1 —O0—F.S. N+S

—0—F.S.S
—S.A.N+S
——SAS

CPU time

1.E+06 +

number of cases

Figure 4.6: Retrieval time with spreading activation and with flat search.
Each simulation has been repeated severa times and the average of the CPU time has been
calculated. The “TwolnOne’ case representation was used (see Chapter 5), but it is

assumed that the results are extendible to any case representation.

4.3 The Acquisition of the Parameters in ISAC

In this section we describe the algorithms that are used for the extraction of parameters that
describe a conflict from the data structure used in HIPS. We report the final version of the

56

algorithms and the differences from the origina versions. The process of refining the
acquisition of the values from the data provided by HIPS has been run in parallel to al the
development steps. It was independent from the construction of the case-base, but,

obvioudy, essential for the performance of the system.

CaseName

The name of the case is usudly the callsign of the aircraft if the representation is
“OnelnOne’, (see Chapter 5). If the representation is “TwolnOne” the name is made up of
the two callsigns linked by an underscore. The time of acquisition is added to the end of the
case name to eliminate the possibility of duplicate case names. Otherwise, an aircraft being
involved in two different conflicts stored in the case-base would result in the same callsign

becoming the name of two different cases in the “OnelnOne” case representation.

HorConflConf

This parameter indicates the Horizontal Conflict Configuration and can have four different
values. head-on, converging, diverging and crossing. The angle between the two vectors
that represent the trgjectory of the aircraft before entering the no-go zone is calculated. The
angle is between the last waypoints before the no-go zone of the two trajectories and has as
vertex the centre of the no-go zone.

If the angle between the two aircraft is bigger than Bi ggest Angl e (defined in the header
file to be equal to 155°), the value of HorConflConf is head-on. If the angle between these
two vectors is smaller than Bi ggest Angl e, ISAC checks if there is more than one point
in common between the two trgjectories. If there is only the conflict point in common
between the two tragjectories, the value for HorConflConf is crossing because the angle is
already less than Bi ggest Angl e. If there are two or more points in common, and if the
common points are the last points of the flight plan, then the aircraft are converging,
otherwise they are diverging.

The way the angle is acquired could change the final value. Earlier versions considered the
angle between the two vectors whose extremes are the last waypoint on the flight plan
before entering the no-go zone and the point where the trgjectory crosses the border of the

no-go zone.

AltitudeNow

This parameter indicates the relative atitude of the two aircraft. Its value can be same if
between the two aircraft there is a difference in atitude smaller than 100 ft; it is different

57

otherwise. In an earlier version of the system, this parameter had the two values higher and
lower, instead of the single value different, depending on which aircraft was at least 100 ft
higher or lower than the other. Discussions with controllers showed that this distinction was

not necessary.

AltConfiguration

AltConfiguration indicates the atitude profile of an aircraft. The three possible values are:
stable, climbing and descending. The altitude of the aircraft is checked before entering the
no-go zone and after exiting it. If there is a change in altitude bigger than 50 ft then the
arcraft is elither climbing or descending.

In earlier versions of the system, the parameter “SomebodyClimbing”, extracted from
“AltConfiguration”, was used. It is not used any more because its information is redundant

and implicit in “AltConfiguration”.

Speed

This parameter depends on the relative speed between the two aircraft. If the first aircraft is
faster that the second one by more than SpeedDi f f , the “Speed” is faster. Vice versa for
dower. If the two speeds do not differ by more than SpeedDi f f, the value is same. All
the speeds are converted into Mach. The value of SpeedDi f f is0.1 Mach.

CloseToTOD

This is a number expressing the distance of the aircraft from the destination airport in
nautical miles. In earlier development steps, “CloseToTOD” was a symbolic parameter,
with values yes and no, depending on whether the aircraft was closer than 100 nautical miles
to the destination airport or not. The Top Of Descent (TOD) is usualy 90-100 nautical

miles from the destination and indicates the start of the descent to the airport.

CloseToBoundaries

This is a number that indicates the distance in minutes between the first point of the
trgjectory which is in the no-go zone and the entry or exit point in the sector, i.e., the points
of the trgjectory which are on the sector boundaries. The exit point has to be considered
because a controller cannot manoeuvre an aircraft too close to the sector boundaries
because he might need to co-ordinate with another sector, which would increase his

workload. The entry point has to be considered also for the same reason.

58

The distance from the entry and exit sector boundaries respectively are calculated and the
smaller time is kept. In earlier development steps, “CloseToBoundaries” was a symbolic
parameter with values yes and no, depending on whether the smallest of the two calculated

times was less than 4 minutes.

Manoeuvrability

This parameter used to depend on the percentage of accomplished trgjectory and on the
performance of the aircraft. The combination of the two gave the manoeuvrability of an
aircraft. For example, an aircraft with good performance with a lot of fuel is not very
manoeuvrable.

The percentage of accomplished trgjectory was calculated when the co-ordinates of the
actual position of the aircraft, the departure airport and the destination airport were known.

The performance was relative to the other aircraft involved in the conflict. An aircraft
belonged to one of the following four empirical classes of aircraft: fighter, high
performance, medium performance and low performance. An aircraft could have had better,
same or worse performance than the other.

The manoeuvrability was high if the percentage of accomplished trgjectory was bigger than
75% and the performance of that arcraft was better than the other. If either the
performance was smaller than 75% or the performance was worse, the manoeuvrability was
low, otherwise it was medium. If the percentage of accomplished trgectory could not be
calculated, there was a direct correspondence between the performance and the
manoeuvrability: better performance ® high manoeuvrability, same performance ®

medium manoeuvrability and worse performance ® low manoeuvrability.

The file with the look-up table for the type of aircraft and the correspondent performance
was empirically built by a controller and reflected his preference. An extract of the hard-
coded |ook-up table is shown below:

if((strcnmp(type, "D328")==0)]| | /1if the type of the aircraft is either “D328”
(strcnmp(type, "AT42")==0) | | /1l or “AT42" or “FK27”, then the
manoeuvrability
(strcnmp(type, "FK27")==0) | | /1l returned is “1", i.e. “low

return 1; // |low

To solve this ad hoc and temporary situation, the BADA database (Bos, 1997) was used. In
the fina version of ISAC, the manoeuvrability is a numeric value, average of the maximum
climb, cruise and descent Mach speeds of the aircraft. These are extracted from the BADA
performance file, available for each type of aircraft. The percentage of accomplished

trgjectory has not been included yet in the final computation of this parameter.

59

Priority

A flight can be of different types. commercia, business, military, transfer or training. A
commercia flight has the highest priority, a transfer and a military aircraft have the same
lowest priority. The priority is higher, lower or same depending on the type of flight of both

the aircraft in the conflict.

EasyToExitRight and EasyToExitLeft

These two parameters express how easy it is to exit the no-go zone by turning left or right.
An angle, with vertex in the trgectory point immediately before the no-go zone, is
calculated. This angle is the maximum of all the angles between the point on the trajectory
in the centre of the no-go zone and all the points on the border of the no-go zone. This
angle is caled acmic- At the same time, the angles generated by the no-go zones of the
other aircraft in the environment are calculated. The minimum of all these angles is called
Aenvironment- 1T @confiict 1S SMaAller than aenvironment, the value of the parameter is difficult. It is
veryEasy if either the aircraft is already turning that direction and the angle is less than 10°
or if the angle is less than 5°. It is easy if the angle is less than 10°, possible if the angle is

between 10° and 15° and difficult if the angle is bigger than 15°.

LevelsAvailable
This parameter indicates which levels are available for the aircraft. If the aircraft is stable,
the possible values are:
none, if in each of the two levels above and below there is at least one no-go zone
generated by another aircraft,
above, if one of the two levels above is completely free,
below, if one of the two levels below is completely free,
yes, if there are any free levels above and below.
The “two levels above’ refer to the level immediately above, even if it is reserved for the
other direction, and the level above this.
If the aircraft is climbing or descending the possible values are:
none, if none of the intermediate levels, the starting level and the final level are free,
yes, if thereis at least one level which is completely free,
spaces, if there are no levels completely free, but there are some spaces between the no-

go zones at some levels.

60

Faster and Slower

These two parameters indicate how easy it is to exit the no-go zone by increasing or
decreasing the speed. All the speeds are converted into Mach and the atitude of the aircraft
is supposed to be constant. All the border points of the no-go zone are taken into account
and the maximum difference between the actual speed and the speed that correspond to the
border points of the no-go zone in the speed display is calculated. If this difference is
smaller than 0.1 Mach then the value is easy, if it is less than 0.2 Mach, the vaue is

possible, otherwise it is difficult.

Agreements

This parameter indicates the agreements between the working sector and the next one. If
the aircraft has a short window in time for the border crossing and a fixed exit level, the
value is sequencing, otherwise it is notSequencing. This parameter is not yet used in ISAC

because no data from the flight plan supplies this information.

Rules for Determining the First Aircraft

Whenever a conflict between two aircraft appears, a set of four rules decides which aircraft
comes “first” and which “second” in the conflict description. This set is the result of an
empirical process and depends on some of the parameters that describe the conflict. In the
final version of ISAC the first aircraft is the one with the highest priority, i.e., the least likely
to be manoeuvred. The four rules used are:

if an aircraft isflying at a cruise level, it should not be moved from that level;

if an aircraft is far from its destination it is heavy because of its fuel load, so it is less

manoeuvrable;

the aircraft with the worst performance is aso the least manoeuvrable;

a commercia aircraft should always have the fastest and least expensive route, if in

conflict with amilitary, business, training or transfer aircraft.
These four rules are al considered at the same time and contribute with the same weight to

the final decision.

4.4 Implementation Language

Because of the complexity of the system, the steps typical of the CBR process are executed
by different functions that are integrated to minimise redundancy (i.e., loss of time and

money) and to maximise efficiency. This has been achieved with information hiding and

61

modularity. In Julia (Hinrichs, 1988), a similar structure is implemented with a layered
architecture. Inheritance is used to propagate some values to different objects of the same
group.
Previous expert systems, like AIRPAC, were written in LISP, but because this language is
too slow two solutions have been suggested:

optimising the L1SP code for speed or

implementing the algorithms in alanguage faster then LISP (Shively and Schwamb, 1994).
The second option was taken when implementing ISAC. The most suitable language is C++.
Firstly because C++, with its low level structure close to the hardware architecture, is the
versatile and efficient. Furthermore, it automatically supports information hiding and
inheritance. Finally, because C++ is an easily portable language and the same program can
be run on different platforms without any changes (it will be shown later that this was not
always true in our situation).
Using a portable language is important because the problem solver module is independent
from HIPS and should be executed by “any available machine’ (Meckiff and Gibbs, 1994),

communicating with its host with standard protocols.

Simplifications

Because of the complexity of the domain and because ISAC is still a prototype, a lot of
smplifications have been made. They will be highlighted in the relevant sections, mainly in
Chapter 5 where the CBR issues are treated.

Even if dl the data for the conflict description is available, procedures for the treatment of

“don’t care” and “don’t know” values have been developed.

4.5 Summary

The technical description of ISAC and of the system in which it is embedded is given in this
chapter. It is explained how it works, how it is interfaced and the main structures and functions
used. Itsinterna architecture, the functions and the classes that constitute the core of ISAC are
described in more detail. Some results are shown to prove that the spreading activation retrieval
mechanism gives the same results but is fagter than the flat search retrievad mechanism. Finaly,
the acquisition of the parameters has been discussed and the different possibilities of acquisition
are andysed. All the parameters used in the final version of the case-base have been listed. We
have explained why some old parameters are not used anymore and the knowledge engineering

problem of changing the parameter that describe acaseis highlighted.

62

Chapter 5
CBR Issues

In the previous chapter the technical characteristics of the system have been examined,
wheresas in this chapter some theoretical issues inherent to the CBR domain will be treated
in more detail. It is explained how the case representation with the possible solutions and
first of al the case structure have been influenced by the nature of the task. The problem of
reducing the size of a potentially huge case-base and the need of reusing cases justify the
introduction of three different case representations whose advantages and disadvantages are
explained. The issue of deciding whether to use gold standard cases or specific cases is
presented.

The possibility of deciding which are the most important parameters using either decision
trees or the information content of each parameter is analysed. A hierarchical CBR structure
is suggested for the solution of more complex air conflicts. Three possible architectures are
analysed and one of these will be actually implemented for the resolution of multiple aircraft
conflicts and evauated. Finally, case adaptation is treated and we explain why the smplest
type of case adaptation is effective enough for ISAC.

5.1 Case Representation

Most of the initial development effort in ISAC was focused on case representation which is
typicaly the first step and main issue in the construction of an intelligent assistant. The
evauation of the domain presented two problems. the macro problem of what should
constitute a case and the micro problem of how to characterise a case.

The construction of the system was characterised by the difficulty in determining the correct
parameters, where “correct” means capable of describing exactly what the controller
perceives on the radar screen. Moreover, the correct parameters having been identified, they
have to be correctly acquired from the data available in the environment. Determining the
correct conflict representation has involved extensive dialogues with ATC controllers and

then the manipulation of the data available from HIPS.

63

As shown in Figure 4.2, when HIPS detects a conflict, it passes its representation to ISAC.
All the data concerning the conflict that is available in HIPS is converted into parameters
useful for the case representation. The conversion process eliminates useless data and
transforms other data into more abstract and complex parameters. For example, the number
of passengers on an aircraft is discarded whereas data that is otherwise meaningless, such as
the co-ordinates of the no-go zones, becomes useful if related to the aircraft trajectory.

In a future scenario, more information will be made available provided by increasingly
precise and intelligent instruments. Moreover, datalink will improve the accuracy of the
manoeuvres available. Nowadays, the controller cannot ask to the pilot to accomplish avery
accurate manoeuvre. For example, if it is extrapolated from HIPS that the aircraft must turn
17° to the right to exit the horizontal no-go zone, the aircraft will have to turn at least 25°
to safely avoid any uncertainty. When a datalink connection between the control tower and
the aircraft becomes available, a “17°” manoeuvre will be possible and methodologies of
solving conflicts will change radically.

The process of determining the parameters was iterative and the selection of new
parameters was driven by the analysis of errors at each iteration. The different versions of
the case representation are shown in Chapter 6. The difficulty of determining a
comprehensive set of important parameters from dialogues with the controllers is
exacerbated by considerable differences in how individua controllers view and solve
conflicts. An example of these differences is demonstrated in the use of speed change as a
solution to a conflict. As it is known, HIPS provides a display showing how easy it is to
avoid the conflict by changing speed. Some controllers would never change the speed of an
arcraft which is climbing or descending even if HIPS indicates that it would be a very good
solution for both the controller (easy to implement) and the aircraft (time and fuel gain). On
the other hand, other controllers are not put off by the fact that an aircraft is climbing or
descending and they trust HIPS by giving a speed solution even if it did not occur to them
at first.

Another example that shows how differently a conflict can be represented in the controller’s
head is the concept of one aircraft “passing in front” of the other when there is a “crossing”
conflict. For some controllers it is an important issue, whereas for others it has no
importance at all.

A lot of effort has gone into trying to show to al the controllers the same environment tools
and the same set of conflicts in order to reduce any discrepancy in the resolution. In the end

there is a compromise between what is considered an important criterion and what can be

64

extracted from the geometric information from HIPS. For the different ways of acquiring
the case-base, see Chapter 6 and for the description of how the case-base has been acquired

in practice, see Appendix A.

5.1.1 Case Space Coverage

The case space is the set of all the possible cases that could constitute the case-base and its
dimension depends on the parameters used to describe a case and their possible values. To
have a rough idea of how many unique cases there are in the case space it would be enough
to multiply together the number of possible values of each parameter. Thisis only possible if
all the parameters are symbolic. Further, some cases produced in this way may not occur in
practice.

To study case space coverage means to understand whether a case-base has enough cases
and whether they are representative enough to obtain an accurate solution. To have an
effective system, the case-base should be well covered, which does not mean that the case
gpace should include all possible cases, but at least those cases which are “pivotals’ where
“a case is pivotal if its deletion from the case-base directly reduces the competence of a
system” (Smyth and Keane, 1995).

Two parameters that could help in the visualisation of the case space in order to indicate
whether it is well covered or not are AVE and SMA. AVE indicates the AVErage distance
in term of similarity of a case from all the other cases. SMA is the average of the SMAIlest
distance of a case from al the others.

O case

Case space Case space
homogeneously covered
covered ontheborders

Figure5.1: Different types of case space coverage.

With these two parameters it is possible to calculate which zones of the case space are not
well covered by finding the cases that are furthest in terms of similarity from any other and

to add these cases with the right solution to the case-base. The problem that arise, while

65

using the two parameters AVE and SMA, is that they only indicate whether a case space is
homogeneously covered and this does not necessarily indicate that the case-base contains al
the pivotal cases. Usualy the case space must be well covered first of al on the border of

the zones where the cases change solutions, as shown in Figure 5.1.

5.1.2 Gold Standard Cases versus Specific Cases

In the 1996 European Workshop on Case-Based Reasoning, two different points of view on
how a case-base should be covered were suggested: Michael Manago suggested that a case-
base should contain few clean cases; on the other hand, David Waltz suggested that in a
case-base there should be a lot of noisy cases. During the development of 1SAC both the
alternatives have been tried.

The first approach to the construction of the case-base implied the use of prototypical cases,
i.e. very general cases, with their ideal solutions decided by ateam of controllers. This case-
base should have been able to give solution to conflicts appearing in any sector and these
cases were called gold standard cases.

Further steps in the knowledge engineering process showed that this hypothesis was too
optimistic and that alot of conflicts with the same description had differing solutions due to
their location in different sectors. This is because there are some parameters that are sector
dependent and hence cannot be stored in the case-base.

For this reason the choice of gold standard cases valid for any sector was abandoned in
favour of a more realistic case-base which focused on a particular sector. This required that
cases be recorded from a sector and solutions be generated by controllers that usually work
on that sector. By doing this, the effects of the “forgotten” parameters that depend on the
sector are minimised.

The concept of the gold standard cases can be reintroduced if the system is used for training
or teaching purposes. In this situation the case-base can consist of gold standard cases
whose ideal solutions are those taught to controllers.

The problem of different controllers having different solutions to exactly the same conflict in
the sector is still relevant as it can be seen in Figure 8.3(a), where the solutions given by
different controllers to the same conflicts are confronted. Assuming that al the controllers
that have been trained in the same sector will give coherent solutions is a big issue and will

be treated in more detail in the next chapters.

66

5.1.3 Solution Representation

The solution granularity required of the system is the choice of the aircraft and the type of
manoeuvre. In a two-aircraft conflict either the first or second aircraft or both of them can
be manoeuvred. The aircraft can be manoeuvred in atitude, in speed or horizontaly. In the
first steps of the knowledge engineering process, nine possible solutions have been
identified. These have been labelled “atl”, “dt2”, “at3”, “spel”, “spe2”, “spe3”, “horl”,
“hor2” and “hor3”. Where alt, spe and hor stand for atitude, speed and horizontal
manoeuvre respectively which can be applied to either the first (1), second (2) or both
aircraft (3).

In the last step of the knowledge engineering process, the atitude manoeuvre alt was
substituted by the more specific climb solution, upp, and descent solution, dow. With this
introduction the possible twelve solutions are: “uppl”, “dowl”, “upp2’, “dow2”, “upp3’,
“dow3d”, “spel”, “spe2”, “spe3”, “horl”, “hor2” and “hor3”. These solutions are used in al
the case representations and they can be combined together when the solution to a conflict
is complex. For example, a speed manoeuvre combined with a gentle horizontal manoeuvre
might solve the conflict better than a sharp horizontal manoeuvre aone.

A horizontal manoeuvre implies turning right/left, a direct route to destination or a parallel
heading with the other aircraft. The horizontal manoeuvre does not specify whether the
aircraft has to turn right or left or the number of degrees. A manoeuvre with the “3” suffix
means that the manoeuvre can be applied either to both aircraft at the same time or to each
individually because the aircraft have exactly the same priority.

The manoeuvre suggested by ISAC should be the “best” manoeuvre for both controllers
and pilots, but because the case-base contains solutions given by controllers, it is more
likely that the controllers will be more satisfied than the pilots.

Usually when the controller’s workload is too high, the solution tends not to be very
convenient for the pilot because the controller has no time to decide on the most
economical solution for the aircraft. On the other hand, when the workload is low the
controller has time to come up with a better solution that may need more monitoring but is
less time and fuel expensive for the aircraft. The safest manoeuvre is an atitude manoeuvre
and that is why ISAC specifies more precisely the altitude manoeuvre. Figure 8.3(a) shows
that thisis the manoeuvre most used by the controllers.

The policy for deciding the final solution when the retrieval process gives several cases with
different solutions is still not completely defined. With the “ TwolnOne” case representation

there could be a number of cases which are similar to the target. In this situation the most

67

commonly occurring among the retrieved solutions becomes the final solution. With the
“OnelnOne” case representation there is one target for each aircraft and for each target
there is a list of the most similar cases. For both targets the most common solution is
extracted, then the two solutions are examined and a single coherent solution is extracted.

The solution for a multiple aircraft conflict is not the same as for atwo aircraft conflict. The
format is: manoeuvre + name of the aircraft. The four possible manoeuvres are the same as
for a two aircraft conflict and a solution can be composed of more than one manoeuvre

applied to different aircraft.

5.1.4 Meaning of NIL Values

The NIL value of a parameter has two different meanings depending on the environment. If
a NIL value appears in the case-base it means that the value of the parameter is “don’t
care”. On the other hand, if a NIL value appears in a target it means that the parameter is
“not known”. In the particular situation of 1SAC, the case-base should not contain any
unknown values because all the necessary parameters are available from the simulation

instruments.

How NIL Values are Treated During Retrieval

Quinlan (1993) suggests some possihilities for the treatment of unknown values depending
on the context: the use of the most probable value; the extrapolation of the value depending
on the context or the use of probabilities.

Originally, when either a numeric or symbolic parameter with NIL value was encountered
during the Spreading Activation process, its activation was incremented by 1, as if the
conflict parameter’s value was the same as the target’s. This is because the case could
possibly be a good solution for the target depending on the other parameters. On the other
hand, if the NIL value was in the target its activation would have not been increased to
avoid the risk of having too many retrieved cases at the end of the retrieval process.

When a different method of case acquisition was used, the policy for dealing with the NIL
values had to be changed. The new case acquisition consisted in building by hand a set of
representative cases instead of acquiring the cases directly from the traffic samples, this
operation being too time consuming. In this new case-base a lot of parameters had NIL
values and the above policy was not sufficiently discriminating. In the new policy the
activation of a NIL parameter is kept at zero and the final activation of each case is
weighted with the number of non NIL parameters in the case. With this policy the maximum
final activation of a case will be 1 when al the non NIL values of the case are the same as

68

the target. Again, this policy is valid for both symbolic and numeric values. A smplified
version of this policy is to simply ignore the NIL value without counting the number of
parameters that have a non-NIL value. This is the policy adopted in the final version of
ISAC.

5.2 CBR versus Decision Trees

In a decision tree the parameters are ordered from the root of the tree, the most
discriminatory level, to the leaves, the least discriminatory level. The tree is built from a set
of cases whose solution is known. This is called supervised learning because the solutions
are given beforehand. Naturally, cases with the same parameter values that have different
solutions cause a problem of incoherence. The four steps to building a decision tree for a
given case-base are (Quinlan, 1986):

extraction of a subset of cases;

construction of the decision tree for the extracted subset;

classification of the cases that were left out of the subset with the decision tree;

addition of the cases that were not classified correctly to the subset and reconstruction

of the decision tree.
These steps have been implemented in C4.5 (Quinlan, 1993) and produce one of the
possible decision trees with the certainty that it works and is the simplest. ISAC has been
tested in comparison with C4.5 because decision trees could be useful in deciding which
parameters are non-redundant. The test, described in Appendix B, has been carried out with
one of the first versions of ISAC but the results can be generalised for al the versions of
| SAC because no big structural changes have been introduced afterwards.
Table 5.1 shows the results of the experiments done with the “LeaveOnelN” (the target is
left in the case-base) and “LeaveOneOUT” (the target is taken out of the case-base) with
C4.5 and ISAC. It can be seen that ISAC performs dlightly better than C4.5. No tests have
been made with the new version of Quinlan’s program C5.0 (Quinlan, 1997) even if its
performance might have been better than C4.5 because this new version includes support

for boosting.

Table 5.1: Decision trees versus case-based reasoning.

LeaveOnelN L eaveOneOUT

C4.5 82% 71%
ISAC 97% 73%

69

5.2.1 P-tasks and S-tasks

Comparing the performance of different learning algorithms is quite a common exercise. On
the other hand, an uncommon approach is to explain the performance of a system not with
the type of algorithm used but with the type of the task and the knowledge base used.

In (Quinlan, 1994), two types of tasks are identified: parallel and sequential tasks (P-tasks
and S-tasks). In a P-task, the output depends on the value of all the input parameters and
these values are examined smultaneoudly. In an Stask, the parameters are examined
sequentially and not necessarily al the values have to be given to reach the solutions.

Some learning algorithms have a strictly paralel approach to the task, while some others
have atypically sequential approach. For example, a P-task will be solved easily by a neural
network because al the inputs are processed at the same time whereas an S-task will be
more easily solved by a decision tree. CBR can easily solve both S-tasks and P-tasks, even if
it is closer to a parald agorithm.

From the fact that ISAC performs better than C4.5, it can be argued that the task of conflict
resolution is essentially a P-task. This view is supported by conversations with air traffic
controllers in which the “global” view of the conflict is considered essentia for its good

solution.

5.2.2 Discriminatory Power

ISAC gives the possibility of calculating the discriminatory power of the parameters that are
used in the case description. This function, independent from the k-NN retrieval mechanism,
can be used off-line to enhance the knowledge engineering process because it helps in better
understanding the parameters.

The mechanism of selecting discriminatory parameters is best explained in terms of building
a decision tree that has leaf nodes corresponding to the different diagnoses D. The set of
cases C is then located, or classified, on these nodes. It is important that the tree isin some
sense minimal so the choice of which parameter to test at any level of the treeis critical. In
ID3 this is done by selecting parameters based on their information content or
discriminatory power (Quinlan, 1986). The process used in ISAC is smilar to that in ID3
except that the semantics of the branching in the decision tree is dlightly different because of
the possibility of unknowns in the case parameters. A brief explanation of how the
discrimination worksis as follows:

D={Dy,...,Dg4} isthe set of possible classes or diagnoses,

C={C,,...,C} isthe set of casesto classify;

70

F={F,,...,F} isthe set of expensive parameters, one of which is selected at each decision
point.
The set of cases can be seen as an information source producing one of d messages from the
set D. Let |Dj| represent the number of cases with diagnosis D;. Then the expected
information needed to generate the appropriate message is.

® |p, D] 6 o«& || ® |p| ©

| t=-a _ s — 900, —— .
DI Y Yo R T Y M PR o

Consider the complete set of matching cases (see Figure 5.2). Assume that the parameter
FI F is tested and that this parameter has possible values V={V",....V}. Then V partitions

C into n groups of cases, G',...G"; where G contains those cases that have value V' for

parameter F.

1 n

G G

Figure 5.2: The root classification of the casesin C.
Let G contain |Dij| cases with diagnosis D;, that is |Di| instances of class D;. The probability
of acase belonging to Gis (i.e. probability of a case having thei™ value for attribute F):
ID'y|+..+{D'4]
ID,|+..+|D,|
So after testing F the remaining information associated with the subsets, G,...G is

Remainder(F):é” a¢Di1|+...+|Did|?x|ae |Di1| |Did| 9
i:lé |D1|+...+|Dd| B g|Di1|+---+|Did|’“.’|Di1|+“.+|Did|5

The weight of the i" subset is the proportion of cases in C that belong to G. The

information gained from using F, or the discriminatory power of F, is:

| bl o .
T - Remainder(F)
+.4D,| """ |D,|+.. 4D |5

(=S}
DP(F) = |§|D |

Thus the parameter that |eaves the smallest remainder is the most discriminating. So, at each
stage in the reduction of the set of cases, the most discriminating parameter is selected using
this criterion. The user is requested to determine the value of this parameter for the target

case. The cases in the candidate set that cannot match on this parameter are removed from

71

the retrieved set. This process is repeated until the set reduces to one diagnosis or the target
case proves to be dissimilar to all the retrieved cases. This technique has proved remarkably
successful for retrieving good matches while requiring a minimum number of expensive
parameter vaues (Cunningham, Smyth and Bonzano, 1998). The discriminatory power
depends on how specialised the solution of the cases are. The basic information formula
given in (Quinlan, 1986) to calculate the discriminating power of the parameters involved in

the case description is:

q &q 0
199:8 b+ g

where p and q are the probability that a case gives solution P and Q. Moreover: p+q=1.

p ®ep o
p+q>4°gzgp+qfa p+q

1(p,q) =- (5.1)

From the above formula it can be seen that if p=0 then 1 (p,q) =0 because all the cases
ill h Iution Q. If p= 1 then | =-lo aellg—1
will have solution Q. If p=q=7 (p.q) =-log,&-2=1.

The Formula (5.1) dedls only with cases with only 2 possible solutions but it can be
extended to any number of possible solutions (Levine, 1971 and Nosal, 1977). For example,
with three possible solutions, the information formula becomes:

P yoo® P 6 9 &9 08 r &1 0
D+a+r REphqers prqer REprqtrs pra+r R&p+q+ro

I(p!q!r):'
The information properties are still valid: if p=0 then 1(p,q,r) =1(q,r)returning to

1
Equation (5.1) again. If p=0 and n=0 then I(p,q,r)=0. If p:q:r::o) then

I(p,q,r) =- Iogzgg which would equal 1 if log, is used instead of log,. In generd, if

there are n possible values, log,, should be used to keep the value of maximum information

awaysat 1.

If the list of the most discriminatory parameters generated by C4.5 is confronted with the
list obtained with ISAC's algorithm some discrepancies are evident. The root of the
decision tree generated by C4.5 is the most discriminatory parameter which is different from
the most discriminating parameters in the list generated by ISAC, as seen in Appendix B.
This is because, as aready stated, ISAC and C4.5 calculate the discriminatory power with
two dightly different algorithms. The algorithm in C4.5 is more specific whereas the one
used in ISAC is more general. C4.5 caculates the information carried by each parameter
then it weights this value depending on the possible values that the parameter can have.

ISAC's algorithm strictly calculates the information. Having the plate number of a car as a

72

parameter, for example, is very discriminatory because when the plate number is known the
car is uniquely identified. On the other hand, the information carried by the plate number of
acar is very little because there are so many different plate numbers. In this situation, C4.5
would consider the plate number very discriminatory, whereas ISAC would not.

Some more considerations on the weights of the parameters and the possibility of changing
the weights to improve the performance of the system are in Chapter 7 where introspective

learning of parameters weight is analysed.

5.3 Case Structure

The motivation behind the development of ISAC is to reduce the decision making burden
on controllers in order to support operation in situations of increased traffic. This future
scenario aso implies more complex conflicts involving more than two aircraft. A key design
criterion has been to develop a case representation that is extendible from two aircraft
conflicts to conflicts involving three or more aircraft. This militates against having a single
conflict as the basic unit of retrieval. For reasons of economy in case coverage, the solutions
for two-aircraft conflicts should be reusable in multiple aircraft conflicts. To do so, a
conflict should be decomposable so that the basic unit of retrieval is an individua aircraft in
aconflict.

This problem of representing situations involving two conflicting entities has already been
faced in the CBR literature, for example in two classical systems, Mediator (Simpson, 1985)
and Persuader (Sycara, 1987), and more recently in Truth-Teller (Ashley, 1995). In these
systems, perhaps because they describe interaction between humans, there is a vocabulary to
characterise the “type” of conflict and thisis critical in determining the solution. In the ATC
domain the situation is different because the solutions depend on the arrangement of the
aircraft and the context of the individual aircraft as described by their flight plans. The
conflict between two aircraft can be described roughly with one or two globa parameters
but the final solution depends on a lot of dependent variables related to a single aircraft. For
this reason the approach adopted in ISAC is somewhat different to the above systems, with
an emphasis placed on the parameters that describe the aircraft on its own.

While our ultimate objective in developing ISAC is to have a single aircraft as the unit of
case retrieval we have considered three case organisations in detail. Two different case

representations were adopted and tested.

73

The first option was to create one case for each conflict, with the description of both the
aircraft in the same case. This option will be referred as “TwolnOne”, because two
aircraft are in one case.

The second option, referred to as “OnelnOne’, was to create two separated cases for
each conflict, each one with the description of one aircraft.

Tables 5.2 and 5.3 show the two possible case descriptions.

Table 5.2: A conflict expressed in the* OnelnOne” case representation.

Casenane Case690(A Casenane Case690(B)

Hor Conf | Conf crossing Hor Conf | Conf crossing

Al titudeNow same Al titudeNow same

Al 't Configuration stabl e Al 't Configuration stabl e

Speed faster Speed sl ower

Cl 0seToTCD 155 Cl 0oseToTCD 352

Cl oseToBoundari es 4.8 Cl oseToBoundari es 8.3

Manoeuvrability .78 Manoeuvrability .78

Priority same Priority same

EasyToExi t Hori zontal | y easy EasyToExi t Hori zontal | y possi bl e

Level sAvai l abl e yes Level sAvai | abl e yes

Fast er difficult Fast er difficult

Sl ower difficult Sl ower difficult

Sol ution dowl Sol ution dow2
Table 5.3: A conflict expressed in the “ TwolnOne” case representation.

Casenane Case690

Hor Conf | Conf crossing

Priority sanme

Al titudeNow same

Speed faster

Al t Configuration(A) st abl e

Cl 0seToTOD(A) 155

Cl oseToBoundari es(A) 4.8

Manoeuvr abi li ty(A) .78

EasyToExi t Hori zontal | y(A) easy

Level sAvai |l abl e(A) yes

Faster (A) difficult

Sl ower (A) difficult

Al t Confi guration(B) st abl e

Cl 0seToTOD(B) 352

Cl oseToBoundari es(B) 8.3

Manoeuvr abi i ty(B) .78

EasyToExi t Hori zontal | y(B) possible

Level sAvai | abl e(B) yes

Fast er (B) difficult

Sl ower (B) difficult

Sol ution dowl

5.3.1 The Canonical Form for Two-Aircraft Conflicts

Storing the description of the two conflicting aircraft in the same case is the most obvious
choice because it reflects the controller’s way of examining a conflict, but it presents two
problems: first, this case representation is not easily extendible to multiple aircraft conflicts,
second, it has to be decided which aircraft comes first in the conflict description. This
problem can be explained with an example.

Let us suppose that a conflict between two aircraft A and B is stored in the case-base in the

form A-B. If the same conflict has to be solved again, HIPS will send again the description

74

of A and B to ISAC. ISAC could build either target A-B or, inverting the order, target B-A.
If the latter happens, the probability of finding the correct case A-B in the case-base is very
low.

An obvious but time and space consuming solution to this problem would be to build the
two cases A-B and B-A for each conflict involving A and B. The case-base will be twice the
normal size and the retrieval time will double.

Alternatively, the two targets X-Y and Y-X could be built for each conflict between X and
Y and the retrieval process has to be repeated once for each target. This means a doubled
retrieval time but no increase in the case-base dimension. The advantage of both these
solutions is that there is no loss of knowledge. The first option is referred in the experiments
as “TwolnOne.nonCanonica”.

An alternative solution is to produce a set of rules to decide which is the first and which is
the second aircraft in the case description. These rules have to be used during the
construction of the case-base and every time a new target problem is presented. A case
filtered by these rules is said to be expressed in the “canonical form”. The advantage of this
process is that neither the retrieval time nor the case-base dimension is increased. The
disadvantage is a possible loss of information as can be seen from the results of the
experiments. This option is referred to as “ TwolnOne.canonica”. The rules for the decision
of the canonical form are described in Section 4.3.

The two “TwolnOne” case descriptions are derived from the “OnelnOne” case description.
The only new parameter in the “TwolnOne” description was, at the beginning, “Similar”. If
the four rules indicated that both aircraft could come first in the conflict description the
value of the parameter “Similar” was “yes’. The utility of this parameter, redundant because
extracted from other parameters, was not proved. In fact, it has been shown that the use of
this parameter led to a decrease in performance (Bonzano, Cunningham and Meckiff, 1996).
In the “OnelnOne” conflict representation the information about the other aircraft involved
is implicit in the environment description in the form of no-go zones. This suggests a
Hierarchica CBR structure (Smyth and Cunningham, 1992) where problems are
represented by multiple cases. This has the big advantage that the number of aircraft that
can be involved in a conflict is not limited to two. Moreover, the problem of deciding which
aircraft is first is avoided. However it is more difficult to come up with a set of parameters

that can capture al the details.

75

5.4 Hierarchical CBR for Multiple Aircraft Conflicts

In (Shively, 1984), three types of conflict sets have been identified as being the most
common:

one versus one: the two conflicting aircraft are isolated from other conflicts;

one versus two: two separated conflicts sharing a common aircraft;

three-at-once: three conflicts among three aircraft.
The structure of ISAC presented up to now is able to solve conflicts belonging to the first
category: two aircraft conflicts (TACs). The problem of multiple aircraft conflicts (MACs)
istreated in this section.
Usually, in a TAC the aircraft that is moved is the one that will have the smallest delay. In a
MAC the situation is more complex. If a MAC is decomposed into TACs, there is the risk
of solving the wrong pair first. An overall view is necessary to decide which aircraft has to
be manoeuvred even if some old expert systems produced acceptable results with myopic

strategies explained later.

ALY

N
\>\

Figure 5.3: Types of Multiple Aircraft Conflicts.

v

v

A MAC involving n aircraft can be of two types. simple MAC and complex MAC. In a
simple MAC al the n-1 conflicts are generated by the same aircraft. On the other hand, in a
complex MAC the conflicts are generated by different aircraft and there are at least n

conflicts.

The Point of View of the Controllers

The different approaches to conflict resolution typical of each controller become even more
evident when the conflict is a MAC. Some controllers consider only the complex MAC to
bea“rea” MAC. A simple MAC is only seen as a succession of TACs which are more or
less interdependent.

When a complex MAC is decomposed into TACs, the TAC closest in time is selected.
When a simple MAC is decomposed the aircraft that is in conflict with al the others is

selected and the smplest or most desirable manoeuvre for this aircraft is chosen.

76

Other controllers, when solving a MAC, examine the flight plans of all the aircraft involved,
then try to draw up a list of priority parameters such as. the aircraft with the longest
distance to cover, the sector exit co-ordination, the impact that a level change or a course
change to an aircraft would make to the other aircraft. If no particular priorities are found,

then the conflict that is closest in timeis solved.

: ETDF

47 EGCC
47

DALY EJFK
300 0TRE 51

UFTOR
UPTOH

Figure5.4: A simple MAC.
Independent of the method of solving the conflict, the aim of the solution is obvioudly the

same as for TACs. the controller has to try to minimise the penalty that the solving
manoeuvre will cause to the flights concerned. An evaluation of the current workload is also
a determining factor for the fina decison. A complex vectoring (i.e. a sequence of
horizontal manoeuvres) situation may be the best solution, but a smple level change would
involve far less work and concentration. Sometimes, conflicts that are distant are not solved

because the situation may evolve in such a way that the conflict disappears due to atered

77

aircraft performance, request for areclearance from a pilot or another conflict involving one
of the original aircraft etc.

An example of a simple MAC is shown in Figure 5.4. The aircraft BAW5147 enters the
sector at flight level 390 then it descends to level 350. While descending it gets into conflict
with aircraft DLH438 coming from the opposite direction at level 370. While at level 350,
BAWS5147 conflicts with aircraft DAL 77 that was already stable at level 350. The solutions
to this conflict could be a composite manoeuvre consisting of an early descent for
BAWS5147 and aturn to the right for DAL77.

Hierarchical CBR

The straightforward approach to the solution of MACs would be the creation of a new
case-base containing complex aircraft conflicts. This approach cannot be easily implemented
because a MAC can involve 3, 4 or more aircraft and it is not possible to build a coherent
structure for each possibility. Moreover, since awell covered case-base for TACs is aready
very big, the case-base for MACs would be larger still, making it impossible to build it in
redlity.

An dternative to the straightforward approach is a hierarchical structure. Three hierarchical
structures for the solution of the MAC are suggested: Independent CBR, Look ahead CBR
and Hierarchical CBR structure.

A-B-C

— |

A B

ISAC
with

Solutionto TAC

ISAC
with

low-level low-level low-level
case-base case-base case-base
OnelnOne OnelnOne OnelnOne

Solutionto TAC

T~ l

High-level
analysis

Solution to MAC

78

.

C

ISAC
with

Solutionto TAC

/

Figure5.5: Independent CBR.

5.4.1 Independent CBR Structure

Let us suppose that the 3 aircraft A, B and C are involved in the MAC A-B-C where the
two TACs are A-B and A-C. The considerations valid for this simple MAC are valid even
for a complex MAC. As said in Section 5.3, with the “OnelnOne” case representation an
independent case is created for each smple aircraft involved in the conflict. No track is kept
of the two TACs A-B and A-C because the conflicts are represented with no-go zones for
each aircraft. This means that the MAC is not decomposed into TACs. ISAC solves the
conflict for each of the aircraft involved in the MAC. The solutions found for each aircraft
are then confronted and a common solution for the MAC is extracted. This structure is
shown in Figure 5.5 and the name “Independent CBR” comes from the fact that the aircraft

are described in independent cases.

5.4.2 Look Ahead CBR Structure

A-B-C

Solutionto TAC Solutionto TAC

N —

Solutionto MAC

Figure 5.6: Look Ahead CBR.
With this structure, the MAC A-B-C is decomposed into the two TACs A-B and A-C

which are solved separately by the system either with the “TwolnOne” case representation
(canonical or non-canonical) or with the “OnelnOne” case representation. Some heuristic
rules are necessary to combine the solutions to the TACs into a coherent solution for the
MAC. It should be noted that in this structure the “OnelnOne” case representation is used

to solve the TACs separately, whereas in the Independent CBR structure the same case

79

representation is immediately used to solve the MAC conflict. Figure 5.6 shows how the
Look Ahead CBR structure works.

5.4.3 Hierarchical CBR Structure

This structure is the most abstract and the one that brings the biggest changes to the original
structure of ISAC. The MAC A-B-C is examined at a high level to see if it is possible to
immediately find a solution. A new high level case-base must be introduced for this first
step. If no immediate solution is found, the high level case-base introduces some constraints
or new parameters that are then used in the next step where the low level case-bases for the
TACs are used. Again, the solutions found for the TACs have to be filtered to give a
coherent general solution.

A-B-C

ISAC
with

high-level
case-base

Immediate Solution

ISAC ISAC
with with
low-level low-level
case-base case-base
Solutionto TAC Solutionto TAC

High-level
anaysis

Solutionto MAC

Figure 5.7: Hierarchical CBR.
One of the disadvantages of using a hierarchical approach is that a high level case-base

becomes necessary and this case-base has to be built from scratch. Some of the parameters
that might be used in the high level case-base are:
geometrical description of the conflict (vertical view). Possible values for this parameter
could be: al same level, one climbing and others stable, one descending and others

climbing etc.

80

geometrical description of the conflict (horizontal view). Possible parameters. two
crossing, two catching up and one crossing etc.

Is there an aircraft common to all the conflicts? (i.e., is it a simple MAC or a complex
MAC?).

If yes, some data about the aircraft which isin conflict with all the others.

The output that the case-base will give, as seen in Figure 5.7, is ether the solution to the

MAC or some extra constraints that can be used by the low level case-bases.

High-level analysis

In Figures 5.5, 5.6 and 5.7 the last step before the final solution has been named “high level
analysis’. This analysis is necessary to extract a coherent globa solution from the solutions
to the smple TACs. An example of a*“cheap” analysisis to choose the solution of the TAC
that has been retrieved with the highest activation as the solution for the MAC. In this
situation the drawback is that the general view of the conflict is not taken into account.
Another example of analysis is that used in AIRPAC which chooses the first conflict in
order of time and applies that solution. AIRPAC first looks for a rule able to solve all the
conflicts in a co-ordinated way. If it does not find anything, it decomposes the conflict and
the sub-conflicts are solved (Shively, 1984). Even if the searching algorithm is faster
because only one solution for the first TAC is necessary, this analysis proves too myopic:
solving the first conflict in time is not necessarily the best globa solution. In the latter
option the high-level analysis comes before an effective search because the first conflict
must be chosen. A similar structure occurs in the Hierarchica CBR structure where the
high-level case-base could be replaced by a set of rules that perform the same analysis.
Having al the solutions to the conflicts available, on the other hand, even if more time
consuming, gives a broader view of the conflict and thus the high-level analysis can be more
general. In Section 7.6 the structure adopted for the final version of ISAC is described with
the corresponding high-level rules.

5.5 Adaptation

The three possible types of adaptation have already been mentioned in Chapter 3.
Depending on the case representation adopted, different strategies are possible. As
suggested in (Barletta, 1994) and as implemented in most commercial tools, the adaptation

influence has been kept to the minimum. Adaptation is considered too expensive relative to

81

retrieval because it is not genera and not easily maintained. Moreover, the types of
adaptation that have been found to work in the real world are the smplest and that, in fact,
iswhat has been done for ISAC.

For these reasons, no adaptation is used for the “TwolnOne” case representation and the
solution of the retrieved case closest to the target is directly applied. Substitution
Adaptation is used for the “OnelnOne’ case representation because this representation
implies that each conflict is represented with two or more cases and a solution must be
retrieved for each one. This structure requires a policy for the extraction of the fina
solution from the two sets of matching cases, because the two solutions could lead to an
incongruous situation.

In fact, this is a very delicate issue. Let us suppose that in the case-base there are two
conflicts A-B and C-D which are represented with four cases A, B, C, D. If X-Y isanew
conflict very similar to the conflict A-B, ISAC will build two cases X and Y and will start
the retrieval process. The retrieved cases will not necessarily be A and B, because the
retrieval results depend on the individual aircraft matching. It could happen that X on its
own is more similar to D and the retrieved conflict will be D-B instead of A-B. Thisis one
of the reasons why the case-base with the “OnelnOne” case description performs less well
than the case-base with the “ TwolnOne’ case description. Our current policy isto select the

highest scoring case but more experimentation is required to clarify thisissue.

5.6 Summary

In this chapter al the choices inherent to the CBR aspect of ISAC have been analysed and
justified. It is explained why three different case representation have been chosen for
evaluation and why the possible solutions for a case have increased from 9 to 12. The use of
the information carried by the parameters, shown by decision tree or the discriminatory
power, proved to be useful for the refinement of the parameters necessary in the case
description.

While adaptation issues have not been deeply treated because the adaptation process is
amost absent in ISAC, issues concerning a hierarchical structure that could deal with
multiple aircraft conflicts have been analysed in detail after having defined the problem with

the classification of multiple aircraft conflicts into two categories. simple and complex.

82

Chapter 6

The Knowledge Engineering Problem

Having access to relevant case history in problem solving reduces the need for problem
analysis because solution chunks from old problems can be reused and less in-depth analysis
of the new problem is required. This suggests that developing CBR systems may require
less knowledge engineering than, say, rule-based or model-based approaches. It is generally
accepted among CBR researchers that this is only true to a limited extent. A CBR system
that is not built on the type of domain analysis that knowledge engineering involves will
probably not work very effectively (Cunningham, 1998).
The development of a knowledge-based system (KBS) involves: identifying a real world
problem solving task that is to be tackled, representing the key components of this task in
the KBS, and implementing the inference process that produces solutions. Thus there are
two key components involved in the knowledge engineering process. There is the task of
producing a representation of the problem that captures the key parameters and the task of
developing an inference mechanism that describes the causa interactions involved in
deriving solutions, as shown in Figure 6.1.
The inference mechanism is implemented using a case-base of solved problems and a
mechanism for retrieving and adapting these cases. Many implemented CBR systems
involve little or no adaptation and the reasoning mechanism is smply aretrieva system with
solutions being used intact or with adaptation performed by the user.
The knowledge is encoded in the system in:

the knowledge representation used,

the similarity metric utilised in identifying cases to be reused,

the mechanism for adapting solutions, if any.
This agrees with the knowledge containers model presented in (Richter, 1995). The
development of the smilarity metric and the adaptation mechanism is probably smpler than
alternative techniques provided the adaptation mechanism does not prove too complicated
(Cunningham, Finn and Slattery, 1994).

83

If retrieval and adaptation mechanisms are easy to implement then CBR has clear
knowledge engineering advantages over “from first principles’ techniques. However, this
analysis will be less important if the problem analysis task that produces the problem

representation should dominate in the knowledge engineering effort.

Rea World Problem

- v \A

Determine Sdient Parameters ———»
N\ J

Common to CBR and RBS

Problem Representation

4 \. B Reduces to problem of retrieval
Inference ——>(and adaptation) in CBR

Solution

Figure 6.1: Development of a KBS,
The main issue remains the knowledge representation. In the next sections an iterative

process of improving the representation driven by an analysis of the faulty solutions
produced by ISAC is analysed.

6.1 Getting Started (April 1995)

To start understanding the ATC domain, the available literature on ATC and on expert
systems has been investigated, as reported in Chapter 2. Talking to controllers and taking
part in rea time smulations was another important step for the understanding of the
domain.
The Reduced Vertical Separation Mode (RVSM) simulation took place in the Eurocontrol
Experimental Centre, Parisin May 1995. The simulated sector was in Switzerland above the
Zurich airport, with Italy, France and Germany as bordering sectors. The aim of the
simulation was to measure the controllers workload at that time and in the year 2000, when
the traffic will be heavier, and to check if the controllers workload could be reduced with
the introduction of more flight levels. The two simulated scenarios were:
the conventiona scenario, with a flight level every 1000 ft below 29,000 ft and a flight
level every 2000 ft above 29,000 ft because the altitude instruments become less precise
at high altitude.

The RVSM scenario, which simulates the situation with an atitude separation of a 1000

ft everywhere because it is supposed that in the future the instruments on aircraft will be

precise even above 29,000 ft.
The participation in this smulation and the discussions with the controllers suggested some
initial ideas on what the parameters for the description of the conflict could be, the problems
that could be encountered and the assumptions to be made. Some of these assumptions are
still valid now, like the decision made to consider the zones where the weather conditions
are severe (Significant Meteorological Situations: SigMetS) as no-go zones. As a
consequence of this decision, there are no parameters in the conflict description mentioning
the weather and it is up to the program that detects conflicts to build the no-go zones
representing the SigMetS.
Another important initial decision was to assume that all the aircraft are Instruments Flight
Ruled and not Visua Flight Ruled. This assumption is acceptable if it is considered that
intelligent assistants will begin to help controllers in the future when aircraft will be better

equipped and will be able to fly guided by instrumentsin any phase of flight.

6.2 Initial System Description (from May 1995 to March 1996)

The first environment tool in which HIPS was embedded was a very smple visuaisation
tool called “Pepsi3” representing the radar screen and the flight plan strips used by the
controllers. In “Pepsi3” alot of significant parameters were missing. The first case-base was
built by showing the controllers some conflicts coming from very simple traffic samples and
by generalising from what was understood from the literature. This first case description is
reported in Table 6.1 with the name of the parameters and their possible values.

This first description was heavily influenced by two systems previousy developed in
Eurocontrol Experimental Centre, Paris. ARC2000 (Nicolaon, 1992) and PAT Problem
Solver (Meckiff, 1994). Those two systems are treated in Chapter 2. The Phase of Flight's
value “pre-descent” comes from ARC2000 but it was not used in the following steps of
ISAC's development because it was considered too specific for the granularity of the
description needed.

In the case-base, each case has a name, is described using the above parameters and has a
solution which consists of the aircraft that has to be manoeuvred and the type of
manoeuvre. Two different case representations were adopted and tested: a representation
with the description of both the aircraft in the same case, referred to as “TwolnOne” and a

representation referred as “OnelnOne”’ with the description of only one aircraft in each case.

85

The advantages and disadvantages of each alternative have aready been treated in Section
5.3.

Table 6.1: Initial case description.

Problems

The main problem encountered while preparing this first conflict representation was the
excessive simplicity, and sometimes superficiality, of many of the components. the conflicts
were badly specified, the environment was too unredistic and the acquisition of the
parameters was not accurate.

The conflicts were badly specified because too much information was missing, like the
departure and arrival airports, the type of aircraft etc. The visualisation tool, “Pepsi3”, had

86

been written only to show the ideas behind HIPS. Being a prototype, it was very simple
and, because it emphasised the geometrical aspect of the no-go zones, the initial case
description was mainly geometrical, with no reference to any aircraft performance. In the
subsequent steps of the knowledge acquisition process, more than one parameter that deals
with aircraft performance will appear. Taking with controllers and using more accurate
simulation tools showed that the performance parameters were necessary.

The acquisition of the parameters was a problem independent of the previous two. Two
conditions had to be satisfied: the possibility of extracting from the available data what the
controller could easily see on his radar screen and being sure that the extracted information
represents what the controller is actually seeing on the radar screen.

Thefirst issue implied the manipulation of alot of data and the use of alot of geometry, e.g.
to find the angle to exit from a no-go zone. The second issue implied asking the controllers
a lot of questions to see if the acquired parameters were expressing exactly what he/she
intended. A list of al the algorithms used to acquire the parameters is in Chapter 4 with all
the changes made from the first draft until the final version listed along with some
alternatives.

The algorithms used in “Pepsi3” and its subsequent versions for the calculation of the no-go
zones, trgjectories and aircraft performances have changed during the lifetime of the project
but it has always been assumed that these changes would be hidden from ISAC and its
behaviour would not be affected.

For the evaluation of this version of the retrieval mechanism and of the current case
representation, a case-base composed of gold-standard cases was built. Because the
parameters used were so smple, it seemed possible to cover amost al the case space with
gold standard cases. The “LeaveOneOUT” test on a case-base of 50 cases was adopted.
The results were quite good: the system found the same solution as the one given by the
controller in 95% of the conflicts. The issue of using either gold standard cases or cases
specific to a certain sector has aready been discussed in Section 5.1.2.

These results were not reliable for two reasons. one, already mentioned, is that the domain
was too simplistic, but the main reason is that the solutions to the conflicts in the case-base
had been given by a non-expert, whose knowledge in the domain was limited to a small set
of empirical rules learned watching the controller solving the conflicts.

A CBR system, to work well, needs coherency in the solutions. When it seemed that the
controller was not coherent, a set of rules generating the solution was used to have an

“artificial” coherency. In redlity, the “incoherent” solutions given by the controller were due

87

to some parameters that had not been considered in the case description but that the
controller was automatically assuming by default depending on the conflict and on the
sector.

Summarising, the first step in the construction of the case-base was necessary to set al the
structures up and to prepare the retrieval engine, but the obtained system was a toy system
that did not have the robustness needed to work in the real world.

6.3 Interim Refinements Description (from April 1996 to June 1996)

The second step towards reaching a consistent case description was to gradually eliminate
the unrealistic factors. It was first decided to build a completely new case-base by using
traffic samples coming from real time simulations. Secondly, a new environment
visualisation tool called GHMI was introduced. This tool does not change the way of
displaying the three HIPS windows but simulates an actual radar screen for the visualisation
of the sector.

With this new environment the controllers felt more comfortable and the solutions given
became more precise. More complex parameters were used and the number of possible
values for each parameter augmented. The possibility of having more than one acceptable
solution was introduced for two reasons. either some parameters, whose variation could
lead to a different solution, were not considered or, more simply, the conflict could be
solved in more than one way.

The case structure and the case-base had to be completely rewritten. The traffic samples
available did not contain conflicts, and the creation of a conflict by dightly modifying the
flight plan was difficult: some of these dight changes seemed illogical to the controller, even
if, for a non-expert eye, there was nothing wrong (e.g., an aircraft far from destination
which is descended one level with the purpose of creating a conflict seems a plausible
manoeuvre to a non-expert eye. The same manoeuvre was illogical for the controller
because, to save fuel, an aircraft far from its destination should not descend).

A controller examined the entire set of new and more realistic conflicts and gave some
“non-artificial” solutions. It seemed that two problems had been solved: the conflict
description was more realistic compared to the previous tool “Pepsi3” and the solution had
been given by an expert. The new case structure with the parameters and valuesisin Table
6.2. Most of the parameters imply the existence of a “first” and a “second” aircraft. The set
of rules described in Section 4.3 decides which is the first aircraft and the “canonical” case

description, as discussed in Section 5.3.1, depends on those rules.

88

Table 6.2: Interim case description.

The most evident change to the previous description is that there are less parameters dealing
with the geometric description of the conflict and more parameters dealing with the
performance of the aircraft. The parameters implying a direct route (“InFrontDirect” and
“InFrontMoreSpace”’) will not be used in the next steps because horizontal manoeuvres are
not very common. Parameters like “Horizontal Intention” that might seem essentia to a
non-expert for understanding the geometry of the conflict were present in the initia
description but were discarded afterwards. the controller is not interested in knowing
whether the aircraft is turning right or left, but is only interested in knowing whether the
aircraft is turning or not.

From a practica point of view, the presence of the sector boundaries caused a lot of
problems in the automatic acquisition of the parameters.

The overall complexity affected the performance of the system. The case-base, constituting
of 60 “redlistic” conflicts extracted from the available traffic samples, was tested with the
“LeaveOneOUT” method. The results, presented to the 1996 European Workshop on Case-
Based Reasoning (Bonzano, Cunningham and Meckiff, 1996), were worse than the results
of the toy system: only 70% of the solutions suggested by ISAC matched the solutions
given by the controller. The main reason for this was the lack of coverage of the space of all
the possible cases. A case-base of 60 cases was too small to cover the huge case space of
more than 4 million possible cases; this value is obtained by multiplying all the possible
symbolic values of al the parameters. Even if alarge part of these cases would never appear
in the real world, 60 cases were not enough. Moreover, the introduction of the constraints
reduced the performance (Bonzano, Cunningham and Meckiff, 1996).

All the tests were performed using “HorConflConf” as the only constraint. This caused
some problems when particular geometries of conflict were encountered: for example, in the
case-base there were not enough “head-on” conflicts, so the solutions of most of the cases

where the constraint’ s value was equa to “head-on” were solved incorrectly.

6.4 Third System Description (from July 1996 to September 1996)

After the toy system and the first attempt to work with a real world system, the need for a
bigger case-base was evident. Because of the lack of time, it was not possible to continue
acquiring conflicts from the traffic samples to build a bigger case-base. The 60 conflicts
coming from the real world simulation that constituted the case-base in the previous step
were kept as atest set. A new case-base was built from scratch by giving the controllers the

description of a general conflict and asking for its solution, then changing the parameters

90

one by one and recording how the solution would change accordingly (see Appendix A).
This approach implies that a case is now hand written and not generated from a real traffic
sample, whereas before the case was automatically written by the environment visualisation
tool as soon as a conflict was displayed. In the meantime a new case representation was

introduced as reported in Table 6.3.

Table 6.3: Third case description.

A drastic reduction of the parameters represented with numerical values is evident. It is
easier to store the controller’s knowledge with symbolic values because the controller
usualy has a quick overview of a conflict and can give a qualitative description of it which

is better described with symbolic values. The acquisition interface uses all the data supplied

91

by HIPS to create some symbolic values that express exactly what the controller thinks. The
performance of the system with this case representation is examined in more detail in
Chapter 8.

During this analysis, it was discovered that the controller’s workload heavily influences the
solution of the conflict even if it is not directly connected to the conflict description.
Depending on the workload, a controller could alter his behaviour. If the workload is low
the controller has time to choose a complex solution that will be less expensive for the
arcraft; on the other hand if the workload is high there is time only for a very simple but
sometimes expensive solution that does not need any monitoring. A way of calculating the
workload could be to count the number of aircraft that are visible on the radar screen and if
more than a certain percentage of the aircraft are climbing or descending than the workload
is considered high. This percentage threshold varies depending on the controller and each
controller could suggest different ways for the calculation of the workload. A futuristic
alternative could be to measure the workload on a biological basis: by measuring the stress
of the controllers with electrodes, the workload can be evaluated (Caloo, 1997). The
workload, as a parameter, has not yet been used in ISAC.

A new policy for the consideration of the NIL values was tried as explained in Section
5.1.4. With this new policy a lot of the conflicts that were different by non-significant
parameters were reduced into only one by assigning to the non-significant parameters a NIL
value. For this reason the 150 conflicts stored in the new case-base were representing, in
reality, many more conflicts.

The last change introduced during this stage was the evaluation strategy. The
“LeaveOneOUT” strategy was substituted by a more realistic test on the case-base using as

atest set the 60 conflicts coming from the real traffic samples as mentioned above.

6.5 Fourth System Description (from October 1996 to June 1997)

The case-base was once more judged as not being representative after some tests with
controllers. Moreover some parameters had to be changed and usually when a new
parameter is added to the case description its value is NIL for al the cases that were aready
present in the case-base. But in ISAC’ s particular situation this was not possible because the
new parameters were substituting some old ones. A new case-base was built with a lot of
numeric parameters coming directly from “raw” data with the am of reducing to a
minimum the manipulation of the data. The final and current case description is reported in
Table 6.4.

92

Thisisthefina version for the non hierarchical structure. An example of a case expressed in
the “OnelnOne” and “TwolnOne” case representation is in Tables 6.5 and 6.6. The
parameter “performance’ is calculated with the help of the BADA® database (Bos, 1997).
During the previous steps of ISAC’s engineering process, the performance categories had
been decided by a controller. This approach often implied that two aircraft belonging to the
same category were considered different by the controller but ISAC could not redlise it. By

using a continuous parameter from BADA any ambiguity is eliminated.

Table 6.4: Final case description.

Name of parameter Possible values

horizontal -conflict-configuration |crossi ng, converging, head-on, diverging
priority higher, lower, same

altitude-now Idifferent, same

speed faster, lower, same
atitude-configuration |c| imbing, descending, stable
close-to-TOD numeric value

close-to-boundaries |numeri cvalue

manoeuvrability numeric value
easy-to-exit-horizontally lveryEasy, easy, possible, difficult
levels-available yes, none, above, below, withSpaces
faster |easy possible, difficult

slower easy, possible, difficult

After realising that the most frequently used manoeuvre is the atitude manoeuvre and that
the horizontal and speed manoeuvres are not frequently used (see Figure 8.3), there was no
longer a need to discriminate between the two “easy-to-exit-right” and “easy-to-exit-left”
parameters. the more general “easy-to-exit-horizontally” parameter was introduced. For the
same reason, the “atitude” solution given by the system was changed into a more precise
“climbing” or “descending” solution (see Section 5.1.3).

The function that calculates the spreading activation was modified to shift the range of the
activation from “0 to 1" to “-1 tol”. With this new convention a parameter with a NIL

value has activation 0 which is intuitively more correct than having activation 0.5. For the

® The Base of Aircraft Data (BADA) provides a set of ASCII files containing performance and operating
procedure coefficients for 165 different aircraft types. The coefficients include those used to calculate thrust,

drag and fuel flow and those used to specify hominal cruise, climb and descent speeds.

93

symbolic parameters, if the value of the target is the same as the case’' s value, the activation

is+1, otherwiseitis-1.

For the numeric parameters, the activation is calculated with this formula:
Vioax = Viin @ &

where v, and v; are the case and target values and Vs and Vmin are the maximum and
minimum values for that parameter in the case-base. This gives an activation that can vary
from -w to +w continuously instead of having a discrete value (+1, +0.75, +0.5 or 0) as it
was in the previous development step. Since the activation can be smaller than zero, the
system gives a solution only if the highest activation is bigger than zero, otherwise a
message saying “Unable to give solution” is prompted. If the highest activation of al the
cases in the case-base is smaller than zero it would mean that even the most similar case is
too far from the target to have an acceptable solution.

After some discussion with an expert on cognitive psychology experiments, a new policy for
the evaluation of the system was introduced and is described in Chapter 8. During this
development step, some experiments on introspective learning of local and globa weights

have been performed and are discussed in Chapter 7.

Table 6.5: A conflict expressed in the“ OnelnOne” case representation.

Casenane Case690(A) Casenane Case690(B)
Hor Conf | Conf crossing Hor Conf | Conf crossing

Al titudeNow same Al titudeNow same

Al 't Configuration stabl e Al 't Configuration stabl e
Speed faster Speed sl ower

Cl 0seToTCD 155 Cl 0oseToTCD 352

Cl oseToBoundari es 4.8 Cl oseToBoundari es 8.3
Manoeuvrability .78 Manoeuvrability .78
Priority same Priority same
EasyToExi t Hori zontal | y easy EasyToExi t Hori zontal | y possi bl e
Level sAvai |l abl e yes Level sAvai l abl e yes
Faster difficult Fast er difficult

Sl ower difficult Sl ower difficult

Sol ution dowl Sol ution dow2

Table 6.6: A conflict expressed in the “ TwolnOne” case representation.

Casenane Case690
Hor Conf | Conf crossing
Priority sanme

Al titudeNow same
Speed faster

Al t Configuration(A) st abl e

Cl 0seToTOD(A) 155
Cl oseToBoundari es(A) 4.8
Manoeuvr abi l i ty(A) .78
EasyToExi t Hori zontal | y(A) easy

Level sAvai |l abl e(A) yes

Faster (A) difficult
Sl ower (A) difficult
Al t Confi guration(B) st abl e

Cl 0seToTOD(B) 352
Cl oseToBoundari es(B) 8.3

94

Manoeuvr abi | i ty(B) .78
EasyToExi t Hori zontal | y(B) possible

Level sAvai | abl e(B) yes

Fast er (B) difficult
Sl ower (B) difficult
Sol ution dowl

6.6 Hierarchical System (from June 1997 to October 1997)

The knowledge engineering steps seen until now focused on the resolution of two aircraft
conflicts (TACs). The last step to complete the system was the implementation of a
structure for multiple aircraft conflicts (MACs). The interface between GHMI and ISAC
has been changed to make it possible to acquire the description of more than two aircraft.
ISAC’s code, too, had to be changed.
As dready said in the Case Structure section (5.3), a lot of choices made for the system
when solving TACs have been influenced by the fact that it was known that ISAC would
have had to solve MAC. The main issue was to reuse the case-base of TACs without having
to create from scratch a case-base of 3 aircraft conflicts, then 4 aircraft conflicts etc.
Of the three options for the resolution of a multiple arcraft conflict that have been
introduced in Section 5.4, the only one that has been implemented so far is a simplified
version of the “Look Ahead CBR”. The “Independent CBR” option has been discarded
because the performance of the system when using the “OnelnOne” case representation was
not as good as the performance with the “TwolnOne’ case representation. The
“Hierarchical CBR” option has not been implemented for reasons of time: the construction
of a new case-base implies finding from scratch new parameters and new cases to fill the
new case-base.
The heuristic rules used for the high level analysis have been suggested by controllers and
can easily be changed depending on the controller’s preferences. The rules should change
depending on the hierarchical structure used. For the “Look Ahead CBR”, they are:
check if, among the solutions to the TACs, there is a solution common to all the TACs.
If yes, this common solution becomes the solution to the MAC.
If no common solution is found, an aircraft manoeuvred in all the TACs is searched for.
If found, the solution valid for that aircraft is given as solution to the MAC.
If no common aircraft is found, the TAC closest in time is solved and that solution
becomes the solution of the MAC.
For lack of time it has not been possible to implement all of these rules and in the evaluation
of the hierarchical structure presented in Chapter 8 the high level analysis consists only of
thefirst rule.

95

6.7 Conclusions

In the previous sections the knowledge engineering process for the construction of ISAC
has been shown. The first stage involved an analysis of the problem that produced a
representation that can be manipulated by the reasoning system. The second stage involved
developing the reasoning mechanism that manipulates the problem representation to
produce a solution.
The second step was the easiest to accomplish. The coding of the retrieval agorithm and
adaptation, when present, was done without any major problems and, apart from difficulties
with the portability of some libraries (e.g. Motif), the system is able to work with any case-
base containing both numeric and symbolic parameters and no speed problems have been
encountered.
The first step was the most problematic. As described in (Bayles et a., 1993), a lot of hours
have been spent interviewing specialists and reading literature. As a starting point, an
avallable system was taken (Meckiff, 1994) and from that system the lengthy job of
acquiring the case-base began. Even if alot of conflicts were available, their solutions were
not, making it impossible to build a case-base from the existing data. Different options have
been tried and the problem of having a representative case-base is not yet completely
solved.
When the number of cases and the methodology for acquiring them were first discussed, it
seemed that a case-base of 30-50 conflicts would have been big enough to start the tests
and that these conflicts could be hand crafted. As aready explained, both of these
assumptions were wrong due to the complexity of the domain.
The absence of an adaptation mechanism made it necessary to have a case-base with good
coverage. Second, the complexity of the domain implied that the case-base contained |ots of
cases. Finaly, having alot of conflicts in a case-base is not enough: each conflict needs a
solution, too. Moreover, the solutions must be coherent and must satisfy the controller.
Two conditions have to be respected in order to have an effective CBR system:
1. There must be enough cases drawn from the same sector. If cases are not from the same
sector and the case-base is used to solve conflicts on the same sector, the chances that a
similar conflict is aready in the case-base is higher. Having cases belonging to the same

sector will reduce the complexity of the domain and the size of the case-base.

96

2. The solutions to the conflicts that are stored in the case-base must be given by the
controllers that usually work on that sector. This will avoid the situation where
controllers give different solutions to the same conflict either because they have
different background or because they use the tools in a different way. Practicesin usein
individual sectors will ensure that controllers working on the same sector will give
coherent solutions.

The tool used for displaying the conflicts influenced heavily the choice of the parameters
and the solutions of the conflicts. The more redlistic the tool, the more reliable the solutions
given by the controller. The decision whether to use gold standard cases or noisy cases
depends on the way the case-base is acquired: gold standard cases will be used if the case-
base is built by hand but, on the other hand, the case-base will contain more noisy data if the
case-base is directly acquired from the sector.

Some data had to be entered by hand but in an operational system all the data should be

acquired electronically because the controllers will have neither time, nor inclination, to

enter al the data by hand.

It was anticipated that ISAC would not have had to deal with incomplete data in the traffic

samples used, but this was not true: the acquisition of some data was quite difficult and,

often, the data that the controller was acquiring very easily could not be trandated so easily
into parameters for ISAC. Introspective Learning techniques could help in reducing the
negative effect of the lack of cases.

It can be said that it is true that CBR does not e iminate the knowledge engineering problem

but it does reduce it. With CBR, the parameters that describe a problem have to be found,

but how these parameters influence the decisons does not have to be discovered

(Thompson, 1997).

Figure 6.2 (a,b,c): Different structures for the knowl edge engineeing process.

The model of KE requirements described in Figure 6.1 can result in various specific

scenarios. The characteristic of specific applications will dictate the balance of effort

97

between tasks A and B in Figure 6.2 where “A” represents the determination of salient
parameters, whereas “B” represents the inference mechanism. CBR is very effective in a
situation like in Figure 6.2(a), where the acquisition of the case-base and the decision of the
parametersis not as relevant as the retrieval component of the system. When the acquisition
of the case-base and the decision of the parameters becomes more dominant, like in Figures
6.2 (b) and (c), the advantages of CBR over RBS are less evident.

The main conclusion from those considerations, which will be more deeply analysed in the
last chapters, isthis:

CBR can be used in the ATC domain iff an adequate case-base is available and if all the

cases come from the same sector with solutions given by controllers trained on that sector.

98

Chapter 7

Introspective Learning of Parameter Weights

7.1 Introduction

As seen in the previous chapters, the descriptive parameters usually have different
discriminatory power. In this chapter the weight issues relating to the choice of weights are
analysed in more detail. When a k-Nearest Neighbour (k-NN) technique is used for case
retrieval, the accuracy depends on the weights assigned to the parameters. Recent research
in Machine Learning and Case-Based Reasoning has shown that Introspective Learning (IL)
of parameter weights can improve accuracy (Saltzburg, 1991; Fox and Leake, 1995;
Wetterschereck and Aha, 1995; Mufioz-Avilaand Hullen, 1996).
Developing the k-NN retrieval system used in ISAC has been problematic because not only
have the relevant parameters been difficult to determine but because the relative importance
of parameters has been difficult to gauge. Moreover some parameters were highly context
sengitive: i.e. parameters that were very predictive in some conflicts were not relevant in
others.
Two types of weights were analysed: local and globa weights. If a parameter has a global
weight, its weight will be the same for al the casesin the case-base, i.e. its importance is the
same in al the cases. On the other hand, if a weight is local, its value could change
depending on the case under examination and on the values assumed by other parameters.
This option is more flexible if a parameter is context sensitive.
In this chapter we will present our experiences with introspective learning and describe the
lessons learned. We present four central findings:

How weights should be adjusted.

What cues should drive learning.

When to use local and global weights.

Introspective learning does not work well with pivotal cases.
We begin with a genera review of introspective learning in the next section, then we

present the learning policies in Section 7.3. The updating policies are in Section 7.4 for local

99

weights and in Section 7.5 for global weights. Section 7.6 is the evaluation section with the

performance comparison between global and local weights.

7.2 Background

Introspective learning refers to an approach to learning problem solving knowledge by
monitoring the run-time progress of a particular problem solver (Fox and Leake, 1995;
Leake, Kinley and Wilson, 1995; Oehlman, Edwards and Sleeman, 1995). In particular, we
have investigated the problem of learning parameter weights by monitoring the retrieval
performance of ISAC, work that is related to smilar research in the machine learning
community (Saltzburg, 1991; Wettschereck and Aha, 1995; Wettschereck, Aha and Mohri,
1997).

Traditionally, Artificia Intelligence research has focused on the acquisition of domain
knowledge in order to provide basic problem solving competence and performance.
However, even when a reasoner has a correct set of knowledge it may still experience
reasoning failures. This can be explained as an inability of the reasoner to properly access
and apply its knowledge. For this reason researchers have looked at how monitoring
problem solving performance might lead to new learning opportunities that can improve the
way in which available knowledge is used. This form of introspective reasoning and learning
has become more and more important in recent years as Al systems have begun to address
real world problem domains, characterised by a high degree of complexity and uncertainty.
In such domains, where determining the necessary world knowledge is difficult, it is aso
difficult to determine the correct reasoning approach to manipulate this knowledge
effectively. Hence the need for introspective learning, and its increasing popularity across a
range of Al problem solving paradigms, from planning to case-based reasoning.
Meta-planning was an early model of introspective reasoning found in the MOLGEN
planning system (Stefik, 1981). MOLGEN could, to some extent, reason about its own
reasoning processes. Meta-planning provided a framework for partitioning knowledge into
layers, separating planning knowledge (domain knowledge and planning operators) from
meta-knowledge (planning strategies). Introspective reasoning is implemented as planning
within the meta-knowledge layer.

SOAR (Laird, Rosenbloom and Newell, 1986; Laird, Newell and Rosenbloom, 1987) also
employs a form of introspective reasoning. It learns “meta-rules’ which describe how to

apply rules about domain tasks and acquire knowledge. SOAR’s meta-rules are created by

100

chunking together existing rules and learning is triggered by sub-optimal problem solving
results rather than failures.

Case-based reasoning researchers have also begun to understand the importance of
introspective reasoning. Fox and Leake (1995) describe a case-based system called
ROBBIE which uses introspective reasoning to model, explain, and recover from reasoning
failures. Building on ideas first put forward by Birnbaum et al. (1990), Fox and Leake take a
model-based approach to recognising and repairing reasoning failures. Their particular form
of introspective reasoning focuses on retrieval faillures and case index refinement. Work by
Oehlmann, Edwards and Sleeman (1995) addresses the related topic of re-indexing cases,
through introspective questioning, to facilitate multiple viewpoints during reasoning. L eake,
Kinley, and Wilson (1995) describe how introspective reasoning can aso be used to learn
adaptation knowledge in the form of adaptation cases.

Many case-based reasoning systems use the k-nearest neighbour (k-NN) classifier (or a
derivative) to retrieve cases. One of the problems with this approach is that the standard k-
NN similarity function is extremely sensitive to irrelevant, interacting, or noisy parameters.
The typical solution has been to parameterise the similarity function with parameter weights
so that, for example, the influence of irrelevant parameters can be de-emphasised through
the assignment of a low weight. However, suitable weight vectors are not always readily
available. This has lead to a number of parameter-weight learning algorithms which attempt
to introspectively refine parameter weights on the basis of problem solving successes or

failures.

7.3 Learning Policies

The basic idea behind the introspective learning of parameter weights is to increase or
decrease the weights of selected case parameters on the basis of problem solving
performance. Parameter weighting methods differ in terms of their learning criteria as well
asin terms of their update models.

There are four distinct policies that can drive learning (i.e. that trigger the change of a
parameter weight). Two basic learning criteria are used, failure-driven and success-driven.
Failure-driven methods only update parameter weights as a result of a retrieval failure, and
conform to the “if it's not broken do not fix it” school of thought. Success-driven
approaches seek to update parameter weights as a result of a retrieval success. For each
approach the weights of matching and unmatching parameters are increased or decreased

accordingly.

101

By changing the weights, we move the cases in the case space. We want the cases that led
to a correct solution to be “pulled” closer to the target and the cases that were retrieved

incorrectly to be “pushed” away from the target as can be seen in Figure 7.1.

A
'\%sh o
& /mu
B

O
=

Figure 7.1: Pushing and pulling a case.

There are four possible learning policies; two cause a“push” and two cause a“pull”:
GUM, Good Up Matching: the case retrieved from the case-base has the same solution
as the target in the training set (Good retrieval). We increase (Up) the weights of the
parameters that have the same value as the target (Matching values). By doing this we
increase even more the case’' s activation, i.e. we “pull” the case towards the target.
GDU, Good Down Unmatching: the case retrieved from the case-base has the same
solution as the target in the training set (Good retrieval). We decrease (Down) the
weights of the parameter that have a different value from the target (Unmatching values).
The non-matching parameters decrease the case activation even if we want this case to
be retrieved, so by decreasing their weights we again “pull” the case towards the target.
BUU, Bad Up Unmatching: the case retrieved from the case-base has a different solution
from the target (Bad retrieval) and the weights of the parameters that have a different
value from the target (Unmatching values) are increased (Up). By doing this we “push”
the case away from the target because by subtracting an increased weight we reduce
even more the activation of the case.
BDM, Bad Down Matching: the case retrieved from the case-base has a different
solution from the target (Bad retrieval) and the weights of the parameters that have the
same value as the target (Matching values) are decreased (Down) because these weights
contribute too much to the activation that we want to be low. So we are again “ pushing”

the case away from the target.

Different parameter learning algorithms employ different combinations of these techniques.
By far the most common strategy is to use all four update policies (e.g., Salzberg, 1991,
Wettschereck and Aha, 1995). However, more focused strategies have also been adopted.

102

For example, Mufioz-Avila and Hullen (1996) use the BUU and GDU poalicies to increase
or decrease the weights of unmatched parameters after a retrieval failure or success
respectively.

The way in which a parameter’ s weight value is changed during learning, the update policy,
is aso critical. One of the simplest approaches is to increase or decrease parameter weights
by a fixed amount. For example, this method is used in EACH (Salzberg, 1991) where al
four of the above learning policies are used to increase or decrease parameter weights by
some fixed amount Df. Salzberg reported that the benefits associated with the weight
learning depended on the value of Df, and that different values of Df worked better on
different data-sets. Mufnoz-Avila and Hullen (1996) use a decaying update policy so that the
magnitude of weight changes decreases over time.

In general, the relationship between the learning policy, the update policy, and the
application domain is not at al clear and requires further work (this point is emphasised in
Wettschereck, Aha and Mohri, 1997). In particular, different policies have been reported to
give very different performance results. Moreover, the sensitivity of the learning algorithm

to noise and parameter interactions needs to be further studied.

7.4 Update Policies for Local Weights

Assigning global weights by hand to the parameters requires a deep domain knowledge but
it is still possible. On the other hand it is impossible to assign a local weight to al the
parameters of al the cases in a case-base. The alternative is to start with all the weights at
the same initia value and to use an introspective learning algorithm to update them.

When a parameter is symbolic, the activation of the case is increased by the weight w if the
values are matching, decreased by w if the values are non-matching and left asit isif one of
the two vaues is unknown. The activation increase for continuous parameters is
proportionate to the proximity of the parameter values: very different values get a negative
activation while similar values get a positive activation. The actual activation increase is
calculated as follows:

Le |Vt - Ve O 9
w2l S T
Vinax = Vmin @ 4]

where v; and v; are the case and target values and Vms and Viyin are the maximum and

minimum values for that parameter in the case-base. This gives an activation that can vary

103

from -w to +w as before. The objective for introspective learning is to determine local
values for these weights for each parameter in each case in the case-base.

The weight can be updated by an update policy which modifies the existing weight by either
adding or multiplying by a constant. This weight change itself can be constant or it can
decay as the learning proceeds (Mufioz-Avila and Hullen, 1996). We use a decay policy.

The formulaefor the increase and decrease adding option are as follows:

W(t+D = w (D) +Din "

C

+1)=w (1) - Di-=
W (D) = w () - DI

where K. indicates the number of times that a case has been correctly retrieved and F;
reports the number of times that a case has been incorrectly retrieved. The ratio FJ/K.
reduces the influence of the weight update as the number of successful retrievals increases
and is called the decay function.

The formulaefor the increase and decrease multiplying option are as follows:

& FO
Wt +D) = w () gL+ D

C

we+=—40_

1+Di— *
K

C

We evaluated both the alternatives of adding and multiplying and found little difference
between them - adding proved dightly better. The value Di determines the initia weight
change. We tested values of Di between 0.1 and 2 and settled on Di=1.0. There was little to
choose between values from 0.5 to 2 because the weight change decreases anyway.
When dl the weights in a case have been updated they are normalised so that the maximum
activation remains the same for all cases in the case-base. Thisis done as follows:
Number of Features

aw,

The normalisation is important to prevent popular cases becoming dominant attractors in

Wi = Wi

the case-base.

7.5 Update Policies for Global Weights

The globa weight updating policies are derived from the local weight ones. Four global
update policies have been tested:

104

S1. Each globa weight is updated by adding/subtracting the constant quantity 0.1.
If the weight is to be increased:
w(t+1) =w(t)+01
If the weight is to be decreased:
w(t+1) =w(t)- 01
This policy does not use a decay function, so it is necessary to keep the increment small,
otherwise a case that is retrieved too often will have big weights.

F
S2. Each global weight is updated by adding/subtracting the quantity ?C :

C

If the weight is to be increased:

D et + e
W (LD = w ()

C

If the weight is to be decreased:

FC
EHETORS

C

Note that K. and F. belong to the individual case and not to the parameter. This formulais

the same as for the local weights with the parameter Di=1.0.

S3. Each global weight is the average of al the corresponding local weights after they have
been trained with the policy shown in section 7.4. All the weights are considered to
calculate the average, even the weights that have not been updated (i.e. all the weights that
remain initialised at 1).

4. Each globa weight is the average of all the corresponding local weights, as in strategy
S3, but the average is calculated without considering the weights that have not been

changed during learning.

The strategies S3 and 4 are time consuming because a previous training of the local
weights would be necessary, but are useful to test if the global weights can carry as much

information as the local ones.

7.6 Evaluation

For al the experiments we used a case-base of 126 cases coming from the ATC domain, a

training set of 40 cases and atest set of 27 cases. Each case has 23 parameters, of which 19

105

were symbolic and 4 numeric. The system iterated 20 times on the training set to extract the
best weights. The points in Figures 7.3 and 7.4 are the average of 50 experiments with
different combinations of test set and training set.
All the experiments have been repeated for both local and global weights and for the eleven
different combinations of learning policies:
AllFour (GUM + GDU + BUU + BDM) where learning is driven by all the four policies;
onlyBad (BUU + BDM) where learning is driven only by the badly retrieved cases
(failure driven);
onlyGood (GUM + GUU) where learning is driven only by the correctly retrieved cases;
onlyGUM and onlyGDU where learning is driven only by the cases that are correctly
retrieved;
withoutGUM (GDU + BUU + BDM) and withoutGDU (GUM + BUU + BDM) where
the learning is driven by all the policies except from respectively GUM and GDU;
onlyBUU and onlyBDM where the learning is driven only by the cases that are badly
retrieved;
withoutBUU (GUM + GDU + BDM) and withoutBDM (GUM + GDU + BUU) where
the learning is driven by al the policies except from respectively BUU and BDM.
(Bonzano, Cunningham and Smyth, 1997,b).

7.6.1 Training the Case-Base

For the evaluation purposes we use three sets of cases. a case-base where the cases will
have their local weights adjusted during the introspective learning, a training set for
training the weights in the case-base and atest set for testing the error of the case-base. The
steps to train and verify the effectiveness of introspective learning are as follows (see Figure
7.2):

We calculate the initial error on the test set and on the training set when all the weights

in the case-base are still set to 1: we call these error figures Ets and Ety.

Introspective
Learning
. Case Test
Training H Base # ot
Set

Figure 7.2: The components in the introspective learning process.

106

We train the case-base by retrieving the k-Nearest Neighbours for each case in the
training set. The weights of the k cases are adjusted based on the various learning and

update policies. The values for K and F are also updated for these cases.

Thistraining step is repeated severa times. Etr and Ety are calculated after each step.

7.6.2 Overfitting
In Figure 7.3 it can be seen that after each iteration Etr decreases, but not monotonically.

This was found for all the eleven learning policy aternatives. In al evaluations the best
figure for Etr was found within 30 iterations. As might be expected the weights start to
over-fit the training data by the time this best error is reached and the error on the test data
improves. For this reason we stop the training after 20 iterations and select the weight set

corresponding to the best value for Ety.

withoutGUM local

a
o

N

o
m
»

N
o

Error(%)
[O8]
o

=
o

o

iterations

Figure 7.3: E; and E; for the * Without GUM” policy for local weights.

The overfitting phenomenon happens when the weights become too specialised for the
training set and they loose the generality needed to solve the test set. The error on both the
training set and the test set decreases during the first iterations, but the more the case-base
learns about the training set, the more specific solutions it gives, so the error on the training
set keeps decreasing, but the error on the test set starts increasing again.

This phenomenon had been found on both local and globa weights but only with some
policies (e.g., the combination “WithoutGUM” shown in Figures 7.4 aand b).

The graph shows that thisis awell behaved learning process but there is evidently a need to
stop learning early. In practice this can be achieved using a separate validation set as
mentioned already.

In Figure 7.4(a) we show the behaviour of the case-base when the global weights are
updated with the strategy S1: after a few iterations, the global weights saturate and the

107

error increases because there is no update decay. In Figure 7.4(b) we show the same
behaviour with strategy S2: it can be seen that the saturation process is slightly less strong

because of the presence of the decay function.

withoutGUM global WithoutGUM global with Fo/K ¢

8 8

Error(%)
Error(%)

o858

iterations iterations

Figure 7.4 (a, b): E; and E; for the combination “ Without GUM” (global weights).
The policy of iterating 20 times and keeping the weights that generated the smallest error is

time consuming. A better policy would be to use a validation set to determine when to stop
training but at present there are not sufficient cases in ISAC for this to be feasible. In this
situation we could use a technique called k-fold cross-validation for early stopping as
presented in (Hjorth, 1994) and below.

7.6.3 K-fold Cross-validation

The use of a validation set is useful to determine when it is the right time to stop iterating.
When a simple validation (hold out validation) approach is used, some of these cases have
to be withhold from the training set to be used in the validation set.

For example in a case-base of 150 cases, 100 cases could be used for training and 50 for
validation. |.e. we stop training with the 100 cases when the error on the 50 cases starts to
rise or we select the weights corresponding to the point when the error is smallest. This
approach is fine if there are loads of cases for training but if cases are scarce then 50 cases
are wasted.

In k-fold cross-validation all cases are used for training and for validation. One approach to
cross validation is to try and guess the training error that will produce the lowest test error.
The training data is divided into k sets and trained with k-1 sets. The training is stopped
when the error on the K" set is minimised. The training error corresponding to this is noted.
Thisis repeated k times and k estimates of test error and the k training errors corresponding
to these points would be available. The training is stopped when the average of these

training errorsis reached. Thus al the data in training have been used.

108

Let us imagine this situation: there are 100 cases and a five fold cross-validation is done
with 20 cases in the validation set each time. Let us suppose that for the five folds the

following results are obtained:

Iteration 12 9 14 13 17
Training Set Error 12% 15% 12% 14% 12%
Test Set Error 18% 20% 19% 25% 22%

e.g. for the 1% fold the best error on the Test Set is 18%, this occurs at the 12" iteration.
When al the data is used, training is stopped when the Training Set Error is
(12+15+12+14+12)/5. Alternatively it could be stopped when iteration (12+9+14+13+17)/5

is reached.

7.7 Results

We tested the effectiveness of learning local weights with the combinations of the updating
policies that we introduced previoudy; the results are shown in Table 7.1. All the 11
updating policies show a performance increase. The best increase of performance was
recorded with the combination “WithoutGUM”. On average, it seems that the combinations
where the failure driven policies are dominant are more effective than the combinations

where cues come from successful retrievals.

Table 7.1; Error on the Test Set.

Learning Policy BeforeLearning After Learning

Without GUM 472 % 22.1%
Without GDU 472 % 237 %
Without BDM 472 % 26.7%
Only BDM 472 % 29.7%
Without BUU 472 % 29.9%
Only Bad 47.2% 31.8%
All Four 472 % 31.9%
Only BUU 472 % 32.7%
Only Good 47.2 % 37.9%
Only GDU 472 % 421 %
Only GUM 472 % 424 %

To test the robustness of the learning we also initialised the local weights with random
values from 0.5 to 1.5 instead of having the starting weights al equal to 1. The performance

increase was the same.

109

7.7.1 Local versus Global

We repeated the same experiments with the global weights and the four different strategies
presented in Section 7.5. We were expecting a smaller scale increase in performance than
with the local weights. This was true on average, but, sometimes, for strategy Sl the

performance was better than the local weights. The results are shown in Figures 7.5 and 7.6.

Without GUM
50
45
40
35
_ 301
2 25 4 [
Y20 |
15 - -
10 - -
5 | ||
07 — (O]
= ©) _ o — — .
5 § Eg 293 28D =%
o< OzE Ogs 8L'I'_

(inc

Figure 7.5: Error of global and local weights for the “ withoutGUM” combination.

Without BUU

50

45 -

40 -

35 - -
_ 301 -
2 25 - [
w

20 -

15 -

10 -

5, —

O’

= w -3 - o =5~ ©)
S o < - T O = «Smﬁ —
® 3 89 552 Sfgs Em

o2 O©z% Ogs gL”L

(inc

Figure 7.6: Error of global and local weights for the “ WithoutBUU” combination.
Our best results occur with the “WithoutGUM” learning policy for local weights. This

reduces the error from 47% to 22%. The best result with global weights is the 25% shown
in Figure 7.6. We would expect the difference between the best loca result and the best

global result to be greater as more data becomes available for training.

110

7.7.2 Analysis of Context Sensitivity

Initial development on ISAC suggested that the parameters were quite context sensitive and
an examination of the learned weights confirms this to be the case. The histograms in
Figures 7.7 and 7.8 show distributions of weight values in the trained case-base for two
specific parameters, “LevelsAvailable’” and “CloseToBoundaries’. In each case the range of
weights has been divided into 10 intervals and the frequencies of weightsin each interval are
shown. Weights that remained unchanged at 1 have been removed. (Bonzano, Cunningham

and Smyth, 1997,a).

Levels Available

N
[6;]

N
o

=
[¢;]

Frequency

E

=
o

Figure 7.7: The distribution of learned weights for the “ LevelsAvailable” parameter.
In Figures 7.7 and 7.8, the Y-axis “Frequency” indicates the number of cases that had the

weight falling in the range reported in the X-axis.

Close to Boundaries

25

N
o

=
)]

Frequency
[
o

[6)]

1'

0.12
0.23
0.35

Figure 7.8: The distribution of learned weights for the “ CloseToBoundaries’ parameter.
The situation for the “LevelsAvailable” parameter shown in Figure 7.7 is the most typical,
showing quite a spread in weight values across the case-base. Thus the relative importance
of this parameter clearly changes from case to case and hence the parameter is of loca
importance across the case-base. This accords with the semantic of this parameter because

it indicates whether other altitude levels are free and is only important when an atitude

111

manoeuvre is being considered. By comparison the “CloseToBoundaries’ parameter shown
in Figure 7.8 is evidently more globa and again this makes sense in the problem domain. If
an aircraft is close to the boundary of the controller’s sector then thisis aways an important

consideration.

7.8 Introspective Learning with Pivotal Cases

Smyth and Keane (1995) show that a case-base can be reduced in size without losing
competence provided pivotal cases are not removed. A pivotal case is one that provides
coverage not provided by other casesin the case-base. Thisis related to the idea of having a
case-base of ‘clean’ cases where cases are hand picked to be of good quality and to cover
particular areas of the problem domain.

It might be expected that a case-base composed of pivotal or ‘clean’ cases will not benefit
much from introspective learning of parameter weights. Introspective learning depends on
having adjacent cases so that the relevance of parameters can be determined. However, this
redundancy will not exist in a pivotal case-base.

To verify this hypothesis we ran two experiments. one with a toy case-base where cases
could be verified to be pivota and one with the ISAC cases. Tests on the toy case-base
supported the hypothesis. The cases available in ISAC are specially prepared clean cases so
our hypothesis suggests that introspective learning will not work with these. From this 126
we prepared a case-base of 86 cases and a training set of 40 pivotal cases. For comparison
we also prepared atraining set of 40 cases taken from real traffic samples. After training the
case-base with the training sets extracted from the case-base, we tested it with atest set also
taken from rea traffic samples. This experiment was repeated 22 times with different
training sets. The results showed that training with pivotal (or clean) cases only produced an
improvement of just 7% while training with random cases produced an improvement of
18% (see Table 7.2).

Table 7.2: Pivotal versus non-pivotal Training Set.
Training Set E:s (before) E:s (after)

pivotal 39 % 32%

real 39 % 21%

This supports our hypothesis that introspective learning of parameter weights exploits
redundancy in the case-base and there is little redundancy in a case-base of pivota or clean

cases.

112

7.9 Conclusions

Learning local parameter weights greetly improves retrieval in ISAC. Our central

conclusions are:
Because of the context senditivity of parameters, local parameter weights are more
effective than global weights. We have shown that, for many parameters in ISAC, the
learned local weights vary considerably. This is predicted by our understanding that the
importance of many parameters in this domain is context sensitive. Presumably this
varies from problem to problem, however using local rather than global weights has
definitely been helpful here.
Failure driven learning is most effective and the best policy is “WithoutGUM”. This
learning policy reduces the error in ISAC from 47% to 22%. It appears that failure
driven rather than success driven learning contributes most to this improvement. This
effect is not reported elsewhere so we need to determine why thisis the case with ISAC.
The learning process can overfit to the training set so an early stopping policy is needed.
A validation set can be used to achieve this.

We have also verified that introspective learning of parameter weights does not work well

when the cases used for training are pivotal. This is predicted by our understanding of the

need for redundancy in the case-base for introspective learning. So this finding should be

true in general.

In the future we propose to explore whether these findings generalise to other domains. We

also propose to explore any variation in performance between globa and local weights as

the size of the case-base increases.

113

Chapter 8

Results and Evaluation

One of the most controversial steps in the development of ISAC has been its evaluation. In
the air traffic control domain there is the saying - “ask six controllers to solve a conflict and
you will get seven different answers’. Thisis obviously an exaggeration but it gives an idea
of how subjective the evaluation of a solution given either by a controller, or the system
itself, is. Consequently, the evaluation of this expert system is difficult.

The program of research between Trinity College, Dublin and Eurocontrol Experimental
Centre, Paris was intended to investigate the use of CBR to augment the capability of an
aircraft to carry out elaborate manoeuvres to avoid conflicting with others. One of the
research themes that was considered the most important was the validation of the method
used in view of the safety-critical nature of the overal problem and the definition of
confidence figures for solutions given by the system. These issues are treated in this chapter
with an analysis of the performance of the system. The evauation recommended by an
experimental psychologist is explained and the different steps to evauate ISAC are
discussed.

8.1 The Tests

The tests done with the controllers are intended to evaluate the performance of ISAC from
two different points of view: the correctness of the solution suggested by the system and the
reduction of the controller’s workload with the system implemented. The working tool that
the controllers use is HIPS, which is embedded in the GHMI environment. ISAC does not
change the globa behaviour of the system, apart from a dight speed reduction which is
acceptable at this prototypical level.

All the tests done take into consideration the three case representations introduced earlier.
The case-base and the set of cases used for evaluation are based on the knowledge and
preference of only one controller and not from a collective decision of al the controllers.
The case structure does not have any constraints even if this possibility is available. All

parameters have the same weight unless otherwise stated. All the traffic samples came from

114

en-route sectors, heavily conditioning the parameters used for the case description and the
solutions of the conflicts. CBR can be made to work in any kind of sector, but the
parameters describing a conflict and the solution to a conflict change with the type of

sector.

8.1.1 The People that Evaluated the System

The system has been evaluated by air traffic controllers of different nationalities working in
the Eurocontrol Experimental Centre in Paris. The typical career of these air traffic
controllers starts with an ATC course, then it continues with 15-20 years experience on
different airfields before joining Eurocontrol. Usually, in Eurocontrol, they work in real time
simulations or in human-machine interface.
The work experience of a controller influences heavily the solutions that he gives. A
controller who worked for a long period in a sector where the aircraft are usually cruising
will use radar vectoring more often than a controller who worked in an airport sector where
usualy the safest and by far most common manoeuvre is a change in atitude.
For this reason, some questions have been asked to the controllers that took part to the
simulation.

For how long have they been a controller.

For how long have they been approach, TMA or radar controller.

Which was the last type of controlling that they did.
The answers to these questions could give an insight into the relationship between a
controller’ s background and the solutions he gives.
The way a conflict is solved nowadays is heavily influenced by the fact that the only way of
communicating is via voice messages. Moreover, the transmission is not always good. The
absence of a datalink often forces the controller to reduce to the minimum the number of
manoeuvres communicated to the pilot. This difficulty in communication is bad for two
reasons. First, the controller often suggests a manoeuvre bigger than the one strictly
necessary to avoid any further corrections that would mean a loss of time for the controller.
Unfortunately, the oversized manoeuvre causes delays in the flight plan of the aircraft.
Secondly, sometimes the controller waits for the conflict to evolve before taking a decision
and often, what seems to be a conflict is not so in the end.
The approach that controllers had toward ISAC and the possibility of having a computer
generated suggestion was amost aways positive, even if they were sometimes a hit

sceptical because controllers are aware of the complexity of the domain. Some controllers

115

were enthusiastic about the idea of a computer aiding the controller's decisions. They
suggested further improvements that in some cases have been implemented, like the use of

the BADA database for the acquisition of the performance parameters.

8.2 Initial Tests

The initia tests were not reliable because the solutions of the cases had been generated with
an artificial set of rules and, as already said, were coherent but not realistic. Moreover there
were only 50 cases in the case-base and no test cases were avalable, so the
“LeaveOneOUT” evaluation technique had to be used. The results were very good: the
system gave the correct solution in more than the 90% of the cases but as said they were
not reliable as explained in Chapter 6.

The most important and helpful feedback from this evaluation came from verbal comments
made by controllers during the testing sessions. Moreover, this evaluation was useful for the
verification of the speed, efficiency and robustness of the tool in the hands of controllers.

In (Bonzano, Cunningham and Meckiff, 1996), it has been shown that the constraints are
useful in speeding up the system but do not have any significant effect on the system
competence as shown in Figure 8.1. The conclusion that can be drawn, i.e. that the use of
constraints not only reduces the retrieval time but it increases the performance too, has to
be tested with other case-bases before being confirmed and generalised. It should be noted
that the better performance of the “OnelnOne” case representation will not be repeated in

the next steps of evaluation with more elaborated case-bases.

/1 OnelnOne
N TwolnOne.nonCanonical
70% [— TwolnOne.canonica
% of correct
solutions 60%
50%

Withthe Without the
constraint constraint

Figure 8.1: The effectiveness of the constraints on the performance of the system.

116

During this first step in the evaluation, some tests have been done in parallel to evaluate the
speed performance of the spreading activation agorithm, with the results shown in Chapter
4. Other tests involved the construction of a decision tree based on the same data used by
ISAC. In Chapter 5 it has been shown that ISAC performs better than its corresponding
decision tree generated by C4.5.

8.3 Interim Step

A simplified traffic sample was used with the controllers for training and familiarisation
purposes. All the traffic samples have been engineered to include a significant number and
variety of conflicts. Tests took place in Summer 1996. All the sessions were individua and a
different traffic sample was used for each run. Each solution given by a controller was
recorded and compared with the solution given by ISAC and with the solution given by the
other controllers. The controller could either accept or discard the solution suggested by
ISAC.
The case-base used for the tests has been constructed by trying to put into a “case” form
some of the rules learned during the sessions with the controllers. The 150 cases that
constitute the case-base represent the knowledge of a particular controller and the solutions
are generated from a set of rules. The output of a rule usually does not depend on al the
parameters needed for the case description. For this reason, in a case-base generated from
some basic rules, alot of parameters will be set to a NIL value. This case-base had not been
built for the traffic samples used for the tests, but was designed to be able to solve any kind
of conflict in any type of sector. It will be highlighted later how naive this assumption was.
The test set consisted of 67 conflicts extracted from real traffic samples, but not al the
conflicts had been solved by all the controllers for reasons of time. Only one controller
solved al of the 67 conflicts and at least two controllers solved 42 conflicts. Four different
Situations have been tested.

The “OnelnOne’ case representation was used and the solutions given by ISAC have

been compared to the solutions given by the only controller who solved all the conflicts.

The same case representation, “OnelnOne’, was used, but the solutions given by ISAC

have been compared to the solutions given by all the controllers.

The “TwolnOne” case representation has been used, and the solutions given by ISAC

have been compared to the solutions given by the only controller who solved al the

conflicts.

117

The same case representation, “ TwolnOne’, was used, but the solutions given by ISAC
have been compared to the solutions given by all the controllers.
The system performance is reported in Table 8.1. The conflicts solved by only one
controller have been identified with “One” whereas the tests done on the set of conflicts that
have been solved by all the controllers are indicated by “All”. For the “One” situation, a
suggestion was considered correct if the solution of the controller and the solution given by
ISAC were the same. In the “All” situation, ISAC’s solution was considered correct if at

least one of the controllers gave the same solution.

Table 8.1: ISAC’ s performance.
Case Representation Controller % of correct solutions

OnelnOne One 49%
TwolnOne One 71%
OnelnOne All 83%
TwolnOne All 94%

It can be seen that the performance of the system with the “OnelnOne” case representation
is in general worse than the performance with the “TwolnOne” case representation. This
trend, opposite to the one in the previous evaluation step, is confirmed in the final
evauation step and is supported by the intuitive consideration that the “OnelnOne” case
representation is less effective because less information about the global conflict and the
other aircraft is stored in the case. For this reason, the “OnelnOne” case representation will
not be used in the fina evaluation of the system. It will be possible to use it only when a
realistic and well covered case-base will be made available. The case-base used in the final
version, even if more complete, is still too small and oversmplified.

From a more accurate analysis of the results it was discovered that the majority of the errors
made by ISAC were due to a wrong choice of the aircraft to manoeuvre but not to the
incorrect type of manoeuvre. This was encouraging because the case-base used for the
evaluation contained very little knowledge about the choice of the aircraft.

From the performance, it was clear that alot of work still had to be done on extending the
case-base, because 150 conflicts were not enough to characterise all the possible ATC
conflicts, and on the parameters acquisition, because it was not always obvious how to

convert into numbers what the controller sees on the radar screen.

118

8.4 Final Evaluation Step

The structure of the final test has been defined with the help of an expert on psychological
experiments with the aim of gaining a better understanding of how the controller can
interact with ISAC and how the system performs.

The tests consist of three steps:

1. A conflict is shown to the controller.

2. The solution for the conflict is requested from the controller. This step could be skipped
if it would have been possible to pre-classify the bias of each controller by using
conflicts that had already been solved and stored.

3. ISAC gives, on purpose, either a good or a bad solution to the conflict. The controller
has to rank the given solution from O (very bad) to 7 (very good). The wrong solution is
a random solution chosen from the solutions that were not selected as good solutions
and it must be really bad, otherwise the results will not be reliable. Moreover, the
controller is asked why does he think that it is a good/bad solution and what changes
would he make to the solution to improve it. These questions are useful for building the

adaptation function.

Step 2 is necessary because controllers sometimes accept sub-optimal solutions, as the
controllers themselves confirm. By previoudy asking the controller for his solution, the risk
of the controller passively accepting the solution suggested by ISAC is avoided. Moreover,
with step 2, it is possible to evaluate whether or not the controller is biased: the percentage
of atitude, speed, and horizontal manoeuvres in the controller’s solutions is recorded. If a
controller gives more than one possible solution, the weight of each solution is reduced by
the number of solutions given.
Step 3, i.e. giving on purpose some bad and some good solutions, is necessary for different
reasons:
to make sure that ISAC gives the correct solution. All the marks that the controller
gives to the solutions suggested by ISAC are averaged. The marks to the solutions that
ISAC gives wrongly on purpose are averaged together, the same is done for the marks
to the solutions that ISAC gives correctly on purpose. The greater the difference
between the average of the good and the average of the bad marks, the better ISAC
performed. The difference is visualised by the sope of the two lines in Figure 8.2: the
steeper the lines, the better. Obvioudly, the average of the good solutions must be bigger

than the average of the bad ones.

119

Step 3 is also necessary to examine if some types of conflicts are solved more effectively
than others. This could happen because either the controllers are biased or because
some problems are simpler than others.

Finaly, step three could be necessary to check against the bias. For some conflicts ISAC
would give a solution consistent with the bias whereas in other cases it would give a

solution not consistent with the bias.

An introductory page was given to all the controllers that took part to the simulations. The
way the tests were presented to the controllers was important because even a single
misleading word could have influenced the controllers and nullified the results. The first part
was intended to give a general background to the controller by explaining how ISAC

works. The second part is reported below:

“ Some conflicts will be shown to the controller. When a conflict is detected, the system will automatically
display a solution. The controller will be asked to:

rate the correctness of the solution given by ISAC with a mark from O (very bad) to 7 (very good);

say what he dis/liked about the given solution;

if he would have given a different solution, and to specify which.
Some of the solutions proposed may be deliberately incorrect. The duration of the evaluation will not take

mor e than 30 minutes per controller.”

The best thing would have been not to tell to the controllers that ISAC gives on purpose
some of the wrong decisions, but there was either the risk of the controllers loosing
confidence in a system with alow rate of good solutions or the possibility of the controllers
giving good marks to bad solutions purely to give us encouragement. In both cases, the
results of the evaluation would not have been valid. During the tests, the percentage of bad
solutions given by ISAC on purpose was 50%.

A problem arises if a controller does not use the full range of marks, i.e. from 0 to 7. If this
happens, there are two alternatives: either the controller’ s results are discarded, which is not
possible, considering how difficult it was to get the assistance of a controller, or the marks
that he gave have to be normalised to fill the interval from O to 7. During the tests, al the

controllers made use of the full interval 0-7, eliminating the problem.

8.4.1 Results

The case-base used for the final round of tests has around 700 conflicts, i.e., 1400 cases in

the “TwolnOne.nonCanonical” case representation, which has the best performance of all

120

three. Thisis the final case-base which aso contains some conflicts stored with the purpose
of solving some multiple aircraft conflicts.

Because of time restrictions, the bias has not been used to calculate the performance of
ISAC. The controllers have been considered not biased and only the difference between

correct and wrong solutions has been calcul ated.

Table 8.2: How the solutions given by each controller are stored.

Conflict mark solution

el 4b vector

e2 7g9 dowBAW

€3 Ob dowlEA

ed 7g9 dowDLH

€5 7g9 dowBAW

€6 Ob dowEIN or vector

e/ 79 uppCOA

e8 Ob dowCPA

e9 79 for dowBAL
Og for horBoth

el0 79 dowAFL

ell 7b vector or descend any

el2 69 dowEIN

el3 Ob dowSAS

eld 79 for dowATQ
Og for horBAW

el5 Ob vector

The wrong solutions that ISAC had to give on purpose was decided in advance and stored
in a different file for each controller. A shell in which ISAC was embedded was taking the
decision whether to give the wrong or correct solution depending on the name of the
controller and on the name of the conflict. This shell aways gave the correct solution to
two conflicts that did not have any really wrong solution.

A table like Table 8.2 was created for each controller during the tests. The mark “4b” on
thefirst line of the table means that the controller gave a mark “4” to a“Bad” solution given
on purpose by ISAC. The mark “7g” on the second line, means that the controller gave a
mark “7” to a “Good” solution. In this table, the Conflicts “e9” and “el4” have different

marks for the two possible solutions that had been suggested by ISAC.

121

The results of the evaluation are in Figure 8.3. It can be seen that the mark that al the

203 |
controllers gave to the wrong solutions suggested by ISAC was, on average, —~ iI.e.

549 ,
29%, whereas the mark given to the good solutions was - i.e. 78%. The mark given by
. : _ 2
the controller that generated the solutions for the cases in the case-base are respectively -

7
i.e. 28%, for the bad solutions and - i.e. 100%, for the good solutions. This discrepancy
in marksis due to the different preferences of each controller.

1m

0.8 &

TN O — -k — all controllers
0.6 + N
. - - 4 - -one controller

marks/7

S
~ .
0.4 + ~U.

0.2 T

good bad

Figure 8.2: Results of the evaluation.

Figure 8.3(a) shows nine piecharts, one for each controller involved in the fina tests, that
report which are the preferences of the controller. Of the 15 conflicts that were shown to
the controller the percentage of times that a certain type of manoeuvre chosen was
recorded: horizontal manoeuvre (hor), vertical manoeuvre (alt) and speed manoeuvre (spe).
Figure 8.3(b) shows the averaged percentage of preferred manoeuvres for al controllers.

From Figure 8.3(b) it can be seen that controllers prefer to use a vertical manoeuvre
because it is the safest and the fastest to be communicated and implemented. From Figure
8.3(a) it can be seen that the preferences of each controller vary a lot. For example,
Controller Two and Controller Eight have opposite habits in the use of vertical and
horizontal manoeuvres. Some of these differences are due to the background of the
controllers or to the attitude they have towards HIPS. For instance, Controller Two had
been working for along period in an overflying sector where the most common manoeuvre
is the horizontal one because a lot of aircraft are cruising, whereas Controller Eight had
been working for longer time in an approach sector where the most common manoeuvre is

the vertical one.

122

controller one

spe
12%

hor
18%

alt
70%

controller tw o

spe
3%

alt
39% hor
58%

controller three

spe
0%

hor
18%

alt
82%

controller four

controller five

controller six

spe spe hor spe
0% 3% 139 0% hor
25%
hor
36%
alt
64%
alt
alt 75%
84%
controller seven controller eight controller nine
spe hor spe
spe 2% 7% 13% hor
0, 0,
22% hor 23%
29%
alt alt alt

49%

91%

64%

Figure 8.3(a): Types of manoeuvres used by controllersto solve the test conflicts.

conflict, more possible solutions are shown.

123

As mentioned above, the attitude of the controllers toward HIPS influenced the results, too.
Some controllers, sceptical about HIPS, were solving conflicts without using the help that
HIPS could have provided and in this situation the most common manoeuvre was, again, a
vertical manoeuvre because it is the one that needs the least visualisation. On the other
hand, the controllers that liked “playing” with HIPS used a higher percentage of horizontal
and speed manoeuvres because with HIPS, which has a superior graphica display of the

Some tests on introspective learning of the parameters weights have been done in paralel to
the evaluation tests, during this final knowledge engineering step. These tests and the results
obtained have aready been described in Chapter 7.

spe
6% hor
25%

alt
69%

Figure 8.3(b): Types of manoeuvres used by controllersin general.

8.5 Multiple Aircraft Conflicts Tests

Because no MACs were available in the traffic samples used, some conflicts had to be built
from scratch from aready existing TACs and their consistency had to be checked by a
controller. The problem, aready present with TACs, of creating realistic conflicts is even
more evident with MACs.

The evauation tests for multiple aircraft conflicts have been done with the Look Ahead
structure for MACs described in Section 6.6, chosen from the alternative structures
presented in Chapter 5. In a Look Ahead structure, the MAC is decomposed into the
constituent TACs that are solved independently, then a high-level analysis extracts from the
solutions of the TACs the best solution for the MACs.

We are now going to show how the Look Ahead structure works when applied to a real
MAC, shown in Figure 8.4. In this conflict, the aircraft FIN1121 is crossing the trajectory
of the two aircraft SAS611 and SPAR64. At the same time, the aircraft SPAR64, behind, is
catching the SAS611, which is in front and dower. All the three aircraft are flying at the
same level.

The first step of the Look Ahead structure involves the resolution of the 3 constituent
TACs. SAS611-SPAR6G4, FIN1121-SAS611 and FIN1121-SPAR64. The solutions found
by ISAC for the three conflicts are, respectively, “lock the speed of SAS611 and SPAR6G4”,
“climb FIN1121" and “climb “FIN1121".

The second step of the Look Ahead algorithm consists of a high-level analysis of the three
TACs solutions found and the extraction of a coherent one. Because there are three TACs,
at least two solutions have to be extracted. Because the solutions for the two TACs
FIN1121-SAS611 and FIN1121-SPAR64 are the same, this will be the final solution for the

124

MACs atogether with the solution for the SAS611-SPAR64 conflict. The Look Ahead

structure for this MAC is shown in Figure 8.5.
SPAREd LCEA
350 43

SASe1l LSZH
250 47

YEG1E5
ol 47

EIM11zL

jiaie]

BEAL3ol LFPG
=l 47

47

ACF152 EFHE
370 47

SABYEY EHSA
47

OLH1ZIED ESGE

—

SPRRE4

7
@-ﬁ’ SASELL

"

| o

-

#GELC
291112
| |

Figure 8.4: A multiple aircraft conflict.

If no solution in common to all the TACs was found, ISAC would have suggested the

solution of the TAC closest in time as solution for the MAC.

As already said, the high-level analysis could be refined with the introduction of either more
rules or a high-level case-base containing more general parameters. For example, a rule
stating that the aircraft which is in conflict with al the others should be moved, could be
added.

The conflict shown in Figure 8.4 is a complex MAC because there are 3 aircraft involved in
3 conflicts. The Look Ahead structure, and also the other two introduced in Chapter 5,
works for both simple and complex MACs.

The MACs used for the evaluation have been displayed on a web page. The possible use of
a browser to reduce time of the tests and to give the same treatment to al the controllers
has been essential. The use of HIPS gives a range of choices to the controller, which is
good in the TACs situation, but it is not as good in the more complex situation of the

MACs where too many solutions would be available, making it impossible to test ISAC.

FIN1121-SAS611-SPAR6G4

i

SAS611-SPAR6G4 FIN1121-SAS611 FIN1121-SPARG4

ISAC ISAC ISAC
with with with

low-level low-level low-level
case-base case-base case-base

Lock on speed both Climb FIN1121 Climb FIN1121

thea rcraft\ l /
High-level
analysis
!

Climb FIN1121 + Lock on
speed SAS611 and SPAR6G4

Figure 8.5: Look Ahead CBR for the sample MAC.
In conclusion, we can say that the mechanism for solving MACs works, but we cannot say

anything concrete about the coverage on MACs offered by the case-base.

126

8.6 Conclusions

In this chapter we analysed the performance of 1SAC in solving conflicts, both TACs and
MACs. Results regarding introspective learning of parameter weights, speed of the retrieval
algorithm and comparison with decision trees have been treated earlier on.

The performance of a CBR system in general and of ISAC in particular depends on how
well the case is described and on how densely and homogeneously the case space is
populated. The results of the evaluation take account of how happy the controller is and not
whether the correct solution has been chosen. The “correct” solution is a subjective decision
and would vary from controller to controller. Because the solutions in the case-base have
been given by a single controller, they reflect his preference.

The way of evaluating ISAC should change depending on its function. ISAC could be a
training tool for controllers not experienced on a new sector, or it could be a standardising
tool to homogenise the biased solutions that controllers might give.

As already mentioned, a controller usually has to train for more than one year on a certain
sector before beginning to work on it. This training is necessary to teach the controller the
optimal solutions for that particular sector, but it will influence his preferences and his
behaviour when he will change sector. For example, if a controller has worked for some
years in the approaching sector of a busy airport, where usually conflicts are solved
immediately with a vertical manoeuvre, when this controller will change sector, he will be
biased and will solve conflicts with a vertical manoeuvre.

Another factor that could influence the controller’s decision is the attitude towards the tools
used in the simulation: some controllers examine very deeply the conflict, some others do
not. Moreover some controllers already know the sector used for the tests, so they have an
advantage over controllers who had never seen the sector.

A solution to avoid the controllers’ biases would be to build a case-base containing conflicts
that happened in the same sector and to ask for their solutions from controllers who work
on that sector. Biases among controllers working on the same sector are less influencing
because, having learnt the same patterns, controllers will make the same assumptions on the
conflicts.

Asking a group of controllers to come up with a globally accepted solution, one of the
initial options, would take too much time. It could be assumed that the solutions generally
given by a group of controllers working on the same sector could be synthesised by one of

them, saving alot of time.

127

Initial reaction to the work from controllers was positive, with the fedling that it is an
appropriate line of research. The strongest point in favour of the tool was undoubtedly the
fact that the controller remained entirely in control of the resolution process, while
benefiting from the information provided by the HIPS displays and ISAC’ s suggestions.

128

Chapter 9

Conclusions and Future Work

The basic assumption underlying much of the work undertaken in the ATC research centres
such as the Eurocontrol Experimental Centre in Paris, is that air traffic will continue to
increase at a significant rate. Since most air traffic control facilities use practices and
equipment which were developed at least 20 years ago, it is natural to assume that new
approaches are needed for future scenarios with higher aircraft populations. |mprovements
due to the reorganisation of route structures will rapidly reach a limit in airspace at which
point some fundamental changes will be needed. First of dl, the utility of computer
assistance will increase due also to increased precision in predicted trgjectories of aircraft.
The research presented in this thesis was intended to investigate the benefits from using
CBR in order to help controllers in aircraft conflict resolution. Different research themes
have been treated:

the definition of the parameters that describe a conflict;

the definition of an appropriate structure for the case-base that takes into account the

real time nature of the problem;

the possibility of solving two aircraft conflicts and multiple aircraft conflicts;

the development of a retrieval mechanism and of the evauation of a prototypical

system;

the validation of the method used in view of the safety-critica nature of the overal

problem.
The system as it is now is integrated with HIPS which is embedded in a specific smulation
environment for evaluation purposes, but it could be in theory integrated in any ATC tool,
provided that this tool can supply 1SAC with the necessary data for the conflict description.
It is our opinion that only minor modifications would be needed to the structure of ISAC to
be used in any type of sector with any ATC tool. The existence of a reliable case-base for

the specific sector is a different and more fundamental problem.

129

9.1 Lessons Learned

During this research, several lessons have been learned. Some are typica of all CBR
systems, whereas others are related to the knowledge engineering process and the problems

of building a system that has to work in the real world.

A Reliable Case-Base is Essential

When the number of cases and the methodology for acquiring them were first discussed, it
seemed that a case-base of 30-50 conflicts would have been big enough to start the tests
and that these conflicts could be hand crafted. As aready explained, both of these
assumptions were wrong due to the complexity of the domain.
As described in (Leake, 1996, p.34), the most important component of a CBR system is its
library of cases. This was particularly true for ISAC. First, the absence of an adaptation
mechanism made it necessary to have a case-base with good coverage. Second, the
complexity of the domain implied that the case-base contained lots of cases. Finaly, having
alot of conflictsin a case-base is not enough: each conflict needs a solution, too. Moreover,
the solutions must be coherent and must satisfy the controller.

Two conditions have to be respected in order to have an effective CBR system:

1. there must be enough cases drawn from the same sector. If cases are from the same
sector and the case-base is used to solve conflicts on the same sector, the chances that a
similar conflict is aready in the case-base is higher. Having cases belonging to the same
sector will reduce the complexity of the domain and the size of the case-base.

2. the solutions to the conflicts that are stored in the case-base must be given by the
controllers that usually work on that sector. This will avoid the situation where
controllers give different solutions to the same conflict either because they have
different background or because they use the tools in a different way. Practicesin usein
individual sectors will ensure that controllers working on the same sector will give

coherent solutions.

The tool used for displaying the conflicts heavily influenced the choice of the parameters
and the solutions of the conflicts. The more redlistic the tool, the more reliable the solution
given by the controller. The decision whether to use gold standard cases or noisy cases
depends on the way the case-base is acquired: if the case-base is built by hand, gold
standard cases will be used, on the other hand, if the case-base is directly acquired from the

sector, the case-base will contain more noisy data.

130

Some data had to be entered by hand but in an operational system all the data should be
acquired electronically because the controllers will have neither time, nor inclination, to
enter al the data by hand.

It was anticipated that ISAC would not have had to deal with incomplete data in the traffic
samples used, but this was not true: the acquisition of some data was quite difficult and,
often, the data that the controller was acquiring very easily could not be trandated so easily
into parameters for ISAC. Introspective learning techniques, presented earlier on, could

help in reducing the negative effect of the lack of cases.

CBR is Better than RBS, but with Caveats

CBR reduces the knowledge engineering problem in comparison to RBS. The clam that
CBR systems can be implemented faster than model-based systems is supported by different
sources. For example, a study stated that it took two weeks to develop a case-based version
of a system that took four months to build in rule-based form (Watson, 1994). Also, and
more recently, developers confirmed that a rule-based system took more than eight times
longer to develop than a case-based system with the same functionality. They aso claim that
the maintenance of the RBS is continual whereas the CBR system needs amost no
maintenance (Watson, 1994). The time to effectively build the structure that handles the
knowledge base in ISAC was short and almost no maintenance was necessary. Adding cases
to the case-base when a conflict was not correctly solved was also simple.

The time to construct ISAC is shorter than the time that would have been necessary to build
the equivalent rule-based system, but no comparison between the two algorithms could be
done from the point of view of the performance. In fact, from the available literature on
expert systems for ATC, it seems that the existing RBS are able to help the controllers only
in certain situations but are not reliable in a general context. Moreover, their maintenance
and update is very difficult.

The idea of using a cost function for estimating the effectiveness of a solution was
considered but discarded because it would have implied building a complete rule-based
system as complex and expensive as | SAC with the sole purpose of estimating the cost.

A very simple set of rules (2 rules) has been used in the hierarchical structure of 1SAC.
Some rules are also used in the adaptation step, which is very simple at this stage but could
be increased if a more detailed solution had to be implemented. For these reasons, it has to
be said that CBR should be complemented with some other systems such as RBS to build
successful applications (Bayles et a., 1993).

131

The Knowledge Engineering Problem

At the beginning of the project, a report with some hypotheses on important CBR issues
(Bonzano and Cunningham, 1995) was produced before having acquired a deep
understanding of the problem of ATC. There were hypotheses on the structure of the
system, on the programming language that could have been used, on the possible technical
and theoretical issues and their corresponding solutions, etc. Some of these hypotheses
were later revealed to be correct, whilst, others were not. For example, the speed of the
system in giving real time solutions was considered one of the biggest issues at the
beginning, but at the end it was not so. Moreover it was thought that the case-base
acquisition would have been one of the easiest tasks, but, on the other hand it revealed to be
one of the most difficult. These changes are just an indicator of how complex the process
has been.

The structure of ISAC changed numerous times. Several decisions had to be taken and they
did not only depend on the CBR nature of the problem, but also on its ATC nature.
Moreover, not only the restrictions coming from the ATC domain had to be taken into

consideration, but also the preferences of the controllers.

The Evaluation of ISAC is a Complex Issue

The performance of a CBR system in general and of ISAC in particular depends on how
well the case is described and on how densely and homogeneously the case space is
populated. The results of the evaluation take account of how happy the controller is and not
whether the correct solution has been given. The “correct” solution is a subjective decision
and could vary from controller to controller. Because the solutions in the case-base have
been given by a single controller, they reflect his preference.

The way of evaluating ISAC should change depending on its function. ISAC could be a
training tool for controllers not experienced on a new sector, or it could be a standardising
tool to homogenise the biased solutions that controllers might give.

The initial approach was to build a very genera system able to solve any kind of conflict in
any sector, but the solutions are often strongly dependent on the sector where the conflict
happens. ISAC could easily store the experience that each controller needs on a particular
sector, but if it is kept too general it would loose this efficiency. Although controllers will
always have to approve the suggested solutions, ISAC could become a means of giving a
sort of standardised decision even if its main purpose remains the reduction of the

controller’ s workload.

132

Different Controllers can Give Different Solutions to the Same Conflict

As already mentioned, a controller usually has to train for more than one year on a certain
sector before beginning to work on it. This training is necessary to teach the controller the
preferred solutions for that particular sector, but it will not ater his preferences and his
behaviour when he changes sector. For example, let us consider a controller that has
worked for some years in the approaching sector of a busy airport where usually conflicts
are solved immediately with a vertical manoeuvre because it is the kind of manoeuvre that
needs the least monitoring. When this controller changes sector, he will always be biased
and will solve conflicts with a vertical manoeuvre.

Another factor that could influence the controller’s decision is the attitude towards the tools
used in the simulation: some controllers examine very deeply the conflict, some other do
not. Moreover some controllers aready know the sector used for the tests, so they are
advantaged to respect to the controllers who had never seen the sector.

Also the separation minima adopted in HIPS for visualising the no-go zones could change
the solution given. If the separation minima is too big, HIPS will visualise conflicts that do
not exist in reality and the shape of the no-go zone will change, nullifying the solutions.
During a simulation, for example, there was a 27% increase in “speed” solutions when the
horizontal separation was reduced from 10 to 6 nautical miles.

A solution to avoid the controllers’ biases would be to build a case-base containing conflicts
that happened in the same sector and to ask for their solutions to controllers who work on
that sector. Biases among controllers working on the same sector are less influential
because, having learnt the same patterns, controllers will make the same assumptions on the
conflicts.

Asking a group of controllers to come up with a globally accepted solution, one of the
initial options, would take too much time. It could be assumed that the solutions generally
given by a group of controllers working on the same sector could be synthesised by one of

them, saving alot of time.

CBR can be Useful in the ATC Domain

The current version of ISAC is a working prototype that has been used to evauate the
performance of the case-base, the interactions with the controllers and the interface
protocol with HIPS. This version has aready been fielded and it is under refinement. It
proved to be effective in helping controllers in doing their job and helped in suggesting a

possible working scenario: “even if the structure of ISAC does not need substantia

133

alterations, the case-base will have to be specific for each particular sector. It could be built
by acquiring al the conflicts that will happen on that particular sector for a period that
could be as long as 6 months. Lots of conflicts will be very similar, but the case space of the
conflicts that are typical to a specific sector will be well covered. This is the only way to
avoid the problem of not having a real and good knowledge base. The case-base could
contain a small core of generic cases common to all the sectors, and it could be then
augmented with the sector specific cases over time.”

The air traffic controllers in Eurocontrol Experimental Centre and in Dublin airport have
been an integral part of designing ISAC and have been involved since the beginning of the
project. We had no difficulty getting co-operation from the controllers, and the only
negative point was our lack of ability in extracting and analysing their knowledge more
qualitatively.

9.2 Directions for Further Research

The current version of ISAC has accomplished most of the initial goals. Nevertheless there
still remain several unexplored paths, some aready envisaged at the beginning of this
research, but even more had been discovered during the knowledge engineering process.
Obvioudly, the most immediate necessity for ISAC is the construction of an effective case-
base: big enough and with coherent solutions. To date we have tried to build a generic CBR
reasoner that could work in any situation. Now that the prototypical version is ready, a
system more specialised on a particular sector could be considered.

Some tests could be done to reduce the number of parameters used in the case description.
This could be obtained either with introspective learning techniques or by eliminating the
least discriminating parameters one by one and recal culating the performance each time.
More work on the hierarchical structure for multiple aircraft conflicts has to be done. The
rules used in the high level analysis could be substituted with a small and more genera case-
base especialy conceived for MACs. The parameters used in this case-base would be
different, even if till related, to the ones used in the case-base for TACs.

Other tests could calculate the effective bias of the controllers. If done with the suggested
new case-base, this could be useful to verify our assumption that the controllers working on
the same sector are not biased, or at least are all biased in the same way.

Some interdisciplinary work could be done. For example, some available databases such as

BADA, aready used by ISAC, could provide more accurate parameters. Moreover, the

134

parameter that indicates the workload could be measured with biological data that check the
controller’s stress.

The web of pointers with symbolic values, for the implementation of the retrieval
mechanism, was introduced with the purpose of having a fast system for real time
simulations. If the speed problem occurs again, it might be solved with the help of Neura
Networks (Naughton, 1995). An alternative solution could be the implementation of the
web of pointers for the numeric values. This would require the division into ranges of the
numeric values, which is not necessarily the best option and it would require a lot of
calculations.

Finally, some lines of research have been suggested on the implementation of methods for
deciding if a case space is well covered with the introduction of the two parameters AVE,
the average distance of each case from al the others, and SMA, the distance of a case from
the closest case. It would be interesting to evaluate the hypothesis that these two

parameters do not work well in a non homogeneously covered case-base.

135

References

Aamodt A., Plaza E. (1994). Case-Based Reasoning: Foundational |ssues, Methodological
Variation and System Approaches, AICOM, Vol.7, No.1, pp.39-58.

Ashley K.D., McLaren B.M. (1995). Reasoning with Reasons in Case-based Comparisons,
Proceedings of the 1995 International Conference on Case-Based Reasoning, Case-
based Reasoning Research and Development, Lecture Notes in Artificia Intelligence,
M. Veloso and A. Aamodt Eds., Springer Verlag, pp.133-144.

BareissE.R., Porter B.W., Murray K.S. (1989). Supporting Start-to-Finish Development of
Knowledge Bases, Machine Learning, Vol.4, pp.259-283.

Barletta E.R., Hennessy C. (1989). Case Adaptation in Autoclave Layout Design, Case-
Based Reasoning: Proceedings of a Workshop on Case-Based Reasoning, San Mateo,
CA: Morgan, pp.203-207.

Barletta E.R. (1994). A Hybrid Indexing and Retrieval Strategy for Advisory CBR Systems
Built with ReMind, Proceedings of the 1994 European Workshop on Case-Based

Reasoning.

Bayles et a. (1993). Using Artificial Intelligence to Support Traffic Flow Management
Problem Resolution, Mitre Corporation, MTR93W245.

Bhansai S., Harandi M.T. (1993). Synthesis of UNIX Programs Using Derivational
Anaogy, Machine Learning, Vol.10, pp.7-55.

Birnbaum L., Collins G., Brand M., Freed M., Krulwich B., Prior L. (1991). A Model-
Based Approach to the Construction of Adaptive Case-Based Planning Systems,
Proceedings of the Case-Based Reasoning Workshop, Washington D.C., USA, pp.215-
224,

136

Bonzano A., Cunningham P. (1995). A review of CBR for use in Air Traffic Control,
Eurocontrol Experimental Centre Internal Report, April 1995.

Bonzano A., Cunningham P., Meckiff C. (1996). ISAC: A CBR System for Decision
support in Air Traffic Control, Advances in Case-Based Reasoning, Proceedings of the
1996 European Workshop on Case-Based Reasoning, |. Smith and B. Faltings Eds,,
Springer Verlag Lecture Notes in Artificial Intelligence, pp.44-57.

Bonzano A., Cunningham P., Smyth B. (1997,a). Using introspective learning to improve
retrieval in CBR: A case study in air traffic control, Case-Based Reasoning Research
and Development, Proceedings of the 1997 International Conference on Case-Based
Reasoning, D.B. Leake and E. Plaza Eds., Springer Verlag, Lecture Notes in Artificial
Intelligence, pp.291-302.

Bonzano A., Cunningham P., Smyth B. (1997,b). Learning feature weights for CBR: Global
versus Local, AllA 97: Advances in Artificia Intelligence, Proceedings of AIIA'97, M.
Lenzerini Ed., Lecture Notesin Artificial Intelligence, Springer Verlag, pp.417-426.

Bos A. (1997). User Manua for BADA, Revision 2.5, Eurocontrol Experimental Centre
Note, January 1997.

Caloo F. (1997). Elaboration of a method to assess psycho-physiological states of Air
Traffic Controllers in Simulation, Laboratoire d Anthropologie Appliquée de
I"Université Réné Déscartes Paris en collaboration avec le Centre d’ expertise IND et des

controleurs du CEE, Eurocontrol Experimental Centre Report, December 1997.

Carbonell J.G., Veloso M. (1988). Integrating Derivational Analogy into a General Problem
Solving Architecture, Proceedings of the First Workshop on Case-Based Reasoning,
pp.104-124.

Cunningham P., Finn D., Sattery S. (1994). Knowledge Engineering Requirements in
Derivational Analogy, Topics in Case-based Reasoning, Lecture Notes in Artificial
Intelligence, S. Wess, K.-D. Althoff, M.M. Richter Eds., Springer Verlag, pp.234-245.

137

Cunningham P., Smyth B., Bonzano A. (1998). An Incremental Retrieval Mechanism for
Case-Based Electronic Fault Diagnosis, to be published in the Knowledge-Based
Systems Journal.

Cunningham P. (1998). CBR: Strengths and Weaknesses, to be presented at The 11"
International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, Castellén, Spain, June 1998.

Domeshek, E. (1992). Using Cases for Design Aiding, AID Workshop 1992.

Domeshek E., Kolodner J. (1992). Toward a Case-based Aid for Conceptual Design,
International Journal of Expert Systems, Vol.4, No.2.

Domeshek E., Kolodner J. (1993). Using the Points of Large Cases, Al EDAM 1993, Vol.7,
No.2, pp.87-96.

Doyle M. (1997). Web-based CBR in Java, B.A. (Mod.) Computer Science, Linguistic and
German, Fina Year Project, Trinity College Dublin.

Field A. (1985). Internationa Air Traffic Control Management of the World's Airspace,

Pergamon Press.

Fox S., Leake D.B. (1995). Using Introspective Reasoning to Refine Indexing, Proceedings

of the 14" International Joint Conference on Artificial Intelligence, pp.391-397.

Goel A., Chandrasekaran B. (1989). Use of Device Models in Adaptation of Design Cases,
Proceedings of the Second Workshop on Case-Based Reasoning, K. Hammond Ed.,

Morgan Kaufman.

Goel A. (1991). A Model-Based Approach to Case-Adaptation, Proceedings of the 13"

Annual Conference of Cognitive Science society.

138

God A. (1992). Integrating Case-Based Reasoning and Model-Based: a Computational
Model of Design Problem Solving, Al Magazine, Vol.13, No.2.

Gotteland J.B. (1995). Résolution Automatisée de conflicts en route, Ecole Nationale de
I’ Aviation Civile, S92, June 1995.

Hamrick L.Y., Arthur W.C., Reierson J.D. (1991). Advanced AERA Concepts. Proposed
Problem Prediction and Problem Resolution Algorithms for the Automated Separation
Function (ASF), Mitre Corporation, MTR-90W00140, July 1991.

Hanney K., Keane M., Smyth B., Cunningham P. (1995). Systems, tasks and adaptation
knowledge: Revealing some revealing dependencies, Case-Based Reasoning Research
and Development, Proceedings of the 1995 International Conference on Case-Based
Reasoning, Lecture Notes in Artificial Intelligence, M. Veloso and A. Aamodt Eds,,
Springer Verlag, pp.461-470.

Hanney K., Keane M. (1996). Learning adaptation rules from a Case-Base, Advances in
Case-Based Reasoning, Proceedings of the 1996 European Workshop on Case-Based
Reasoning, I. Smith and B. Faltings Eds., Springer Verlag Lecture Notes in Artificial
Intelligence, pp.179-192.

Hansen L.K., Larsen J,, Fog T. (1997). Early Stop Criterion from the Bootstrap Ensemble,
Proceedings of ICASSP’ 97, Munich, Germany, April 1997.

Hennessy D., Hinkle D. (1991). Initial Results from Clavier: A Case-Based Autoclave
Loading Assistant, Proceedings of the Third Workshop on Case-Based Reasoning.

Hennessy D., Hinkle D. (1992). Applying case-based reasoning to autoclave loading, |EEE
Expert, Vol.7, No.5, pp.21-26.

Hikle D., Toomey C.N. (1994). Clavier: Applying Case-Based Reasoning to Composite

Part Fabrication, Proceedings of the Sxth Innovative Applications of Artificial
Intelligence Conference, pp.55-61.

139

Hinrichs T.R. (1988). Towards an Architecture for Open World Problem Solving,
Proceedings of the First Workshop on Case-Based Reasoning.

Hinrichs T.R., Kolodner J. (1991). The Roles of Adaptation in Case-Based Design,
Proceedings of the Third Workshop on Case-base Reasoning.

Hjorth U. (1994). Computer Intensive Statistical Methods, Chapman and Hall, London.

Holl Nagel (1993). Human Reliability Analysis Context and Control, Academic Press,

London.

ICAO (1994). Air Traffic Services, Annex 11, 10" edition, International Civil Aviation

Organisation.

ICAO (1996). Rules of the Air and Air Traffic Services, Doc. 4444-RA/501, 13" edition,

International Civil Aviation Organisation.

Irvine R. (1997). The GEARS Conflict Resolution Algorithm, Eurocontrol Experimental
Centre, Report 321, November 1997.

Kambhampati S. (1989). Integrating Planning and Reuse: a framework for flexible plan
reuse, Proceedings of the Second Workshop on Case-Based Reasoning, K. Hammond

Ed., Morgan Kaufman.

Kambhampati S. (1989). Representational requirements for plan reuse, Proceedings of the
Second Workshop on Case-Based Reasoning, K. Hammond Ed., Morgan Kaufman.

Kambhampati S. (1993). Supporting Flexible Plan Reuse, Machine Learning for Planning,
S. Minton Ed.

Kambhampati S., Hendler JA. (1992). A Validation-structure-based theory of plan
modification and reuse, Artificial Intelligence, Vol.55, pp.193-258.

140

Kitano H. (1996). Nausicaé and the Sirens: A Tale of Two Intelligent Autonomous Agents,
|EEE Expert, December 1996.

Kolodner JL. (1988). Extending Problem Solver Capabilities through Case-based
Inference, Proceedings. Case-Based Reasoning Workshop, J.L. Kolodner Ed.

Kolodner J.L. (1991). Improving Human Decision Making Through Case-Based Decision
Aiding, Al Magazine, Vol.12, No.2, Summer 1991, pp.52-68.

Kolodner J.L. (1993). Case-Based Reasoning, Morgan Kaufmann Publishers.

Koton P. (1988). Reasoning about Evidence in Causal Explanation, Proceedings of the
First Workshop on Case-Based Reasoning.

Koton P. (1988). Integrating Case-based and Causal Reasoning, Proceedings of the Tenth
Annual Conference of the Cognitive Science Society, Hillsdale, NJ: Erlbaum.

Laird JE, Rosenbloom P.S., Newell A. (1986). Chucking in Soar: The Anatomy of a

General Learning Mechanism, Machine Learning, Vol.1, No.1.

Laird JE., Newdl A., Rosenbloom P.S. (1987). Soar: An Architecture for General
Intelligence, Artificial Intelligence, Vol.33, No.1.

Leake D.B., Kinley A., Wilson D. (1995). Learning to Improve Case Adaptation by
Introspective Reasoning and CBR, Case-Based Reasoning Research and Devel opment,
Proceedings of the First International Conference on Case-Based Reasoning, M.
Veloso and A. Aamodt Eds., Springer-Verlag, pp.229-240.

Leake D.B. (1996). Case-Based Reasoning: Experiences, Lessons and Future Directions,
Chapter 2, AAAI Press, The MIT Press, 1996.

Levine A. (1971). Theory of Probability, Addison-Wedley.

Lewino F. (1995). Sécurité Aérienne, Comment réduire lesrisques, Le Point, N.1192.

141

Ljungberg M., Lucas A. (1992). The OASIS air traffic management system, Australian
Artificial Intelligence Institute, Tech. Rep. 28, Melbourne, Australia, Aug 1992, also
available at http://www.aaii.oz.au/research/techreports/abstracts/tn28.html.

Ly S. (1987). Prémiéres études en intelligence artificielle appliquées a la circulation
aérienne: PLATONS, Rapport CENA/R87-19, December 1987.

Maes P. (1994). Agents that Reduce Work and Information Overload, Communications of
the ACM, July 1994, Vol.37, No.7, pp.31-40.

Mark W. (1989). Case-Based Reasoning for Autoclave Management, Proceedings of the
Second Workshop on Case-Based Reasoning, K. Hammond Ed., Morgan Kaufman.

Meckiff C., Gibbs P. (1994). PHARE Highly Interactive Problem Solver, Eurocontrol
Experimental Centre, Report 273/94.

Meckiff C. (1994). Proposal for PATs Problem Solver Front-end Processing, Eurocontrol
Experimental Centre, Internal Document, July 1994.

Micarelli A., Sciarrone F. (1996). A Case-Based System for Adaptive Hypermedia
Navigation, Proceedings of the 1996 European Workshop on Case-Based Reasoning,
Advances in Case-Based Reasoning, |. Smith and B. Faltings Eds., Springer Verlag
Lecture Notesin Artificia Intelligence, pp.266-279.

Model Development Group (1995), RAMS System Overview Document, Eurocontrol

Experimental Centre, December 95.

Mufnoz-Avila H., Hullen J. (1996). Parameter Weighting by Explaining Case-Based
Planning Episodes, Proceedings of the 1996 European Workshop on Case-Based
Reasoning, Advances in Case-Based Reasoning, |. Smith and B. Faltings Eds., Springer
Verlag Lecture Notesin Artificia Intelligence, pp.280-294.

142

Naughton S., Cunningham P. (1995). Neural Networks for Case Retrieval in Case-Based
Reasoning, Proceedings of the Fifth Irish Neural Networks Conference, Cardina Press.

Nicolaon J., Tumelin J. (1992). ARC2000: Specification of the rea time simulation,
Eurocontrol Experimental Centre, Task AS06, December 1992.

Nosal M. (1977). Basic Probability and Application, W.B. Sainders Company.

Oehlmann R., Edwards P., Sleeman D. (1995). Changing the Viewpoint: Re-Indexing by
Introspective Question, Proceedings of the 16™ Annual Conference of the Cognitive
Science Society, Lawrence-Erlbaum and Associates, pp.381-386.

Panchon P., Angerand L., Ly S. (1988). Rapport de mission aux USA sur |’ utilisation de
I"Intelligence Artificielle pour I’ ATC et conséquences pour les projets francais, CENA,

Report 88-16.

Perry T.S. (1997). In search of the future of Air Traffic Control, IEEE Spectrum, August
1997, pp.19-35.

Quinlan JR. (1986). Induction of Decision Trees, Machine Learning, Vol.1, pp.81-106.

Quinlan JR. (1993). C4.5 Programs for machine learning, Morgan Kaufmann Publishers.

Quinlan JR. (1994). Comparing Connectionist and Symbolic Learning Methods,
Computational Learning Theory and Natural Learning Systems, Vol.1, S.J. Hansen,
G.A. Draftel and R.L. Rivest Eds., MIT Press, pp.445-456.

Quinlan J.R. (1997). C5.0, available at http://www.rulequest.com/see5-info.html

Ram A., Arkin R., Moorman K., Clark, R. (1992). Case-Based reactive navigation: A case-

based method for on-line selection and adaptation of reactive control parameters,
Autonomous Robotic Systems, GIT-CC-92/57.

143

Richter M. (1995). The Knowledge Contained in Similarity Measures. Presented at the
1997 International Conference on Case-Based Reasoning.
http://wwwagr.informatik.uni-kl.de/~Iss/ CBR/RichterSlides.ps

Rougegrez-Loriette S. (1994). Prediction de processus a partir de comportements observes:
Le systeme REBECAS, These de Doctorat de I’ Université de Paris.

Saltzburg S.L. (1991). A Nearest Hyperrectangle Learning Method, Machine Learning,
Vol.1.

Sharma S., Sleeman D. (1988). REFINER: a Case-Based Differential Diagnosis Aid for
Knowledge Acquisition and Knowledge Refinement, Proceedings of EWS.-88, D.
Sleeman Ed., Ritman: London, pp.201-210.

Shively C., Schwamb K.B. (1984). AIRPAC: Advisor for the Intelligent Resolution of
Predicted Aircraft Conflicts, Mitre Corporation, MTR-84W164, October 1984.

Simpson R.L. (1985). A Computer Model of Case-Based Reasoning in Problem Solving:
An Investigation in the Domain of Dispute mediation, Ph.D. Thes's, Georgia I nstitute of
Technology, School of Information and Computer Science, GIT-ICS-85/18.

Smyth B., Cunningham P. (1992). A Blackboard Based, recursive case-based reasoning
system for software development, Proceedings of 5" Irish Conference on Artificial

Intelligence and Cognitive Science, pp.179-194.

Smyth B., Cunningham P. (1992). D&V u: A Hierarchical Case-Based Reasoning System
for Software Design, Proceedings of 10" European Conference on Artificial
Intelligence, Vienna, B. Neumann Ed., Wiley & Son, pp.587-589.

Smyth B., Cunningham P. (1993). Complexity of Adaptation in Real-World Case-Based

Systems, Proceedings of the 6" Irish Conference on Artificial Intelligence and
Cognitive Science, pp.229-240.

144

Smyth B., Keane M. (1994). Retrieving Adaptable Cases, M. Richter, S. Wess and K.-D.
Dieter Eds., Topics on Case-Based Reasoning, Lecture Notes on Artificial Intelligence,
Springer Verlag, pp.209-220.

Smyth B., Keane M.T. (1995). Remembering to Forget: A Competence Preserving Case
Deletion Policy for CBR Systems, Proceedings of 1JCAI-95, Montreal, Canada, pp.377-
382.

Stefik M. (1981). Planning and Meta-Planning, Artificial Intelligence, Vol.16, pp.141-170.

Sycara E.P. (1987). Resolving Adversarial Conflicts: An Approach to Integrating Case-
Based and Analytic Methods, Ph.D. Thesis, Georgia Institute of Technology, GIT-ICS-
87/26.

Sycara E.P., Navinchandra D. (1989). A Process Model of Experience-Based Design,
Proceedings of the Eleventh Annual Conference of the Cognitive Science Society.

Sycara E.P., Navinchandra D. (1991). Influences: A Thematic Abstraction for Creative Use
of Multiple Cases, Proceedings of the Third Workshop on Case-Based Reasoning.

Thompson V. (1997). New reasoning engines and intelligent agents help companies manage
their enterprise-wide knowledge resources, Byte, September 1997, adso available at
http://www.byte.com/art/9709/sec17/art1.htm

Tumelin J. (1990). ASTA, Eurocontrol Experimental Centre, Note 02/90.

Veloso M., Carbonell J.G. (1989). Learning Analogies by Analogy-The Closed Loop of
Memory Organisation and Problem Solving, Proceedings of the Second Workshop on
Case-based Reasoning, K. Hammond Ed., Morgan Kaufman.

Veloso M. (1991). Efficient Non-linear Problem Solving using Casua Commitment and

Analogical Replay, Proceedings Thirteenth Annual Conference of Cognitive Science
society.

145

Veloso M., Carbonell J.G. (1991). Variable-Precision Case Retrieval in Anaogica Problem
Solving, Proceedings of the Third Workshop on Case-based Reasoning.

Veloso M. (1992). Learning by Anaogical Reasoning in General Problem Solving, Ph.D.
Thesis, CMU-CS-92-174, School of Computer Science, Carnegie Mellon University,
Pittsburgh, USA.

Watson |.D. (1994), The Case for Case-Based Reasoning, Proceedings of EPSRC/DRAL,
November 1994, pp.55-64.

Watson 1.D. (1996) Case-Based Reasoning Tools: An Overview, Proceedings of 2nd. UK
CBR Workshop, Progress in Case-Based Reasoning, 1.D. Watson Ed., University of
Salford, pp.71-88, also available at http://146.87.176.38/ai-cbr/Papers/cbrtool s.doc.

Wetterschereck D., Aha D.W. (1995) Weighting Parameters, Case-Based Reasoning
Research and Development, Proceedings of The 1% International Conference on Case-
Based Reasoning, M. Veloso and A. Aamodt Eds., Springer-Verlag, pp.347-358.

Wettschereck D., Aha D.W., Mohri T. (1997). A review and empirical evaluation of
parameter weighting methods for a class of lazy learning algorithms, to appear in

Artificial Intelligence Review, also available at http://www.aic.nrl.navy.mil/~ahal.

Wiener E.L., Nagel D.C. (1988). Human Factors in Aviation, London, Academic Press,
Chapter 19.

Zegha K. (1994). Towards the Logic of an Airborne Collison Avoidance System which

Ensures Coordination with Multiple Cooperative Intruders, International Council of

Aeronautical Sciences, Aircraft Systems Conference, Anaheim.

146

Appendix A

Acquisition of the Case-Base

As said in Chapters 6 and 8, one of the biggest problems in the project of ISAC has been
the acquisition of the case-base. As a temporary solution to the impossibility of creating a
case-base from the real traffic samples, an HTML form has been prepared to add by hand
the cases to the case-case. This appendix contains a short description of how this has been

done.

A.1 Structure

The HTML form, whose code is below, gives the list of parameters that constitute the case-
base with radio buttons for the possible values of the parameters. When the “submit” button
is pressed the form sends its data to the PERL script pr ocess_f orm cgi that analyses
the data and sends it to the program Conver t . This program reads the data and writes it

into the case-bases stored as text files.

A.2 The Form for the Acquisition of the Case-Base

<HTM_>
<TI TLE>CBR</ Tl TLE>
<BODY bgcol or =whi t e>

Add this case to the CaseBase</ FONT>

<FORM METHOD=" POST" ACTI ON="process_formcgi ">

CaseNane (W THOUT SPACES)
<I NPUT TYPE=t ext NAME=CaseNane S| ZE=20 MAXLENGTH=60> (opti onal)

<st rong>Hor Conf | Conf </ st rong>

<I NPUT TYPE=r adi o NAME=Hor Conf| Conf VALUE="cr ossi ng">crossi ng
<I NPUT TYPE=r adi o NAME=Hor Conf| Conf VALUE="conver gi ng">convergi ng
<I NPUT TYPE=r adi o NAME=Hor Conf| Conf VALUE="headon">headon

<I NPUT TYPE=r adi o NAME=Hor Conf| Conf VALUE="di vergi ng">di vergi ng
<I NPUT TYPE=r adi o NAME=Hor Conf| Conf VALUE="NIL" checked>NI L

Al titudeNow</ strong>

<I NPUT TYPE=radi o NAME=AltitudeNow VALUE="di fferent">different
<I NPUT TYPE=radi o NAME=AltitudeNow VALUE="same" >same

<I NPUT TYPE=r adi o NAME=AltitudeNow VALUE="NIL" checked>NIL

Priority

<I NPUT TYPE=radi o NAME=Priority VALUE="hi gher">hi gher

<I NPUT TYPE=radi o NAME=Priority VALUE="sane" >sane

<I NPUT TYPE=radi o NAME=Priority VALUE="I| ower" >l ower

<I NPUT TYPE=radi o NAME=Priority VALUE="N L" checked>NlL

147

Speed</ st rong>

<I NPUT TYPE=r adi o NAME=Speed VALUE="faster">faster

<I NPUT TYPE=r adi o NAME=Speed VALUE="sane" >sane

<I NPUT TYPE=r adi o NAME=Speed VALUE="sl ower" >sl ower

<I NPUT TYPE=r adi o NAME=Speed VALUE="NIL" checked>NIL

<table >

<t d>

Cl oseToTOD(A) </ strong>

<I NPUT TYPE=t ext NAME=Cl 0seToTOD S| ZE=4 MAXLENGTH=20>

Cl oseToBoundari es(A) </ strong>

<I NPUT TYPE=t ext NAME=Cl oseToBoundaries S| ZE=4 MAXLENGTH=20>

Manoeuvrability(A)

<I NPUT TYPE=t ext NAME=Manoeuvrability SIZE=4 MAXLENGTH=20>

Altlntention(A)

<I NPUT TYPE=radi o NAME=Alt | ntention VALUE="st abl e">st abl e

<I NPUT TYPE=radi o NAME=Alt | ntention VALUE="descendi ng">descendi ng
<I NPUT TYPE=radi o NAME=Alt | ntention VALUE="cli nbi ng">cl i nbing

<I NPUT TYPE=radi o NAME=AltIntenti on VALUE="NIL" checked>NIL

EasyToExi t Hori zont al | y(A) </ strong>

<I NPUT TYPE=r adi o NAME=EasyToExitHorizontal |y VALUE="veryEasy">veryEasy
<I NPUT TYPE=r adi o NAME=EasyToExitHorizontally VALUE="easy" >easy
<I NPUT TYPE=r adi o NAME=EasyToExitHorizontal |y VALUE="possi bl e" >possible
<I NPUT TYPE=r adi o NAME=EasyToExitHorizontally VALUE="difficult" >difficult
<I NPUT TYPE=r adi o NAME=EasyToExitHorizontally VALUE="NIL" checked>NlL

Level sAvai |l abl e(A) </ st rong>

<I NPUT TYPE=r adi o NAME=Level sAvail abl e VALUE="none" >none

<I NPUT TYPE=r adi o NAME=Level sAvai |l abl e VALUE="yes" >yes

<I NPUT TYPE=r adi o NAME=Level sAvai |l abl e VALUE="above" >above

<I NPUT TYPE=r adi o NAME=Level sAvai |l abl e VALUE="bel ow' >bel ow

<I NPUT TYPE=r adi o NAME=Level sAvail abl e VALUE="wi t hSpaces" >wi t hSpaces
<I NPUT TYPE=r adi o NAME=Level sAvail abl e VALUE="NIL" checked>NIL

Fast er (A) </ strong>

<I NPUT TYPE=r adi o NAME=Fast er VALUE="easy">easy

<I NPUT TYPE=r adi o NAME=Faster VALUE="possible" >possible

<I NPUT TYPE=r adi o NAME=Faster VALUE="difficult">difficult

<I NPUT TYPE=r adi o NAME=Faster VALUE="NIL" checked>Nl L

Sl ower (A) </ strong>

<I NPUT TYPE=r adi o NAME=S| ower VALUE="easy">easy

<I NPUT TYPE=r adi o NAME=S| ower VALUE="possible" >possible

<I NPUT TYPE=r adi o NAME=S| ower VALUE="difficult">difficult

<I NPUT TYPE=r adi o NAME=SI| ower VALUE="NIL" checked>NlL

</ FONT>

</td>

<t d>

Cl oseToTOD(B) </ st rong>

<I NPUT TYPE=t ext NAME=Cl 0seToTODB SI ZE=4 MAXLENGTH=20>

Cl oseToBoundari es(B) </ strong>

<I NPUT TYPE=t ext NAME=Cl oseToBoundari esB Sl ZE=4 MAXLENGTH=20>

Manoeuvrabi |l ity(B)

<I NPUT TYPE=t ext NAME=ManoeuvrabilityB Sl ZE=4 MAXLENGTH=20>

Altlntention(B)

148

<I NPUT TYPE=r adi o NAME=Alt | ntentionB VALUE="st abl e">stabl e

<I NPUT TYPE=r adi o NAME=AIt | ntentionB VALUE="descendi ng">descendi ng

<I NPUT TYPE=radi o NAME=Alt | ntentionB VALUE="cl i nbi ng">cl i nbi ng

<I NPUT TYPE=r adi o NAME=AltIntenti onB VALUE="NIL" checked>NIL

EasyToExi t Hori zont al | y(B) </ strong>

<I NPUT TYPE=r adi o NAME=EasyToExitHori zontal | yB VALUE="veryEasy" >veryEasy
<I NPUT TYPE=r adi o NAME=EasyToExitHorizontal |l yB VALUE="easy" >easy

<I NPUT TYPE=r adi o NAME=EasyToExitHori zontal | yB VALUE="possi bl e" >possi bl e
<I NPUT TYPE=r adi o NAME=EasyToExitHorizontal |l yB VALUE="difficult" >difficult
<I NPUT TYPE=r adi o NAME=EasyToExitHori zontal | yB VALUE="NI L" checked>NI L

>iMetscape: CBR =10} x|

File Edit View Go Bookmarks Options Directory Window Help ‘
@l iyl Z | &) Hy] 2 Wl ®
Back § Fopwendd Home Edit Reload }| 1=0es Open Pritat Fird Siece)

Location: Iifile: Jdd/csefabonzano fstorage /public html/form. html

Add this case to the CaseBase

CaseName (WITHOUT SPACES) | contlict4® {optional)

HorConflConf <“crossing < converging < headon < diverging < NIL
AltitudeNow <different «same </NIL

Priority < higher < same < dower < NIL

Speed < faster Szame soslower s sNIL

CloseToTOD(A) | 17¢ CloseToTOD(B) | 45
CloseToBoundaries(4) |4_ CloseToBoundaries(B) |§_
Manoawrability(A) |T Manoewrability(B) W
AltIntention(A) AltIntention(B)

“stable < descending < climbing < /NIL <stable <Mdescending < climbing < NIL
EasyToExitHorizontally{A) EasyToExitHorizontally(B)

“veryEasy < easy < possible < difficulr < NIL “weryBasy < easy < possible < difficulr < NIL
Levels Available{A) Levels Available(B)

s/none soves ssabove obelow <owithSpaces ANIL S/NONE “JSVES “ghove swbelow < withSpaces < /NIL
Faster{A) < casy < possible < difficult “*NIL Faster{B) < easy « possible < difficult <*NIL
Slower(A) < easy < possible < difficult <NIL Slower(B) < easy < possible < difficult <*NIL

Best solution

Juppl ldowl _lhorl _lspel
[upp2 L dow? _lhor2 I spe2
Jupp2 I dow2 [hor2 I spe3

store| reset|

Sag I A

Figure A.1: The form as shown by the browser.

Level sAvai |l abl e(B) </ strong>

<I NPUT TYPE=r adi o NAME=Level sAvai |l abl eB VALUE="nhone" >none

<I NPUT TYPE=r adi o NAME=Level sAvai | abl eB VALUE="yes" >yes

<I NPUT TYPE=r adi o NAME=Level sAvai |l abl eB VALUE="above" >above

<I NPUT TYPE=r adi o NAME=Level sAvai |l abl eB VALUE="bel ow' >bel ow

<I NPUT TYPE=r adi o NAME=Level sAvai |l abl eB VALUE="wi t hSpaces" >wi t hSpaces
<I NPUT TYPE=r adi o NAME=Level sAvail abl eB VALUE="NIL" checked>NI L

Fast er (B) </ strong>

149

<I NPUT TYPE=r adi o NAME=Fast er B VALUE="easy" >easy

<I NPUT TYPE=r adi o NAME=Fast er B VALUE="possi bl e" >possi bl e
<I NPUT TYPE=r adi o NAME=FasterB VALUE="difficult">difficult
<I NPUT TYPE=r adi o NAME=Faster B VALUE="NIL" checked>NIL

Sl ower (B) </ strong>

<I NPUT TYPE=r adi o NAME=S| ower B VALUE="easy" >easy

<I NPUT TYPE=r adi o NAME=S| ower B VALUE="possi bl e" >possi bl e
<I NPUT TYPE=r adi o NAME=S| ower B VALUE="di fficult">difficult
<I NPUT TYPE=r adi o NAME=S| ower B VALUE="NIL" checked>NI L

</ FONT>

</td>

</tabl e>

<dt >Best sol ution

<i nput type=checkbox nane=Suppl > uppl
<i nput type=checkbox nane=Sdowl > dowl
<i nput type=checkbox nane=Shorl > horl
<i nput type=checkbox nane=Sspel > spel ||

<i nput type=checkbox nane=Supp2> upp2
<i nput type=checkbox nane=Sdow2> dow2
<i nput type=checkbox nane=Shor 2> hor2
<i nput type=checkbox nane=Sspe2> spe2 |
<i nput type=checkbox nane=Supp3> upp3
<i nput type=checkbox name=Sdow3> dow3
<i nput type=checkbox nane=Shor 3> hor 3
<i nput type=checkbox nanme=Sspe3> spe3

<I NPUT TYPE=submit VALUE=st ore>

<I NPUT TYPE=r eset VALUE=reset>

</ FORM>

<hr >

</ BODY>

</ HTML>

A.3 The PERL file process_form cqgi

#! [/ opt/ perl 5/ bin/perl -w
unshift @SA ".";

use C4;

$query = new CA ;

$CaseNane= $query- >par an(‘' CaseNane’);

$Hor Conf | Conf = $quer y- >par an(‘ Hor Conf | Conf’);

$Al titudeNow= $query->paran(‘ Al titudeNow);

$Priority= $query->paran(‘Priority’);

$Speed= $query- >paran(‘ Speed’);

$C 0seToTOD= $query->paran(‘ Cl oseToTOD)

$C 0seToTODB= $query->paran(‘ C oseToTODB') ;

$C oseToBoundari es= $query->paran(‘ Cl oseToBoundaries’);
$C oseToBoundari esB= $query->paran(‘ Cl oseToBoundari esB');
$Manoeuvrabi | i ty= $query->paranm(‘ Manoeuvrability’);
$Manoeuvr abi | i t yB= $query->paran(‘ ManoeuvrabilityB);

$Al tIntention= $query->paran(‘Altintention);

$Al tIntentionB= $query->paran(‘AltlntentionB);
$EasyToExi t Hori zont al | y= $query->par an(‘ EasyToExi t Hori zontal ly’);
$EasyToExi t Hori zont al | yB= $query->par an(‘ EasyToExi t Hori zontal | yB') ;
$Level sAvai | abl e= $query->paran(‘ Level sAvail able’);
$Level sAvai | abl eB= $query->paran(‘ Level sAvai |l abl eB') ;
$Fast er = $query->paran(‘ Faster’);

$Fast er B= $query->paran(‘ FasterB');

$Sl ower = $query- >paran(‘ Sl ower’);

$Sl ower B= $query- >paran(‘ Sl onerB') ;

$Suppl= $query->paran(‘ Suppl’);
$Sdowl= $query- >paran(‘ Sdowl’) ;
$Shor 1= $query- >paran(‘ Shor1’);
$Sspel= $query->paran(‘ Sspel’);
$Supp2= $query->paran(‘ Supp2’);
$Sdow2= $query- >par an(‘ Sdow2’) ;
$Shor 2= $query- >par an(‘ Shor2’);
$Sspe2= $query->paran(‘ Sspe2’);

150

$Supp3= $query- >paran(‘ Supp3’)
$Sdow3d= $query- >par an(‘ Sdow3’) ;
$Shor 3= $query- >par an(‘ Shor 3’);
$Sspe3d= $query- >paran(‘ Sspe3’)

if (!$CaseNanme) { $CaseNane="NoNane"; }

if (! $C oseToTOD) { $C oseToTOD="-999"; }

if (!$C oseToTODB) { $C oseToTODB="-999"; }

if (!C oseToBoundaries) { $C oseToBoundari es="-999"; }
if (!$d oseToBoundari esB) { $C oseToBoundari esB="-999"; }
if (!$Manoeuvrability) { $Manoeuvrability="-999"; }

if (!$ManoeuvrabilityB) { $NhnoeuvrabllltyB— 999"; }
if (!'$Suppl) { $Suppl="off"; }

if (!$Sdowl) { $Sdowl=" off"; }

if (!$Shorl) { $Shorl="off"; }

if (!$Sspel) { $Sspel="off"; }

if (!'$Supp2) { $Supp2="off"; }

if (!$Sdow2) { $Sdowz2="off"; }

if (!$Shor2) { $Shor2="off"; }

if (!$Sspe2) { $Sspe2="off"; }

if (!$Supp3) { $Supp3="off"; }

if (!$Sdow3) { $Sdowd="off"; }

if (!$Shor3) { $Shor3="off"; }

if (!$Sspe3) { $Sspe3="off"; }

system "/ hone/ist/bnz/public_htm /CreateCB/ g $CaseNane $Hor Conf | Conf
$AItitudeNow $Priority $Speed $C oseToTOD $Cl oseToTODB $Cl oseToBoundari es

$Cl oseToBoundari esB $Manoeuvrability $ManoeuvrabilityB $Altlntention

$Al tIntenti onB $EasyToExit Hori zontal |y $EasyToExitHorizontal lyB

$Level sAvai |l abl e $Level sAvai |l abl eB $Faster $FasterB $Sl ower $Sl ower B $Suppl
$Sdowl $Shor1l $Sspel $Supp2 $Sdow2 $Shor2 $Sspe2 $Supp3 $Sdowd $Shor 3 $Sspe3”

A.4 The program Convert

Thisis a C++ program that first checks that a new case with exactly the same parameters
values as one aready in the case-base has not been submitted. Then the priority of the two
aircraft is calculated using the rules in Section 4.3. Afterward, all the parameters that
usualy are calculated by the system GHMI when a case description is passed to ISAC have
to be calculated because Convert substitutes itself to GHMI. For example, the parameter
“Similar”, usually calculated by GHMI when a conflict is detected, has to be calculated
exactly in the same way by Convert using the data of the case description.

Finally the three case-bases, one for the “OnelnOne” case representation and two for the
“TwolnOne” case representation (canonical and non-canonical) are written with the names:

cbli nl, cbcanoni cal andcbnonCan.

The code for Convert

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <i ostream h>
#i ncl ude <string. h>

char lista[12][5]=
{"uppl®, "dowl", "hor1", "spel", "upp2", "dow2", "hor2", "spe2", "upp3",
"dowd", "hor3", "spe3"}:

char* Del EOL(char* tok)

{int i =0;

while((tok[i]!=" *)&&(tok[i] !'= "\n")&&tok[i])
i ++;

151

tok[i] = "\0O’
return tok;

}

char* other(char* val ue)

if(strcnmp(value,"different")==0)
return "different”;
if(strcnmp(val ue, "same") ==0)
return "sane";
if(strcnp(val ue, "better")==0)
return "worse";
if(strcnmp(val ue, "worse")==0)
return "better";
if(strcnp(val ue, "higher")==0)
return "l ower";
if(strcnmp(val ue, "Il ower")==0)
return "higher";
if(strcnmp(val ue, "faster")==0)
return "slower";
if(strcnmp(val ue, "sl ower")==0)
return "faster";
if(strcnp(val ue, "N L") ==0)
return "NIL";

cout << "
 Error in function \"other\": not found " << val ue
return "nothing";

}

char* otherSol (char* val ue)

if(strcnp(val ue, "uppl")==0)
return "upp2";
if(strcnmp(val ue, "dowl") ==0)
return "dow2";
if(strcnp(val ue, "upp2")==0)
return "uppl";
if(strcnp(val ue, "dow2") ==0)
return "dowl";
if(strcnp(val ue, "hor1")==0)
return "hor2";
if(strcnp(val ue, "hor2")==0)
return "hor1";
if(strcnp(val ue, "spel")==0)
return "spe2";
if(strcnp(val ue, "spe2")==0)
return "spel";
return val ue;

}

mai n(i nt argc, char** argv)
{

int i;

char CaseNane[32],Simlar[5];
FI LE *cbli nl, *nonCan, *canoni cal , *cspace

cout << "Content-type:text/htm\n\n";
cout << "<HTM.> <TITLE> formresults </ Tl TLE> <BODY>";

/1 building string with all the val ues
char Al'l TheVal ues[333];
strcpy(Al | TheVal ues, argv[2]);

strcat (Al'l TheVal ues, "*");
for(i=3;i<argc;i++)

strcat (Al | TheVal ues, argv[i]);
strcat (Al | TheVal ues, "*");
}

cout << "
Val ues passed fromthe form " << Del ECL(AI|l TheVal ues) <<

/1 checking whether this string is already present in the case space
char Casel nsi de[333];

int AlreadyThere=0;

cspace=f open(" Cr eat eCB/ CaseSpace", "r");

int aux=0;

152

"
";

whi | e(f get s(Casel nsi de, 332, cspace))
{
aux++;
Del EOL(Casel nsi de) ;
i f(strcnp(Casel nsi de, Al | TheVal ues) ==0)
Al readyTher e=1;
fcl ose(cspace);

if (Al readyThere)
{

cout << "

<H1> Case ALREADY in the Case-base "

</ H1> (not added) </ BODY></ HTM.>";
exit(0);

else // case not in the case space: witing it
{
cspace=f open(" Cr eat eCB/ CaseSpace", "a");
fprintf(cspace,"%\n", All TheVal ues);
fcl ose(cspace);

}

cbli n1=f open(" Creat eCB/ cbli n1","a");
nonCan=f open(" Cr eat eCB/ cbnonCan", "a");
canoni cal =f open(" Cr eat eCB/ cbcanoni cal ", "a");

/'l choosing first aircraft for canonical description
/1 it is the one with the lower priority

int mark1=0, mar k2=0, first=1;
/1l the higher the mark, the higher the priority
strcpy(Simlar,"no");

/1l see if it is stable

if(strcnmp(argv[12], "stable")==0)
mar k1++

if(strcnmp(argv[13], "stable")==0)
mar k2++

/1l see if close to dest (TOD)
doubl e auxl=atol (argv[6]), aux2=atol (argv[7])
i f ((auxl!=-999) &&(aux2! =- 999))

i f((auxl-aux2)>10)
mar k1++
i f((aux2-auxl)>10)
mar k2++
}

/1l see the manoeuvrability
auxl=atol (argv[10]), aux2=atol (argv[11]);
i f((auxl!=-999)&&(aux2!=-999))

i f (auxl<aux2-0.1)
mar k1++

i f (aux2<aux1-0.1)
mar k2++

}

/'l see the priority due to the category
if(strcnp(argv[4], "higher")==0)

mar k1++
if(strcnp(argv[4],"l ower")==0)

mar k2++

i f(markl<mark?2)
first=1;

el se if(mark2<markl)
first=0;

<<

else // if the aircraft are simlar the first one becones

/1 ACl because al ready under exam (| ess workl oad)
strcpy(Sinmlar,"yes");

first=1;
}

153

doubl e cTOD=at ol (argv[6]), cTODb=atol (argv[7]);
doubl e cBound=at ol (argv[8]), cBoundb=at ol (argv[9]);
doubl e Man=at ol (argv[10]), Manb=at ol (argv[11]);

/1 beginning HTML page and finding the nane of the case
if(strcnp(argv[1], "NoNanme")! =0)

strcpy(CaseNane, argv[1]);
el se

int | ntNunber;

char nunber[9];

FI LE *Fnunber;

Fnumber =f open(" Cr eat eCB/ nunber ", "r");
f scanf (Fnunber, " %", nunber) ;

f cl ose(Fnunber) ;

Fnumber =f open(" Cr eat eCB/ nunber","r");
f scanf (Fnunber, " %", & nt Nunber) ;

fcl ose(Fnunber) ;

Fnumber =f open(" Cr eat eCB/ nunber ", "w") ;
fprintf(Fnunber, "% ", | nt Nunber +1) ;
fcl ose(Fnunber) ;

strcpy(CaseNane, " Case") ;

st rcat (CaseNane, nunber) ;

}

cout << "<hr> " << CaseNane
<< " </ FONT>added to t he CaseBase
";

/1 Calculating Solution
int FirstToPut=1;
char sol [200], sol 1[200] ;
for(i=22;i<34;i++)
if(strcnmp(argv[i], "on")==0)
i f(FirstToPut)

Fi r st ToPut =0;

strcpy(sol,lista[i-22]);

strcpy(sol 1, otherSol (lista[i-22]));

/] otherSol calculates the solution for the second aircraft

}

el se

strcat(sol,"&");
strcat(sol 1,"&");
strcat(sol,lista[i-22]);
strcat (sol 1, otherSol (lista[i-22]));
}

/1 cblinl (A

fprintf(cblinl,"@ %(A)", CaseNane);
fprintf(cblinl, "\ nHor Confl Conf %", argv[2]);
fprintf(cblinl,"\nAltitudeNow %", argv[3]);
fprintf(cblinl, "\nAltConfiguration %",argv[12]);
fprintf(cblinl, "\ nSpeed %", argv[5]);

i f(cTOD==-999)
fprintf(cblinl,"\nCl oseToTOD NI L");
el se
fprintf(cblinl, "\nC oseToTOD %", argv[6]);

i f (cBound==-999)
fprintf(cblinl, "\ nC oseToBoundaries N L");
el se
fprintf(cblinl, "\ nCl oseToBoundaries %", argv[8]);

i f (Man==-999)
fprintf(cblinl,"\nManoeuvrability NL");
el se

fprintf(cblinl, "\ nManoeuvrability %", argv[10]);

fprintf(cblinl,"\nPriority %", argv[4]);
fprintf(cblinl, "\ nEasyToExitHorizontally %", argv[14]);
fprintf(cblinl, "\ nLevel sAvail able %", argv[16]);
fprintf(cblinl, "\ nFaster %", argv[18]);

154

fprintf(cblini,"
fprintf(cblini,"

/1 cblinl (B)

fprintf(cblini,"
fprintf(cblini,"
fprintf(cblini,"
fprintf(cblini,"
fprintf(cblini,"

i f (cTODb==-999)
fprintf(cblini,
el se

fprintf(cblinl,

\nSl ower %", argv[20]);
\n@ %\n\n",sol);

@ %(B)", CaseNane);

\ nHor Conf | Conf %", argv[2]);

\nAl titudeNow %", other(argv[3]));
\nAl t Configuration %", argv[13]);
\ nSpeed %", other(argv[5]));

"\ nCl oseToTCOD NI L");
"\ nCl oseToTOD %", argv[7]);

i f (cBoundb==-999)

fprintf(cblini,
el se
fprintf(cblinl,

i f (Manb==-999)
fprintf(cblinl,
el se
fprintf(cblini,

fprintf(cblini,"
fprintf(cblini,"
fprintf(cblini,"
fprintf(cblini,")
"\ nSl ower 9", argv[21]);

fprintf(cblini,

fprintf(cblini,"

/1 NonCanoni cal

fprintf(nonCan,"
"\ nHor Conf | Conf %", argv[2]);
fprintf(nonCan,"
fprintf(nonCan,"
fprintf(nonCan,"
"\ nAl t Configuration(A) %", argv[12]);

fprintf(nonCan,

fprintf(nonCan,

i f(cTOD==-999)
fprintf(nonCan,
el se
fprintf(nonCan,

i f (cBound==-999)
fprintf(nonCan,
el se

fprintf(nonCan,"

i f (Man==-999)

fprintf(nonCan,"

el se
fprintf(nonCan,

fprintf(nonCan,
fprintf(nonCan,

fprintf(nonCan,"
"\ nSl ower (A) %", argv|[20]

fprintf(nonCan,

fprintf(nonCan,"

i f (cTODb==-999)
fprintf(nonCan,
el se

fprintf(nonCan,

"\ nCl oseToBoundaries N L");

"\ nCl oseToBoundaries %", argv[9]);

"\ nManoeuvrability NL");

"\ nManoeuvrability %", argv[11]);
\nPriority %", other(argv[4]));

\ nEasyToExi t Hori zontal ly %", argv[15]);
\nLevel sAvail abl e %", argv[17]);
\nFaster %", argv[19]

\n@ %\n\n",sol1);

(1)
@ % _1", CaseNane);

\nPriority %", argv[4]);

\nAl titudeNow %", argv[3]);
\ nSpeed %", argv[5]);

"\ nCl oseToTOD(A) NIL");

"\ nCl oseToTOD(A) %", argv|[6]);

"\ nCl oseToBoundaries(A) N L");

\ nCl oseToBoundari es(A) %", argv[8]);

\ nManoeuvrability(A) NL");
"\ nManoeuvrability(A) %", argv[10]);

"\ nEasyToExi t Hori zontal | y(A) %", argv[14]);
"\'nLevel sAvai | abl e(A) %", argv[16]);

\ nFaster (A %", argv[18]);
)

\nAl t Configuration(B) %", argv[13]);

"\ nCl oseToTOD(B) NIL");
"\ nCl oseToTOD(B) %", argv[7]);

i f (cBoundb==-999)

fprintf(nonCan,
el se
fprintf(nonCan,

i f (Manb==-999)
fprintf(nonCan,
el se

"\ nCl oseToBoundaries(B) N L");

"\ nCl oseToBoundaries(B) %",argv[9]);

"\ nManoeuvrability(B) NL");

155

fprintf(nonCan, "\ nManoeuvrability(B) %", argv[11]);

fprintf(nonCan, "\ nEasyToExi t Hori zontal | y(B) %", argv[15]);
fprintf(nonCan, "\ nLevel sAvai |l abl e(B) %", argv[17]);

fprintf(nonCan, "\ nFaster(B) %", argv[19]
fprintf(nonCan, "\ nSlower (B) %", argv[21]
fprintf(nonCan,"\n@ %\n\n",sol);

)
)

/1 NonCanoni cal (2)

fprintf(nonCan," @ %_2", CaseNane);

f printf(nonCan, "\ nHor Conf | Conf %", argv[2]);
fprintf(nonCan,"\nPriority %", other(argv[4]));
fprintf(nonCan,"\nAltitudeNow %", other(argv[3]));
fprintf(nonCan, "\ nSpeed %", other(argv[5]));
fprintf(nonCan, "\ nAltConfiguration(A) %", argv[13]);

)
[

i f (cTODb==-999)
fprintf(nonCan, "\ nCl oseToTOD(A) N L");
el se
fprintf(nonCan,"\nCl oseToTOD(A) %",argv[7]);

i f (cBoundb==-999)
fprintf(nonCan, "\ nCl oseToBoundaries(A) N L");
el se
fprintf(nonCan, "\ nCl oseToBoundaries(A) %",argv[9]);

i f (Manb==-999)
fprintf(nonCan, "\ nManoeuvrability(A) NL");
el se
fprintf(nonCan, "\ nManoeuvrability(A) %", argv[11]);

fprintf(nonCan, "\ nEasyToExi t Hori zontal | y(A) %", argv[15]);
fprintf(nonCan, "\ nLevel sAvai |l abl e(A) %",argv[17]);
fprintf(nonCan, "\ nFaster(A) %",argv[19]);

fprintf(nonCan, "\ nSlower (A) %", argv[21]);

fprintf(nonCan,"\nAltConfiguration(B) %", argv[12]);

i f(cTOD==-999)
fprintf(nonCan, "\ nCl oseToTOD(B) N L");
el se
fprintf(nonCan, "\ nCl oseToTOD(B) %", argv[6]);

i f (cBound==-999)
fprintf(nonCan, "\ nCl oseToBoundaries(B) N L");
el se
fprintf(nonCan, "\ nCl oseToBoundari es(B) %", argv[8]);

i f (Man==-999)
fprintf(nonCan, "\ nManoeuvrability(B) NL");
el se

fprintf(nonCan, "\ nManoeuvrability(B) %", argv[10]);

fprintf(nonCan, "\ nEasyToExi t Hori zontal | y(B) %", argv[14]);
fprintf(nonCan, "\ nLevel sAvail abl e(B) %", argv[16]);
fprintf(nonCan, "\ nFaster(B) %", argv[18]);

fprintf(nonCan, "\ nSl ower(B) %", argv[20]);
fprintf(nonCan,"\n@ %\n\n",sol1);

/! canoni cal
if(first)
{

fprintf(canonical,"@ %", CaseNane);

f printf(canonical, "\ nHor Confl Conf %", argv[2]);
fprintf(canonical,"\nPriority %",argv[4]);
fprintf(canonical,"\nAltitudeNow %", argv[3]);
fprintf(canonical,"\nSpeed %", argv[5]);
fprintf(canonical,"\nAltConfiguration(A %", argv[12]);

i f(cTOD==-999)
fprintf(canonical,"\nC oseToTOD(A) N L");
el se
fprintf(canonical,"\nC oseToTOD(A) %", argv[6]);

156

i f (cBound==-999)
fprintf(canonical
el se
fprintf(canonical

i f (Man==-999)
fprintf(canonical
el se
fprintf(canonical

fprintf(canonical,’
fprintf(canonical,’
fprintf(canonical,’
fprintf(canonical,’

fprintf(canonical,’

i f (cTODb==-999)
fprintf(canonical
el se
fprintf(canonical

i f (cBoundb==-999)
fprintf(canonical
el se

fprintf(canonical

i f (Manb==-999)
fprintf(canonical

el se
fprintf(canonical

fprintf(canonical,’
fprintf(canonical,’
fprintf(canonical,’
fprintf(canonical,’
fprintf(canonical,’

}

el se
{
fpri
fpri
fpri
fpri
fpri
fpri

i f (cTODb==-999)
fprintf(canonical
el se
fprintf(canonical

i f (cBoundb==-999)
fprintf(canonical
el se

fprintf(canonical

i f (Manb==-999)
fprintf(canonical
el se
fprintf(canonical

fprintf(canonical,’
fprintf(canonical,’
fprintf(canonical,’
fprintf(canonical,’

fprintf(canonical,’

i f(cTOD==-999)
fprintf(canonical
el se
fprintf(canonical

i f (cBound==-999)

,"\'nCl oseToBoundari es(A)

, "\ nManoeuvrabi lity(A)

nt f (canoni cal ,
nt f (canoni cal ,
nt f (canoni cal ,
nt f (canoni cal ,
nt f (canoni cal ,
nt f (canoni cal ,

,"\'nCl oseToTOD(B)

,"\'nCl oseToBoundari es(A) N L");

%", argv[8]);

,"\'nManoeuvrability(A) NL");

%", argv[10]);

\ nEasyToExi t Hori zontal | y(A) %", argv[14]);
\ nLevel sAvail abl e(A) %", argv[16]);

\ nFaster(A) %", argv[18]);

\ nSl ower (A) %", argv[20]);

\nAl t Configuration(B) %", argv[13]);

"\ nCl oseToTOD(B) NIL");

"\ nCl oseToTOD(B) %", argv[7]);

"\ nCl oseToBoundaries(B) N L");

"\ nCl oseToBoundaries(B) %",argv[9]);

"\ nManoeuvrability(B) NL");

"\ nManoeuvrability(B) %", argv[11]);

\ nEasyToExi t Hori zontal | y(B) %", argv[15]);
\ nLevel sAvail abl e(B) %", argv[17]);
\nFaster(B) %", argv[19]);

\nSl ower (B) %", argv[21]);

\n@ %\n\n",sol);

@ %", CaseNane);

\ nHor Conf | Conf %", argv[2])
\nPriority %", other(argv[4
\nAl titudeNow %", other(arg
\nSpeed %", other(argv[5])

1))
vish):
\nAl t Configuration(A) %", ar’g

v[13]);

"\ nCl oseToTOD(A) NIL");

"\ nCl oseToTOD(A) %", argv[7]);

"\ nCl oseToBoundaries(A) N L");

"\ nCl oseToBoundaries(A) %",argv[9]);

"\ nManoeuvrability(A) NL");

"\ nManoeuvrability(A) %",argv[11]);

\ nEasyToExi t Hori zontal l y(A) %", argv[15]);
\ nLevel sAvail abl e(A) %", argv[17]);

\ nFaster (A %", argv[19]);

\ nSl ower (A) %", argv[21]);

\nAl t Configuration(B) %",argv[12]);

,"\'nCl oseToTOD(B) NIL");

%", argv[6]);

157

fprintf(canonical,"\nC oseToBoundaries(B) N L");
el se
fprintf(canonical,"\nC oseToBoundaries(B) %", argv[8]);

i f (Man==-999)
fprintf(canonical,"\nManoeuvrability(B) NL");
el se

fprintf(canonical,"\nManoeuvrability(B) %", argv[10]);

fprintf(canonical,"\nEasyToExitHorizontally(B) %", argv[14]);
fprintf(canonical,"\nLevel sAvail abl e(B) %", argv[16]);
fprintf(canonical,"\nFaster(B) %", argv[18]);
fprintf(canonical,"\nSlower(B) %", argv[20]);
fprintf(canonical,"\n@ %\n\n",sol 1);

}

/1 witing values on HTM. file
cout << "
 <TABLE border>";
for(i=1;i<argc;i++)

{
if((i%)==0)
cout << "<TR>";
cout << "<TD>" << i << ": " << argv[i] << "</ TD>";

}
cout << "</ TABLE>
SCOL: " << sol;

cout << "</ FONT> <P> Add anot her case</ A>
";
cout << "</ BODY></HTM.>";

fprintf(cblinl,"\n\n");

fprintf(nonCan,"\n\n");

fprintf(canonical,"\n\n");

fclose(cblinl);

fcl ose(nonCan);
fcl ose(canonical);

158

Appendix B

Decision Trees and Discriminatory Power

As said in Chapter 5, ISAC can convert the case-base from the ISAC format into a format
readable by C4.5. This has been useful for the comparison of the performance of ISAC and
C4.5. The first section of this appendix treats the issues related to the construction of the
decision tree by C4.5.

Moreover, ISAC gives the option of calculating the discriminatory power of the parameters
involved in the case description. This helps in deciding which parameters to use in the
retrieval process. The discriminatory power of the parameters involved in the fina case

description is treated in the second section of this appendix.

B.1 Decision Tree

CA.5 (Quinlan, 1993) is a classifier system written in C for the UNIX environment. C4.5
starts with a large set of cases that already have a solution and scrutinise them for patterns
that alow the solutions to be reliably discriminated. In C4.5, the case-base is read with the
command “c4.5 -f nanefil e”, then the corresponding decision tree is built. For each
“namefil e”, CA5will read 4 files:

namefi | e. nanes that contains the parameters and the possible values;

nanmef i | e. dat a with the case-base;

namefil e. t est with the case description of a conflicts;

namefil e.sol with the solutions, one for each line, corresponding to the

nanmefil e. test file
These 4 files are created by |SAC that automatically trandates the files containing the case-
base and the case structure into a format readable by C4.5. When the decision tree has been
built, the case-base is not necessary anymore. The command “consult -f nanefil e”
is used to test the tree built and all the casesin the file nanmefi | e. t est are solved. The
correct solutions and the one retrieved by C4.5 are stored into a file called “r esul t s”
whose format can be read by the function “anal yse” that gives the percentage of correct

solutions.

159

ISAC automatically does all the “LeaveOnelN” and the “LeaveOneOUT” experiments by
using system cals to “c4. 5” and “consul t ”. The code of the user interface has been
modified to make the system able to read the data and solutions directly from the test file.
For smplicity, the parameters that have a NIL value, which is represented by a“?” in C4.5,
are not used.

The decision trees shown in this appendix are generated with the default windowing and
pruning parameters. For a guide on how to use the C4.5 system see pp.81-91 in (Quinlan,
1993). The output given by C4.5 while working with the case-base of 51 cases used in the
first step of the knowledge engineering process is reported below. In this case-base, each

case is described by 38 parameters.

CA.5 [rel ease 5] decision tree generator
Opti ons:
File stem <SymNun»
Read 51 cases (36 attributes) from cbase. data
Deci si on Tree:
Ri ght Exi t NoGo(A) <= 3.16331 : spe3 (13.0/2.0)
Ri ght Exi t NoGo(A) > 3.16331 :
Ti reBefore(A) <= 17.9524 :
| InFrontDirect(B) = no: alt2 (3.0)
| InFrontDirect(B) = yes: hor2 (2.0)
Ti meBefore(A) > 17.9524 :
G oundSpeed(A) <= 5.49952 :
| Ti meBefore(B) > 38.598 : alt3 (4.0)
Ti reBefore(B) <= 38.598 :
| Turning(A) <= -5.99759 : alt3 (3.0/1.0)
| Turning(A) > -5.99759 : altl (17.0/2.0)

|
|
|
|
|
|
| |
| |
| GroundSpeed(A) >
| |
| |
[[

5.49952 :
Hor Conf | Conf = facing: hor3 (0.0)
Hor Conf | Conf = catching: hor3 (4.0)
Hor Conf | Conf = crossing: horl (5.0/2.0)

Tree saved
Eval uation on training data (51 itens):

Bef ore Pruning After Pruning
Si ze Errors Si ze Errors Esti mate
16 7(13. 7% 16 7(13. 7% (33.4%

If the same experiment is repeated using only symbolic parameters, the output is:

CA.5 [rel ease 5] decision tree generator

Opti ons:
File stem <onl ySyns

Read 51 cases (26 attributes) from SyntSbonz. dat a
Deci si on Tree:

Crui sing(A) = no:
Simlar = no:

I

| | Hor Conf | Conf = facing: altl (0.0)

| | Hor Conf | Conf = crossing: altl (12.0/1.0)

| | Hor Conf | Conf = cat chi ng:

| | | AltProfile(A) = stable: hor3 (0.0)

| | | AltProfile(A) = descend: altl (3.0/1.0)
| | | AltProfile(A) = clinmb: hor3 (3.0)

| Simlar = yes:

160

SpeedDec(A) Big: altl (3.0/1.0)

| =

| SpeedDec(A) = VerySmall: alt3 (0.0)

| SpeedDec(A) = Snal | :

| | AltProfile(B) = stable: horl (1.0)

| | AltProfile(B) = descend: alt3 (3.0)

| | AltProfile(B) = clinb: alt3 (3.0)
nFront Space(A) no: spe3 (13.0/2.0)
nFront Space(A) yes:

SpeedDec(B) Small: horl (6.0/3.0)
SpeedDec(B) VerySnal | : horl (0.0)
SpeedDec(B) Bi g:

| InFront Di rect (B)
| I nFront Di rect (B)

no: alt2 (2.0)

I
I
I
I
I
Cruising(A) = yes:
|
|
I
I
|
| yes: hor2 (2.0)

nFront Space(A)
nFront Space(A)
SpeedDec(B)

no: spe3 (13.0/3.6)
yes:

Small: horl (6.0/4.3)
SpeedDec(B) VerySnal | : horl (0.0)
SpeedDec(B) Bi g:

| InFront Di rect (B)
| I nFront Di rect (B)

no: alt2 (2.0/1.0)
yes: hor2 (2.0/1.0)

Sinplified Decision Tree:
Crui sing(A) = no:
| Simlar = no:
| | Hor Conf | Conf = facing: altl (0.0)
| | Hor Confl Conf = crossing: altl (12.0/2.5)
| | Hor Conf | Conf = cat ching:
| | | AltProfile(A) = stable: hor3 (0.0)
| | | AltProfile(A) = descend: altl (3.0/2.1)
| | | AltProfile(A = clinb: hor3 (3.0/1.1)
| Simlar = yes:
| | SpeedDec(A) = Big: altl (3.0/2.1)
| | SpeedDec(A) = Small: alt3 (7.0/2.4)
| | SpeedDec(A) = VerySmall: alt3 (0.0)
Crui sing(A) = yes:
|
|
I
I
I
I
I

Tree saved

Eval uation on training data (51 itens):

Bef ore Pruning After Pruning
Si ze Errors Si ze Errors Esti mate
24 8(15. 7% 21 9(17.6% (39.1%

The error obtained by using only symbolic parameters (15%) is dightly bigger than the error
by using both numeric and symbolic parameters (13%). The pruning option has not been
used for the comparison with C4.5 because pruning means generalising and the case-base

used here is too small to have the results affected by generalisation.

The ssimplified decision tree generated with the latest version of case-base is below. The full
tree has not been reported because it istoo long. It can be clearly seen that the new decision
tree is much more complex than the previous one not only because there are more
parameters and more cases (1408 instead of 51), but because the case-base comes from real
conflicts with real solutions and has not been generated with a simple set of rules as donein

the first step of the knowledge engineering process.

161

CA.5 [rel ease 5] decision tree generator Wed Nov 26 11:37:03 1997

Opti ons:

File stem <for C45>
Read 1408 cases (21 attributes) fromforC45. data
Sinmplified Decision Tree:

Al t Configuration(A) = stable:

Cl oseToTOD(A) <= 0 :

Cl oseToTOD(B) <= 10 :

Al t Configuration(B) = stable:

Hor Conf | Conf = di vergi ng:

| Manoeuvrability(B) <= 0.87 : horl (4.5/4.0)

| Manoeuvrability(B) > 0.87 : hor3 (8.0/1.3)

Hor Conf | Conf = headon:

Manoeuvrability(B) <= 0.81 :

Manoeuvrability(B) > 0.77 : spe2 (3.3/2.2)
Manoeuvrability(B) <= 0.77 :

Manoeuvrability(A) <= 0.69 : horl (9.6/4.7)
Manoeuvrability(A) > 0.69 :

| Manoeuvrability(B) > 0.69 : hor2 (11.2/1.5)
| Manoeuvrability(B) <= 0.69 :

| | Manoeuvrability(B) > 0.65 : hor3 (3.8/2.9)
I

I

|
|
|
|
|
|
|
| | Manoeuvrability(B) <= 0.65 :
[

| | Cl oseToBoundari es(A) <= 1 :

< —_—
—_—_,—————_——_——————

Cl oseToTOD(A) <= 300 :

| Cl oseToBoundaries(B) <= 1.8 :

| | Cl 0seToTOD(A) <= 234 :

| | | Manoeuvrability(A) <= 0.84 :

I

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

spel(4.3/3.3

| | | | | | | | | Cl oseToBoundaries(A) > 1 : hor2
(4.0/1.2)

| | | | | Manoeuvrability(B) > 0.81

| | | | | | Manoeuvrability(A) <= 0.69 : hor3 (4.3/3.4)
| | | | | Manoeuvrability(A) > 0.69 : horl (11.2/1.5)
| | | | Hor Conf | Conf = convergi ng

| | | | | Manoeuvrability(A) <= 0.7 : hor2 (5.8/5.2)

| | | | | Manoeuvrability(A) > 0.7

| | | | | | Manoeuvrability(B) <= 0.76 : spe3 (4.8/2.1)
| | | | | | Manoeuvrability(B) > 0.76 : hor3 (2.0/1.0)
| | | | Hor Conf | Conf = crossing:

| | | | | Speed = sane: hor3 (17.7/8.2)

| | | | | Speed = sl ower: uppl (3.9/3.2)

| | | | | Speed = faster: upp2 (4.3/3.4)

| | | Al t Configuration(B) = descending

| | | | Manoeuvrability(B) > 0.77 : upp2 (22.4/2.7)

| | | | Manoeuvrability(B) <= 0.77 :

| | | | | Manoeuvrability(A) <= 0.78 : upp2 (8.9/3.8)

| | | | | Manoeuvrability(A) > 0.78 : uppl (10.1/2.3)

| | | Al 't Configuration(B) = clinbing:

| | | | Manoeuvrability(B) <= 0.67 :

| | | | | Manoeuvrability(B) <= 0.65 :

| | | | | | Hor Conf | Conf = diverging: horl (1.4/1.3)

| | | | | | Hor Conf | Conf = headon: uppl (0.0

| | | | | | Hor Conf | Conf = converging: uppl (10.8/7.8)
| | | | | | Hor Conf | Conf = crossing: upp2 (2.5/1.4)

| | | | | Manoeuvrability(B) > 0.65

| | | | | | Manoeuvrability(A) <= 0.84 : dowl (8.0/2.4)
| | | | | | Manoeuvrability(A) > 0.84 : horl (2.4/1.9)
| | | | Manoeuvrability(B) > 0.67

| | | | | Manoeuvrability(B) > 0.85 : dow2 (19.3/4.8)

| | | | | Manoeuvrability(B) <= 0.85 :

| | | | | | Faster(A) = difficult: hor3 (2.8/1.8)

| | | | | | Faster(A) = possible: dow2 (5.1/1.4)

| | | | | Faster(A) = easy: hor3 (28.7/4.6)

| | Cl oseToTOD(B) > 10 :

| | | Cl 0seToTOD(B) <= 300 : dow2 (34.0/2.6)

| | | Cl oseToTOD(B) > 300 : upp2 (4.0/2.2)

| Cl 0seToTOD(A) > 0 :

| Cl oseToTOD(B) <= 0 : dowl (33.3/2.6)

| Cl oseToTOD(B) > 0 :

I I

I I

I I

I I

162

ubt

—_— - ———

Al 't Configuration(A)

6.7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
/
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
’

ee

4.7

h,P—_——

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Manoeuvrability(B) <=
| Level sAvai | abl e(A)
| Level sAvai | abl e(A)
| Level sAvai | abl e(A)
| Level sAvai | abl e(A)
| Level sAvai | abl e(A)
| | Cl 0seToTOD(A)

| | Cl 0seToTOD(A)

0.75 :
wi t hSpaces: dow2 (0.0)
bel ow. dowl (3.0/2.5)
above: dow2 (0.0)

yes: dow3 (2.5/2.1)
none:

<= 63 :
> 63 :

spe3 (2.3/1.9)
dow2 (3.1/1.9)

Manoeuvrability(B) > 0.75 :[S1] €«
| | | Manoeuvrability(A) > 0.84 :
| | | | Level sAvail abl e(A) = wi thSpaces: dow3 (0.0)
| | | | Level sAvai |l abl e(A) = bel ow. dow3 (10.0/2.4)
| | | | Level sAvai |l abl e(A) = above: dow3 (0.0)
| | | | Level sAvail abl e(A) = none: dow2 (9.0/1.3)
| | | | Level sAvai |l abl e(A) = yes:
| | | | | Al titudeNow = sane: dowl (2.6/1.6)
| | | | | Al titudeNow = different: dowd (19.4/1.3)
| | Cl oseToTOD(A) > 234 :
| | | Manoeuvrability(B) > 0 : hor3 (4.0/1.2)
| | | Manoeuvrability(B) <= 0 :
| | | | EasyToExi t Hori zontal | y(A) = difficult: horl (0.0)
| | | | EasyToExi t Hori zontal | y(A) = possible: horl (0.0)
| | | | EasyToExi t Hori zontal | y(A) = easy: horl (3.3/2.4)
| | | | EasyToExi t Hori zontal | y(A) = veryEasy: hor2
| Cl oseToBoundaries(B) > 1.8 :
| | Cl oseToBoundari es(B) <= 2 :
| | | Sl ower (B) = possible: hor2 (10.0/2.4)
| | | Slower(B) = difficult:
| | | | Manoeuvrability(A) <= 0.88 : horl (16.7/3.2)
| | | | Manoeuvrability(A) > 0.88 : hor2 (4.5/1.2)
| | | Sl ower (B) = easy:
| | | | Manoeuvrability(A) <= 0.76 : hor2 (4.4/1.2)
| | | | Manoeuvrability(A) > 0.76 : horl (4.3/1.6)
| | Cl oseToBoundaries(B) > 2 :
| | | Cl oseToTOD(A) > 181 : uppl (2.0/1.8)
| | | Cl 0seToTOD(A) <= 181 :
| | | | Cl oseToBoundaries(B) <= 8.3 : dowl (10.0/1.3)
| | | | Cl oseToBoundaries(B) > 8.3 : dow3d (3.0/1.1)
Cl oseToTOD(A) > 300 :
| Cl 0seToTOD(B) <= 181 : dow2 (10.3/1.7)
| Cl oseToTOD(B) > 181 :
| | Al't Configuration(B) = descending: upp2 (2.0/1.0)
| | Al 't Configuration(B) = clinbing: dow2 (2.0/1.0)
| | Al t Configuration(B) = stable:
[

descendi ng:

Cl oseToTOD(B) <= 0 :
Cl oseToTOD(A) <= 10 :

Level sAvai |l abl e(B) = wi t hSpaces:

Manoeuvrability(B) <= 0 : uppl (5.

Manoeuvrability(B) > 0 :
Manoeuvrability(A) <= 0.7 :

| EasyToExi t Hori zontal | y(A)
| EasyToExi t Hori zontal | y(A)
| EasyToExi t Hori zontal | y(A)
| | EasyToExi t Hori zontal | y(A)

|
I
| Manoeuvrability(A) > 0.7 :
|
|
|

evel sAvai | abl e(B) = bel ow
Manoeuvrability(A) <= 0.72 : uppl
Manoeuvrability(A) > 0.72 :
| Al't Configuration(B) = stable:
| Al t Configuration(B) = descendi
| Al't Configuration(B) = clinbing
evel sAvai | abl e(B) = above:
t Configuration(B) = stable: uppl

t Confi gurati on(B) descendi ng:
Manoeuvrability(B) <= 0.77 : u
Manoeuvrability(B) > 0.77 :
| EasyToExi t Hori zont al | y(B)

—_—_t——————_———

Al

Al 't Configuration(B) =
AI -—
I

I

I

163

Manoeuvrability(B) <= 0.77 :
Manoeuvrability(B) > 0.77 :

| Manoeuvrability(B) <= 0.71 :
| Manoeuvrability(B) > 0.71 :

hor3 (14.0/2.5)
spe3 (3.0/2.1)

1/ 4. 8)

dowl (7.0/1.3)
uppl (4.2/1.4)

difficult: upp2 (3.0/1.1)
possi bl e: upp2 (2.0/1.5)
easy: uppl (16.7/2.6)

veryEasy: uppl (18.2/1.5)

(24.6/6.8)

uppl (4.3/2.3)

ng: uppl (6.2/1.6)
: upp3 (4.2/1.3)

(1.3/0.9)

clinbing: dow2 (4.7/2.7)

pp2 (38.7/12.6)

= difficult: uppl (2.5/1.1)

| EasyToExi t Hori zont al

| ly(B) possi bl e: uppl (12.6/1.5)
| | EasyToExi t Hori zont al | y(B)
I ly(B)

easy: upp2 (4.0/2.2)
veryEasy: upp2 (6.6/3.9)

| EasyToExi t Hori zont al
sAvai | abl e(B) = yes:

Manoeuvrability(A) <= 0.66 :
| Manoeuvrability(A) <= 0 :
|
|
|
|
|
|
|
|

I
I
I
Leve

| Al't Configuration(B) = stable: uppl (2.0/1.3)

| Al t Configuration(B) = descendi ng: upp2 (20.9/11.6)
| At Configuration(B) = clinbing: uppl (4.3/3.4)
Manoeuvrability(A) > 0 :

| Hor Conf | Conf = diverging: upp2 (11.1/1.3)

| Hor Conf | Conf = headon: dow2 (10.5/3.9)

| Hor Conf | Conf = converging: dow2 (4.0/1.2)

| Hor Conf | Conf = crossing: upp2 (8.1/1.3)
0.

Manoeuvrability(A) > 66 :

Manoeuvrability(A) > 0.88 : uppl (4.4/1.2)

Manoeuvrability(A) <= 0.88 :
Cl oseToBoundaries(A) > 4.4 : uppl (3.8/1.2)

Cl oseToBoundari es(A) <= 4.4 :

Al 't Confi guration(B)

Al 't Confi guration(B) clinbing: uppl (2.4/1.4)

Al 't Confi guration(B) descendi ng:

Faster(A) = easy: upp2 (10.0/2.4)

Faster(A) = difficult:

| Slower(B) = difficult: upp2 (6.6/1.9)

| Sl ower (B) possi bl e: uppl (0.6/0.86)

| Sl ower (B) = easy:

| | Manoeuvrability(A) <=

st ébl e: upp2 (0.0)

s

0. 77: uppl(10. 4/3.4)
[| | [| | | Manoeuvrability(A) > 0.77 :upp2

Cl oseToTOD(B) <= 88 : dow2 (25.0/2.5)

Cl oseToTOD(B) > 88 :

| Manoeuvrability(A) > 0.76 : uppl (9.0/1.3)

| Manoeuvrability(A) <= 0.76 :

| | Cl oseToTOD(B) > 155 : uppl (3.8/2.9)

| | Cl oseToTOD(B) <= 155 :

| | | Cl 0oseToTOD(B) <= 97 : upp3 (7.0/2.4)
| | | Cl oseToTOD(B) > 97 : dow2 (7.2/2.3)
Al t Configurati on(A) = cli nmbi ng:
Manoeuvrability(A) <= 0 :

| Cl 0seToTOD(A) <= 234 : dowl (67.1/51.8)
|

|

|

|

|

|

|

N

(2.7/1.7)

| | | | | | | | Faster(A) = possible:

| | | | | | | | | Manoeuvrability(B) <= 0.67 : uppl (3.0/2.1)
| | | | | | Manoeuvrability(B) > 0.67 : upp2 (29.7/2.4)
| | | Level sAvai | abl e(B) = none:

| | | | Al tConfiguration(B) = stable: uppl (4.9/1.4)

| | | | Al t Configuration(B) = descending: uppl (26.7/4.3)
| | | | Al'tConfiguration(B) = clinbing: hor3 (7.6/3.1)

| | Cl oseToTOD(A) > 10 :

| | | Manoeuvrability(B) <= 0 : uppl (2.0/1.0)

| | | Manoeuvrability(B) > 0 :

| | | | Manoeuvrability(B) <= 0.88 : dowl (18.2/1.3)

| | | | Manoeuvrability(B) > 0.88 : dow2 (6.0/2.3)

| Cl oseToTODX(B) > 0 :

| Cl oseToTOD(B) <= 69 :

| | Manoeuvrability(B) > 0.78 : dow3 (10.0/1.3)

| | Manoeuvrability(B) <= 0.78 :

| | | Manoeuvrability(A) <= 0 : dow3 (3.8/3.2)

| | | Manoeuvrability(A) > 0 : dow2 (2.0/1.0)

| Cl oseToTOD(B) > 69 :

I I

I I

I I

I I

I I

I I

I I

I I

Cl 0oseToTOD(A) > 234 :
Cl oseToTOD(A) > 352 : uppl (3.5/2.5)
Cl oseToTOD(A) <= 352 :
| EasyToExi t Hori zont al | y(B)
| EasyToExi t Hori zont al | y(B)
| EasyToExi t Hori zont al | y(B)
| | EasyToExi t Hori zont al | y(B)
Manoeuvrability(A) > 0 :
Level sAvai |l abl e(B) = none: dowl (57.0/9.0)
Level sAvai |l abl e(B) = wi t hSpaces:

difficult: horl (0.0)
possi ble: horl (0.0)
easy: hor2 (3.3/2.4)
veryEasy: horl (6.7/4.7)

I

I

| | Hor Conf | Conf = diverging: dowl (0.4/0.4)

| | Hor Conf | Conf = headon: horl (1.7/1.4)

| | Hor Conf | Conf = converging: hor3 (24.2/3.5)
| | Hor Conf | Conf = crossing: dowl (19.1/2.4)

164

Level sAvai |l abl e(B) = bel ow

Cl oseToTOD(A) <= 80 :

Manoeuvrability(A) <= 0.65 : dow2 (13.2/1.5)
Manoeuvrability(A) > 0.65 :

Manoeuvrability(B) <= 0.7 :

| Manoeuvrability(B) <= 0.62 : dow2 (2.2/1.2)
| Manoeuvr abi | i ty(B) 0.62 : dowl (24.5/4.6)
Manoeuvrability(B) > 0.7 :
Level sAvai | abl e(A)
Level sAvai | abl e(A)
Level sAvai | abl e(A)
Level sAvai | abl e(A)
| Al 't Confi guration(B)
| Al 't Confi guration(B)
| Al 't Confi guration(B)
Level sAvail abl e(A) = yes:

Manoeuvrability(B) <= 0.77 : dowl (8.2/2.6)
Manoeuvrability(B) > 0.77 :

| Hor Conf | Conf = headon: dowl (7.0/1.3)

Hor Conf | Conf = converging: dow2 (1.7/1.4)

Hor Conf | Conf = crossing: dow2 (9.0/1.3)

Hor Conf | Conf = di vergi ng:

| Manoeuvrability(A) <= 0.81 : dowl (3.0/1.1)
| | Manoeuvrability(A) > 0.81 : dow2 (6.0/1.2)

wi t hSpaces: dow2 (3.2/1.2)

above: dow2 (0.0)

none: dow2 (11.7/1.9)

bel ow.

stable: dowl (2.1/1.5)
descendi ng: dowl (0.3/0.3)
clinmbing:[S2] <€ Subtree 2

i un~Nv

-

oseToTOD(A) > 80 :
Manoeuvrability(A) <= 0.83 : upp3 (3.0/2.1)
Manoeuvrability(A) > 0.83 : dow3 (3.0/1.1)
evel sAvai |l abl e(B) = above:
Cl oseToTOD(A) > 33 : dowl (16.3/1.3)
Cl 0seToTOD(A) <= 33 :
| Manoeuvrability(B) <= 0.64 : hor3 (5.5/1.3)
| Manoeuvrability(B) > 0.64 :
| | Manoeuvrability(B) <= 0.72 : upp2 (3.7/1.9)
| | Manoeuvrability(B) > 0.72 : dowl (9.3/2.4)
evel sAvai |l abl e(B) = yes:

0oseToTOD(A) <= 88 :
Al t Configuration(B) = stable:

| Hor Conf | Conf = diverging: dowl (5.9/2.8)
| Hor Conf | Conf = headon: hor2 (2.2/1.6)

| Hor Conf | Conf = crossing: dow2 (5.6/1.3)
| Hor Conf | Conf = conver gi ng:

| | Faster(B) = difficult: hor3 (0.0)

| | Faster(B) = possible: dowl (3.3/1.2)
| | Faster(B) = easy: hor3 (5.2/1.7)

Al 't Configuration(B) = descendi ng:

Manoeuvrability(A) <= 0.65 : dow2 (6.9/1.3)
Manoeuvrability(A) > 0.
Level sAvai | abl e(A)
Level sAvai | abl e(A)

wi t hSpaces: dowl (0.0)
above: dowl (2.3/1.9)

Level sAvai | abl e(A) none: hor3 (6.1/1.4)

Level sAvai | abl e(A) bel ow.

| Manoeuvrability(A) <= 0.7 : upp3 (4.5/1.6)
| Manoeuvrability(A) > 0.7 : upp2 (3.1/1.2)
Level sAvail abl e(A) = yes:

| Manoeuvrability(A) <= 0.85 : upp2 (4.6/2.8)
| Manoeuvrability(A) > 0.85 : dowl (10.2/1.3)
Al 't Configuration(B) = clinbing:

EasyToExi t Hori zont al | y(B)

i ino
&)

difficult: dowl (3.3/1.4)
EasyToExi t Hori zont al | y(B) veryEasy: dow2 (67.6/12.7)
EasyToExi t Hori zont al | y(B) possi bl e:

| EasyToExi t Hori zontal | y(A) difficult: dowl (0.0)

| EasyToExi t Hori zontal | y(A) possi bl e: dowl (0.0)

| EasyToExi t Hori zontal | y(A) easy: dow2 (4.4/2.4)

| EasyToExi t Hori zontal | y(A) veryEasy: dowl (7.7/1.8)
EasyToExi t Hori zontal | y(B) = easy:

Manoeuvrability(A) <= 0.63 : dowl (4.0/1.2)
Manoeuvrability(A) > 0.63 :

| Manoeuvrability(B) <= 0.7 : dowl (6.0/3.4)

| Manoeuvrability(B) > 0.7 :

| | Manoeuvrability(B) <= 0.78 : dow2 (11.6/1.4)
I

I

| Manoeuvrability(B) > 0.78 :

|
|
|
|
|
|
|
|
|
|
|
|
|
| | | Manoeuvrability(B) <= 0.85 : dowl (2.1/1.1)
[

I
I
I
I
I
I
| | Manoeuvrability(B) > 0.85 : dow2 (5.1/1.2)

I
oseToTOD(A) > 88 :

|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
L
|
|
|
|
|
|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
| Al t Configuration(B) = stable: dow2 (2.0/1.8)

-oa&——7"'"+—F—F"'F - ~——FFF"""F7"Y"F"F7"F"F"+"Y"T /Y777 —"7aQa

165

| | | | Al 't Confi guration(B)
| | | | Al 't Confi guration(B)

descendi ng: upp3 (5.0/2.3)
clinbing: dowd (6.0/1.2)

Subtree [S1]

EasyToExi t Hori zont a
EasyToExi t Hori zont a
EasyToExi t Hori zont a
EasyToExi t Hori zont a

difficult: upp2 (0.0)
possi bl e: upp2 (0.0)
easy: upp2 (9.0/2.4)
veryEasy: dowl (3.0/1.1)

l'y(B)
l'y(B)
l'y(B)
l'y(B)

Subtree [S2]

EasyToExi t Hori zontal | y(A) = difficult: dow2 (0.O0)
EasyToExi t Hori zontal | y(A) = possible: dowl (3.0/1.1)
EasyToExi t Hori zontal | y(A) = easy: dow2 (4.0/1.2)
EasyToExi t Hori zontal | y(A) = veryEasy:

same: dowl (0.5/0.5)

| Priority =
| Priority = lower: dowl (2.1/1.1)
| Priority = higher: dow2 (3.1/1.2)

Eval uation on training data (1408 itemns):

Bef ore Pruning After Pruning

Si ze Errors Si ze Errors Esti mat e

523 141(10.0% 297 196(13.9% (30.79% <<

Where the subtrees S1 and S2 can be found in the tree and have been reported separately

for smplicity.

B.2 The Discriminatory Power in ISAC and C4.5

As said in Chapter 5, the algorithm used by ISAC for the calculation of the discriminatory
power is dightly different from the one used in C4.5. The discriminatory power for the
parameters in the latest case-base, as calculated by ISAC, is shown in Table B.1. The
smaller the value of remainder, the more discriminatory is the parameter.

By comparing the decision tree above with Table B.1, it can be seen that the parameter
“CloseToTOD(B)” is the most discriminatory for ISAC, whereas in C4.5 the most
discriminatory parameter, which is the root of the decision tree, is “AltConfiguration(A)”.
The reason of this discrepancy is because ISAC and C4.5 use dightly different agorithms
for the calculation of the information, as explained in Chapter 5.

As said in Chapter 4, the parameter “Similar” has not been used in the latest steps of the
knowledge engineering process because derived from other parameters already present in
the case description. This decision is supported by the fact that the discriminatory power of

this parameter is the lowest, see Table B.1.

166

B.3 Conclusion

In this appendix the utility of the discriminatory power of the weights is shown from two
points of view: on one hand, the discriminatory power is used to build a decision tree in
which the information contained in the case-base is stored. On the other hand, the
discriminatory power is simply used to build alist of the most important parameters. Some
discrepancies between the results of the two methods are shown here and are explained in
Chapter 5.

Table B.1: Discriminatory power from |SAC.
Bui | di ng Decision Tree.....

Par anet er Renmai nder Type of paraneter
NANNNNNNANNNN NANNNNNNANNNN ANNNNANNNANNNNNNNNNNNN
Cl 0seToTOD(B) 1.9786 Nuneri c
Cl 0seToTOD(A) 1.9786 Nuneri c
Cl oseToBoundari es(B) 2.0209 Nuneri c

Cl oseToBoundari es(A) 2.0209 Nuneri c
Manoeuvr abi | i ty(B) 2.0341 Nuneri c
Manoeuvr abi i ty(A) 2.0341 Nuneri c

Al 't Confi guration(B) 2.2236 Synbolic

Al 't Configuration(A) 2.2236 Synbolic

Hor Conf | Conf 2.7725 Synbolic

Al titudeNow 2.7905 Synbolic
EasyToExi t Hori zont al | y(B) 3. 1536 Synbolic
EasyToExi t Hori zontal | y(A) 3. 1536 Synbolic

Level sAvai | abl e(B) 3.6363 Synbolic

Level sAvai | abl e(A) 3.6363 Synbolic
Priority 3.6513 Synbolic

Sl ower (B) 4.0482 Synbolic

Sl ower (A) 4.0482 Synbolic

Fast er (B) 4. 0510 Symnbolic

Faster (A) 4. 0510 Synbolic
Speed 4.0624 Synbol i c
Simlar 4.1721 Synbolic

167

Appendix C

Classes and Functions in ISAC

Thefileheader 1. h contains the definition of the classes and functions that constitute the
core of ISAC, i.e. the functions that are used at run-time, such as the retrieval function. On
the other hand, the file header 2. h contains the definition of all the functions that have
been used during the knowledge engineering process to refine the case description (e.g., the
function that calculates the discriminatory power) and that are not necessary at run-time.
The use of global variables and the hard coding of some file namesis not considered “ clean”

programming but has been accepted in this prototypical version due to time restrictions.

C.1 The File header 1. h

#define Fil eCaseBase "/ dd/csc/abonzano/ | SAC/ CaseBase"
#define FileCaseStruct "/dd/csc/abonzano/| SAC/ CaseStruct™
#define Fil eTarget "/dd/csc/abonzano/ | SAC/ target"

#define Sol File "/dd/csc/abonzano/ | SAC/ Sol uti ons"

#define ResultsFile "/dd/csc/abonzano/| SAC/ resul ts”

/| CASE STRUCT (bodies are in ReadCaseStruct.c)
class M ni Cel |

char name[64];

public:

M ni Cel | * next;

M ni Cel | (M ni Cel |l *, char*);
char* G veNane() {return nane;}

b
cl ass TypeNode
{

char name[32];
i nt nunber, constraint, Nunof Val ues, sel ;
doubl e renmi nder, m n, max;
doubl e gl obal Wi ght, gl obal NewMéi ght, gl obal Hi Per f Wi ght ;
M ni Cel | * PossVal ues;
public:
TypeNode* next;
TypeNode (TypeNode*,int,int,int,char*, MniCell*);
char* G veNane() {return nane;}
M ni Cel | * G vePossVal ues() {return PossVal ues;}
int GveNunOf Val ues() {return NunmCf Val ues;}
int GveConstraint() {return constraint;}
int GveNunber() {return nunber;}
doubl e G veRenui nder() {return renai nder;}
double GveMn() {return mn;}
doubl e G veMax() {return nax;}
voi d Put Renai nder (doubl e num) {remai nder =num }
void StoreM n(double val) {m n=val;}
voi d StoreMax(doubl e val) {max=val;}
voi d PrintForC45(char*);
void StoreSel (int val) {sel=val;}

168

int GveSel() {return sel;}

doubl e G veWight() {return gl obal Wi ght;}

doubl e G veNewMéi ght () {return gl obal New\éi ght ;}

voi d ChangeWi ght (doubl e);

voi d ChangeHi ghest (doubl e);

voi d SwapWei ghts() {gl obal Wi ght =gl obal NewMéi ght ; }
voi d SwapHi ghest () {gl obal Wi ght =gl obal H PerfWei ght; }

b
/| CASE- BASE (bodi es i n ReadCaseBase. c)

cl ass branch;
cl ass OneCase;

cl ass OneFeat

char Feat Nane[32];
doubl e Nunwval ue;
doubl e wei ght, Newei ght , Hi ghest Per f Wi ght ;
char Synwval ue[32];
public:
OneFeat * next;
OneFeat (char*, OneFeat *,int);
char* G veNane() {return Feat Nane;}
char* G veSynval ue() {return Synwval ue;}
doubl e G veNunVal ue() {return NunVal ue;}
voi d Put Feat Val ue(char* ReadVal ue) {strcpy(SynVal ue, ReadVal ue);}
voi d Put Feat Val ue(doubl e val) {NunVal ue=val ;}
doubl e G veWight() {return weight;}
doubl e G veNewMéi ght () {return Newwei ght;}
voi d ChangeWi ght (doubl e);
voi d ChangeHi ghest (doubl e);
voi d SwapWei ghts() {wei ght =NewWéi ght ; }
voi d SwapHi ghest () {wei ght=Hi ghest Perf Wi ght;}
b

cl ass OneCase

{
char CaseNane[32];
char Sol ution[80];
int NunmNIL;
doubl e Activati on;
OneFeat * Feat Li st;
public:
doubl e Kc, Fc;
int ThisCasel sUsed;
OneCase* next;
OneCase(char*, OneCase*, TypeNode*) ;
voi d St oreFeat Val ue(char*, char*, doubl e);
voi d St oreFeat Val ue(char*, doubl e, doubl e) ;
int GveNunNIL() {return NumNIL;}
doubl e G veNunVal ue(char*);
char* G veSyn\Val ue(char*);
char* G veNane() {return CaseNane;}
void StoreSol (char*);
char* G veFirstSol ();
char* GveSol () {return Solution;}
voi d Reset Act () {Activation=0.0;}
voi d AddAct (doubl e);
doubl e G veAct() {return Activation;}
OneFeat* G veFeats() {return Featlist;}
doubl e G veWi ght (char* Feat Nane) ;
doubl e G veNewMéi ght (char* Feat Nane) ;
voi d ChangeWi ght (char*, doubl e);
1

/| TREE FOR BASE FI LTERI NG (Bodies in Tree.c)
cl ass Si nCase
OneCase *ACase;
public:
Si nCase *next;

Si mCase(OneCase*, Si nCase*) ;
OneCase* G veCase() {return ACase;}

169

doub
i nt

char
char
char

b
cl ass

char

le GveAct() {return ACase->G veAct();}
G veNunNI L() {return ACase->G veNurmNI L()

* G veNane() {return ACase->G veNane();}

* GveSol () {return ACase->G veSol ();}

* GveFirstSol () {return ACase->G veFirstSol ();}

i}

branch

Feat Val ue[64] ;

Si mCase* Li st Of Cases;

publ

bran
bran
char
voi d

b
/1 FOR
cl ass

char
char
doub
publ
SAN
SAN(
char
char
doub
b

cl ass
i
publ

sol s
char

c
ch* next;
ch(branch*, char*, char*);
* G veNane() {return FeatVal ue;}
AddACase(OneCase* OCase)
{Li st Of Cases= new Si nCase(CCase, Li st Of Cases) ; }

Si mCase* G velList() {return ListCf Cases;}

THE FI NAL SCLUTI ON

SAN

nane[32] ;

sol [32];

l e act;
c
*next ;
char*, char*, doubl e, SAN*) ;
* G veNane() {return nane;}
* GveSol () {return sol;}
le GveAct() {return act;}

sol sType
c

Type(char*,int, sol sType*);
nane[12];

int val;

sol s

Type *next;

/] GLOBAL VARI ABLES

|| ================

extern int GUM

extern int GDUY,

extern int BUY,

extern int BDM

extern int randoniéi ght;
extern int representation
extern int Maxlterations;
extern int NunforTraini ngSet;
extern int options;

extern int shift;

extern int nmultipl;

extern int average;

extern int gl obal

extern int DoAl sod obal
extern int updateWi ghts;
extern int DoG aphic;

extern doubl e MaxActi vation;
extern char TypeOf Sinul ation[12];
/1 FUNCTI ONS

|| =========

i nt Ther eAreNoConstrai nt s(TypeNode*) ;

voi d Shuffl e(char*, TypeNode*);

void wait();
voi d ATCBR(voi d)

char*
char*
char**

Del EOL(char*);
Read(FI LE*);
ReadSol (i nt*);

170

voi d CreateCopy(char*);

TypeNode* ReadCaseStruct(char*);

voi d CheckM nMax(char*, doubl e, TypeNode*);

M ni Cel | * ReadVal ues(int, FI LE*);

int 1tlsANunber (TypeNode*, char*);

int 1tlsAConstraint(char*, TypeNode*);

voi d AddCaseToBranch(char*, char*, OneCase*, branch*);
branch* Bui | dWebOf Poi nt er s(TypeNode*, OneCase*) ;

OneFeat * Bui | dEnpt yFeat Li st (TypeNode*) ;

OneCase* ReadCaseBase(char*, TypeNode*);

OneCase* ReadOneCase(char*, OneCase*, TypeNode*, FI LE*) ;
OneCase* ReadAl | Target s(char*, TypeNode*) ;

OneCase* ReadOneTarget (char*, OneCase*, TypeNode*, FI LE*) ;
voi d Fi ndCases(OneCase*, OneCase*, branch*, TypeNode*, char *) ;
doubl e Fi ndMaxAct (Si nCase*);

Si mCase* BaseFiltering(OneCase*, branch*, TypeNode*) ;
Si mCase* Cut SubLi st (Si mCase*, Si nCase*) ;
int 1tlsln(SinCase*, Si mCase*);

voi d Reset Activation(OneCase*);

voi d Reset CaseBase(OneCase*);

voi d Spreadi ngActi vati on(Si nCase*, TypeNode*, OneCase*, branch*);

voi d d obal Spreadi ngActi vati on(Si nCase*, TypeNode*, OneCase*, branch*) ;
voi d Cal cSymAct (TypeNode*, OneCase*, branch*) ;

voi d Cal cNumAct (TypeNode*, OneCase*, Si nCase*) ;

SAN* Anal yse(Si mCase*, char*, doubl e, SAN*) ;
char* ChooseFi nal (SAN*) ;
char* FilterSol (char*, char*);

voi d ShowCaseStruct (TypeNode*) ;

voi d ShowCaseBase(OneCase*, TypeNode*) ;
voi d ShowBr anches(branch*);

voi d ShowTar get (OneCase*, TypeNode*);
void WiteCaseBase(OneCase*, TypeNode*);

/ | DELETE

M niCel | * Delete(MniCell*);
TypeNode* Del et e(TypeNode*) ;
OneCase* Del et e(OneCase*);
Si mCase* Del et e(Si nCase*);
OneFeat * Del et e(OneFeat *) ;
branch* Del et e(branch*);
SAN* Del et e(SAN*) ;

sol sType* Del et e(sol sType*);

C.2 The File header 2. h

#define BigFile "/dd/csc/abonzano/ | SAC/ Bi gCB"
#define InputFile "/dd/csc/abonzano/ | SAC/ simul "
#define InputFile2 "/dd/csc/abonzano/ | SAC/ si nul 2"
#define ForC45 "/ dd/ csc/ abonzano/ | SAC/ f or C45"
#define forGaph "/dd/csc/abonzano/ | SAC . nunber s"
#define Fil eReal Set "/dd/csc/abonzano/ | SAC/ Real Set "

/1 NUMERI C REMAI NDER (i n Nuneri cRenai nder. c)
class cell

doubl e val ;

public:

cell *next;

cell (doubl e, cel |l *);

voi d NewNext (cel Il * NEW {next=NEW }

doubl e GveVal () {return val;}

LOCAL Wl GHTS

171

extern int NunCasesRetrieved,;

doubl e Eval uate();

voi d ToyCaseBase();

voi d Elim nateN L(OneCase*, TypeNode*) ;

int CaselsCorrect(char*,char*);

int StringsAreConpati bl e(char*, char*);

voi d PrepFil esForPi v(char*, TypeNode*) ;

voi d Trai ni ng_Test (char*, TypeNode*);

void I ntrospectiveTest (TypeNode*);

voi d Test For Pi vot al s(TypeNode*) ;

voi d Hi st ogram TypeNode*, OneCase*) ;

voi d d obal Hi st ogran(TypeNode*);

doubl e Testi ng(OneCase*, OneCase*, branch*, TypeNode*);
voi d NormalizeMaxActivation(OneCase*, TypeNode*);
voi d Normalized obal MaxActi vati on(TypeNode*);

voi d Local Wi ght sSun(Si mCase*, OneCase*, TypeNode*) ;
voi d d obal Wi ght s(Si nCase*, OneCase*, TypeNode*) ;
voi d Local Wi ght sMul (Si mCase*, OneCase*, TypeNode*) ;
voi d Updat eWei ght s(OneCase*,int);

voi d Updat ed obal Wi ght s(TypeNode*, int);

voi d Updat eHi ghest (OneCase*);

voi d Updat ed obal Hi ghest (TypeNode*);

voi d Cal cAver ageFronlocal (TypeNode*, OneCase*);

/1 SI MULATI ONS

voi d ToFil e(OneCase*, FI LE*, TypeNode*) ;

voi d LeaveOneCQut (TypeNode*, OneCase*, branch*);
voi d LeaveOnel n(TypeNode*, char*);

void MakeSymetric();

int Nun®f Cases(OneCase*);

// OLD METHOD (FLAT SEARCH)

voi d LeaveOnel nQ(TypeNode*, char *);

branch* Buil dTreeQ(TypeNode*, OneCase*) ;

voi d Fi ndCasesQ(OneCase*, OneCase*, branch*, TypeNode*, char*) ;
Si mCase* Spreadi ngActi vati onQ(Si nCase*, TypeNode*, OneCase*) ;
voi d Cal cSymAct O(char*, char*, Si nCase*);

voi d Cal cNumAct O(doubl e, doubl e, Si nCase*, doubl e, doubl e) ;

/I C4.5

|| ====

void C45_I N(TypeNode*) ;

voi d C45_QUT(TypeNode*) ;

voi d C45Dat aNanes(TypeNode*, OneCase*) ;

voi d C45Test Sol (TypeNode*, OneCase*, char*);
voi d ReadResul ts(char);

char* CheckNl L(char*);

/ 1 DECI SI ON TREE

TypeNode* Bui |l dDecTree(TypeNode*, OneCase*) ;

doubl e Remminder(int,int,int*, int**);

doubl e NunRem(OneCase*, TypeNode*, char**,int*,int);

double Info(int,int,int**);

double Weight(int,int,int*, int**);

TypeNode* Order SLi st (TypeNode*);

cell * ReadAl | Nunber s(OneCase*, char*);

doubl e FromOne(TypeNode*, OneCase*, doubl e, char**,int*,int);

/1 Bl G CASE- BASE

voi d Bi gCaseBase(TypeNode*);
/ | COVERAGE

voi d Fi ndNunber s(TypeNode*) ;
voi d SMA(TypeNode*) ;

voi d AVE(TypeNode*);
doubl e NuntCases(TypeNode*,int);

172

Appendix D
The Data Files

This appendix shows the files that contain the knowledge base data which is read by ISAC
at the start up. The files CaseBase, Sol ut i ons and CaseSt r uct contain respectively
the case-base, the possible solutions for a case and the structure for the case. In the data
files, lines that begin with the symbol “/ / 7 are comment lines and are automatically skipped
by ISAC.

D.1 The file CaseSt r uct

Each parameter has the following fields that must be arranged in order on the same line:

the name of the parameter,

an integer that indicates whether the parameter has numeric (1) or symbolic values (0),

an integer that indicates whether the parameter is a constraint (1) or not (0),

areal number that indicates the weight of the parameter,

if the parameter has symbolic values, the number of possible values.
Then, if the parameter has symbolic values, these values are listed one after the other, each
on a new line. The field reserved for the weight is used if the human expert has an idea of
the importance of each parameter in relation to al the others. Usudly this is difficult to
decide upon and consequently the weight of the parameters is determined with introspective

learning techniques. If this happen, the weight values read from the file are discarded.

The case structure reported below is that for the “TwolnOne.canonica” and for the

“TwolnOne.nonCanonical” case representations.

NO TABS ALLOVWED, COVMENTS MUST BE AT THE BEG NNI NG OF THE LI NE
ALL PGSSI BLE VALUES MUST BE ON A <<NEWs> LI NE

I nformati on about the case structure

Nanme- Of - The- Paraneter |s-1t-A-Nunber? Is-1t-A-Constraint?

Wei ght Num O - Possi bl e- Val ues Val ues

~~~
~~—~

Hor Confl Conf 0 0 1 4
I
crossi ng

convergi ng

173



headon yes

di ver gi ng none
above
Priority 0 0 1 3 bel ow
[]------ wi t hSpaces
hi gher
| ower Faster(A) 0 0 1 3
same []-------
easy
Simlar 0 01 2 possi bl e
[]----- difficult
yes
no Slower(A) 001 3
[]-------
AltitudeNow 0 0 1 2 easy
R possi bl e
di fferent difficult
same
Al tConfiguration(B) 0 0 1 3
Speed 0 0 1 3 R T
/] --- clinmbing
faster descendi ng
sl ower stabl e
same
Cl oseToTOD(B) 1 0 1
Al t Configuration(A) 0 0 1 3 N
N
cl i mbi ng Cl oseToBoundaries(B) 1 0 1
descendi ng R R
stabl e
Manoeuvrability(B) 1 0 1
Cl oseToTOD(A) 1 0 1 R
N
EasyToExi t Hori zontally(B) 0 0 1 4
Cl oseToBoundaries(A) 1 0 1 R
N ver yEasy
easy
Manoeuvrability(A) 1 0 1 possi bl e
I R difficult
EasyToExi t Hori zontal ly(A) 0 0 1 4 Level sAvailable(B) 0 0 1 5
I R N T
ver yEasy none
easy yes
possi bl e above
difficult bel ow

wi t hSpaces

Faster(B) 0 0 1 3
[]-------

easy

possi bl e
difficult

Slower(B) 0 0 1 3
[
easy

Level sAvail able(A) 0 0 1 5 possi bl e

R R difficult

The case structure reported below is that for the “OnelnOne’ case representation.

/1 NO TABS ALLOWED, COMVENTS MUST BE AT THE BEG NNI NG OF THE LI NE
/1 ALL PGSSI BLE VALUES MUST BE ON A <<NEW,> LI NE
/] Information about the case structure
// Nanme-COf - The-Paraneter |s-1t-A-Nunber? Is-1t-A-Constraint?
/1 Wi ght Num O - Possi bl e- Val ues Val ues
Al'tConfiguration 0 0 1 3
R
cl i mbi ng

descendi ng

174



stabl e Y

crossi ng
Cl oseToTCD 1 0 1 convergi ng
[]---ee--- headon
di ver gi ng
Cl oseToBoundaries 1 0 1
R EasyToExi t Horizontally 0 0 1 4
I R
AltitudeNow 0 0 1 2 ver yEasy
N easy
di fferent possi bl e
same difficult
Speed 0 0 1 3 Level sAvailable 0 0 1 5
/]--- N
faster yes
sl ower none
same above
bel ow
Manoeuvrability 1 0 1 wi t hSpaces
N
Priority 0 0 1 3 Faster 0 0 1 3
[]------ L
hi gher easy
| ower possi bl e
same difficult
Slower 0 0 1 3
L
easy
possi bl e
Hor Confl Conf 0 0 1 4 difficult

D.2 The file Sol uti ons

The first non-commented line of this file must contain the number of possible solutions.
These are then listed, as before, each one on a new line. The solutions should not be longer

than 32 characters. Thisfile isthe same for al the case representations.

/1l There nust be the nunber of possible solutions
/1 and the nanmes (not |onger than 32 char)
12

uppl

dowl

upp2

dow2

upp3

dow3

spel

spe2

spe3

hor 1

hor 2

hor 3

D.3 The file CaseBase

Though the full case-base in the “TwolnOne.nonCanonical” case representation contains
around 1400 cases, only 20 are reported in this thesis. Because of the case representation,
all cases are repeated twice with the order of the aircraft swapped as shown below. For
example, Case697_1 and Case697_2 describe the same conflict. The case-base that

175



uses the “TwolnOne.canonical” case representation contains only half of the cases, i.e.

around 700, one for each conflict, expressed in the canonical form.

@ Case697_1

Hor Conf | Conf di vergi ng
Priority sane

Al titudeNow sane

Speed sl ower

Al t Configuration(A) stable
Cl oseToTOD(A) 147

Cl oseToBoundaries(A) 4.7
Manoeuvrability(A) .71
EasyToExi t Hori zontal | y(A) veryEasy
Level sAvail abl e(A) yes
Faster(A) difficult

Sl ower (A) difficult

Al t Configuration(B) stable
Cl oseToTOD(B) 3112

Cl oseToBoundaries(B) 2.7
Manoeuvrability(B) .83
EasyToExi t Hori zontal | y(B) possible
Level sAvai | abl e(B) bel ow
Faster(B) difficult

Sl ower (B) difficult

@ dowl

@ Case698_1

Hor Conf | Conf crossing
Priority sane

Al titudeNow sane

Speed sl ower

Al t Configuration(A) stable
Cl oseToTOD(A) 80

Cl oseToBoundaries(A) 2.7
Manoeuvrability(A) .7
EasyToExi t Hori zontal | y(A) possible
Level sAvai l abl e(A) yes
Faster(A) easy

Sl ower (A) difficult

Al t Configuration(B) stable
Cl oseToTOD(B) 2973

Cl oseToBoundari es(B) 4.3
Manoeuvrability(B) .83
EasyToExi t Hori zont al | y(B) veryEasy
Level sAvai |l abl e(B) yes
Faster(B) difficult

Sl ower (B) difficult

@ dowl

@ Case699_1

Hor Conf | Conf convergi ng
Priority sane

Al titudeNow different

Speed sane

Al t Configuration(A) stable
Cl oseToTOD(A) 317

Cl oseToBoundari es(A) 2
Manoeuvrability(A) .85
EasyToExi t Hori zontal | y(A) veryEasy
Level sAvai |l abl e(A) above
Faster(A) difficult

Sl ower (A) difficult

Al t Configuration(B) clinbing
Cl oseToTOD(B) 417

Cl oseToBoundaries(B) 2.8
Manoeuvrability(B) .85
EasyToExi t Hori zontal | y(B) easy
Level sAvai l abl e(B) yes
Faster(B) difficult

Sl ower (B) possi bl e

@ dow2

176

@ Case697_2

Hor Conf | Conf di vergi ng
Priority sane

Al titudeNow sane

Speed faster

Al t Configuration(A) stable

Cl oseToTOD(A) 3112

Cl oseToBoundaries(A) 2.7

Manoeuvrability(A) .83

EasyToExi t Hori zontal | y(A) possible

Level sAvai | abl e(A) bel ow

Faster(A) difficult

Sl ower (A) difficult

Al t Configuration(B) stable

Cl oseToTOD(B) 147

Cl oseToBoundaries(B) 4.7

Manoeuvrability(B) .71

EasyToExi t Hori zont al | y(B) veryEasy

Level sAvai |l abl e(B) yes

Faster(B) difficult

Sl ower (B) difficult

@ dow2

@ Case698_2

Hor Conf | Conf crossing
Priority sane

Al titudeNow sane

Speed faster

Al t Configuration(A) stable

Cl 0seToTOD( A) 2973

Cl oseToBoundari es(A) 4.3

Manoeuvrability(A) .83

EasyToExi t Hori zontal | y(A) veryEasy

Level sAvai |l abl e(A) yes

Faster(A) difficult

Sl ower (A) difficult

Al t Configuration(B) stable

Cl oseToTOD(B) 80

Cl oseToBoundaries(B) 2.7

Manoeuvrability(B) .7

EasyToExi t Hori zontal | y(B) possible

Level sAvai l abl e(B) yes

Faster (B) easy

Sl ower (B) difficult

@ dow2

@ Case699_2

Hor Conf | Conf convergi ng
Priority sane

Al titudeNow different

Speed sane

Al t Configuration(A) clinbing

Cl oseToTOD( A) 417

Cl oseToBoundaries(A) 2.8

Manoeuvrability(A) .85

EasyToExi t Hori zontal | y(A) easy

Level sAvail abl e(A) yes

Faster(A) difficult

Sl ower (A) possi bl e

Al t Configuration(B) stable

Cl oseToTOD(B) 317

Cl oseToBoundari es(B) 2

Manoeuvrability(B) .85

EasyToExi t Hori zont al | y(B) veryEasy

Level sAvai |l abl e(B) above

Faster(B) difficult

Sl ower (B) difficult

@ dowl



@ Case700_1

Hor Conf | Conf convergi ng
Priority sane

Al titudeNow different

Speed faster

Al t Configuration(A) stable

Cl oseToTOD(A) 417

Cl oseToBoundaries(A) 3.9
Manoeuvrability(A) .83
EasyToExi t Hori zontal | y(A) veryEasy
Level sAvai |l abl e(A) above
Faster(A) difficult

Sl ower (A) difficult

Al 't Configuration(B) clinbing
Cl oseToTOD(B) 1323

Cl oseToBoundaries(B) 3.3
Manoeuvrability(B) .71
EasyToExi t Hori zont al | y(B) veryEasy
Level sAvai |l abl e(B) yes
Faster(B) difficult

Sl ower (B) difficult

@ dow2&hor 3

@ Case701_1

Hor Conf | Conf crossing
Priority sane

Al titudeNow sane

Speed faster

Al t Configuration(A) stable
Cl oseToTOD(A) 112

Cl oseToBoundaries(A) 6.1
Manoeuvrability(A) .8
EasyToExi t Hori zontal | y(A) veryEasy
Level sAvai |l abl e(A) above
Faster(A) difficult

Sl ower (A) possi bl e

Al t Configuration(B) stable
Cl oseToTOD(B) 210

Cl oseToBoundaries(B) 2.9
Manoeuvrability(B) .75
EasyToExi t Hori zont al | y(B) veryEasy
Level sAvai |l abl e(B) yes
Faster (B) easy

Sl ower (B) difficult

@ dowl&hor 3&spe3

@ Case700_2
Hor Conf | Conf convergi ng

Priority sane
Al titudeNow different
Speed sl ower
Al 't Configuration(A) clinbing
Cl 0seToTOD(A) 1323
Cl oseToBoundaries(A) 3.3
Manoeuvrability(A) .71
EasyToExi t Hori zontal | y(A) veryEasy
Level sAvai |l abl e(A) yes
Faster(A) difficult
Sl ower (A) difficult
Al t Configuration(B) stable
Cl oseToTOD(B) 417
Cl oseToBoundaries(B) 3.9
Manoeuvrability(B) .83
EasyToExi t Hori zont al | y(B) veryEasy
Level sAvai |l abl e(B) above
Faster(B) difficult
Sl ower (B) difficult

@ dowl&hor 3

@ Case701_2

Hor Conf | Conf crossing
Priority sane

Al titudeNow sane

Speed sl ower

Al t Configuration(A) stable

Cl oseToTOD(A) 210

Cl oseToBoundaries(A) 2.9

Manoeuvrability(A) .75

EasyToExi t Hori zontal | y(A) veryEasy

Level sAvail abl e(A) yes

Faster(A) easy

Sl ower (A) difficult

Al t Configuration(B) stable

Cl oseToTOD(B) 112

Cl oseToBoundaries(B) 6.1

Manoeuvrability(B) .8

EasyToExi t Hori zont al | y(B) veryEasy

Level sAvai l abl e(B) yes

Faster(B) difficult

Sl ower (B) possi bl e

@ dow2&hor 3&spe3

The conflict named “Case697”, reported above in the “TwolnOne’ case representation, is

reported here in the “OnelnOne” case representation. The conflict has been split into two

separate cases, one for each aircraft involved in the conflict.

@ Caseb697(A)

Hor Conf | Conf di vergi ng
Al titudeNow sane

Al't Configuration stable
Speed sl ower

Cl 0seToTCD 147

Cl oseToBoundaries 4.7
Manoeuvrability .71
Priority sane

EasyToExi t Hori zontal | y veryEasy
Level sAvai |l abl e yes
Faster difficult

Sl ower difficult

@ dowl

177

@ Caseb697(B)
Hor Conf | Conf di vergi ng
Al titudeNow sane
Al t Configuration stable
Speed faster
Cl oseToTOD 3112
Cl oseToBoundaries 2.7
Manoeuvrability .83
Priority sane
EasyToExi t Hori zontal | y possible
Level sAvai |l abl e bel ow
Faster difficult
Sl ower difficult
@ dow2



Appendix E
The Code

For space restrictions it is not possible to show all the C files that compose ISAC and the interface with HIPS and ISAC. For this reason, the names of

all the programs are listed but only the code of the most significant filesis reported.

E.1 From ISAC

Files in the directory | SAC

BaseFiltering.C

Bi gCaseBase. C
5. C

CaseBase
CaseStruct

Deci si onTree. C
Filter.C

Fi ndCases. C

Fi ndSol . C

G obal Wi ghts. C
header 2. h

| SAC

I ntrospectivelLearning.C
Mai n. C

Nuneri cRemai nder. C
ad.C

adz2.Cc

ad3.C

Pivotal .C
ReadCaseBase. C
ReadCaseStruct. C
ReadTarget. C

Real Set

Show. C

Shuffle.C

Si mul ations. C

Sol For MAC

Sol uti ons

Spr eadi ngActivation.C
Suggesti on

Tr eeEqual WebOf Poi nter. C
WebOf Poi nters. C

Wei ghts. C

discrim

178

header 1. h

makefil e

t ar get

| SAC/ R5/ Src: the source files for
C4.5 system

| SAC/ cbl/ cb2c/ cb2n:
CaseBase

CaseStruct

Real Set

Sol uti ons

t ar get
ISAC/utilities:
AddEnd

AddOne

Di spl ayDi r

El i m nTab
MakeLoops

t he



Main.C

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <i ostream h>
#i ncl ude <ctype. h>

#i ncl ude <tine. h>

#i ncl ude "header1. h"
#i ncl ude "header2. h"

int shift,representation, multipl, options,updateWi ghts;
i nt gl obal, average, GUM GDU, BUU, BDM

i nt randonei ght, DoAl soG obal , DoG aphi c;

char TypeOf Si nul ation[12];

char** ReadSol (i nt *Nunfol )
{
int i, Nunfeat =0;
char 1ine[80], *token, String[32], **Sol
FILE *fileptr;
/1l read the possible solutions
if(!(fileptr=fopen(SolFile,"r")))

cout << "\nError: can't open the file with the solutions:
<< Sol File << "\'n";
exit(0);

strcpy(line, Read(fileptr));
*Nuntol =at oi (I i ne);

Sol = new char *[ *Nuntol ] ;
for(i=0;i<*NunBol ;i ++)

Sol [i]= new char[32];
strcpy(line, Read(fileptr));

t oken=strtok(line," ");
strcpy(Sol[i], Del EOL(token));

}
fclose(fileptr);
return Sol

}
char* Read(FILE* fileptr)

179

{
char 1ine[80];
whil e(fgets(line,80,fileptr))
if('(((line[0]=="/")&&(line[l]=="/"))||(line[0]=="\n")]|]|
(line[0]=="")))
return line;
return NULL;
}
char* Del ECL(char* t ok)
{
int i=0;
char ausil[80];
strcpy(ausil,tok);
while((tok[i]!'=" ")&&(tok[i] !'="\n")&&tok[i])

i ++;
ausil[i] = "\0
return ausil

}

voi d CreateCopy(char* fil enane)

/1 it copies the case-base into ".CBCopy" and ".CBCopyBis"

char 1line[80];
FILE *fileptr, *dest 1, *dest 2;
if(!(fileptr=fopen(filenane,"r")))
{
cout << "\nError: | cannot open file *" << filenane <<
"* for the Case Base\n";
exit(0);
i f(!(dest1=fopen(".CBCopy","W')))
cout << "\nError: can't open .CBCopy \n";
exit(0);
i f(!(dest2=fopen(".CBCopyBis","w')))

cout << "\nError: can't open .CBCopyBis \n";



exit(0);

whil e(fgets(line,80,fileptr))

fprintf(destl,"9%",|ine);
fprintf(dest2,"%",|ine);

}
fclose(fileptr);
fcl ose(destl);
fcl ose(dest 2);

}

mai n(i nt argc, char** argv)
{
char choi ce, Ti meNane[ 32] ;
int repetition=2;
OneCase *CaselLi st =NULL, * Tar get Li st =NULL;
branch *Branches=NULL;
TypeNode *StructLi st =NULL;

opti ons=0;

shi ft=7;

nmul ti pl =0;

Nuntor Tr ai ni ngSet =40;
Maxl t er ati ons=20;
randomiéi ght =0;
representati on=2;
DoAl sod obal =0;

aver age=0;
DoGr aphi ¢=0;
i f(argc==1)
{
cout << "\nParaneters for |SAC";
cout << "\n -0 show options";
cout << "\n -rl or -r2 (for OnelnOne or Twol nOne)";
cout << "\n -c nunmCases (nhum of cases in training Set)";
cout << "\n -nD if adding increnent -ml if nultiplying";
cout << "\n -s sinulation (the config of GUMetc. we
want )" ;
cout << "\n -a0 if weights=1 -al if random wei ghts";
cout << "\'n -h value of shift";
cout << "\n -u0 don't do experiment with global -ul do

experinent"”;

180

cout << "\n -x0 if I.L.
average di local";

cout << "\n -yl if | want graphic with perf on training set
and on test set";

cout << "\n -i iterations (numof iterations)" << endl;

exit(0);

on gl obal feat, -x1 if global is

for(int i=1;i<argc;i++)

{
if((argv[i][0]=="-")&&(toupper(argv[i][1l])=="0))
options=1;
if((argv[i][0]=="-"')&&(toupper(argv[i][1])=="R))
representation=argv[i][2]-48; // 1 or 2

if((argv[i][0]=="-")&&(toupper(argv[i][1])=="A"))

randomieéi ght =argv[i][2]-48; // 0 or 1
cout << "\ nRandom Wi ghts: << randon\i ght ;

}
if((argv[i][0]=="-")&&(toupper(argv[i][1])=="M))
mul tipl=argv[i][2]-48; // 0 or 1
cout << "\nMultipl: " << nultipl;
}
if((argv[i][0]=="-")&&(toupper(argv[i][1])=="C))

Nunfor Tr ai ni ngSet =at oi (argv[i +1]);
cout << "\ nNuntor Trai ni ngSet : << Nunfor Tr ai ni ngSet ;

}
if((argv[i][0]=="-")&&(toupper(argv[i][1])=="X))
{
average=argv[i][2]-48; // 0 or 1
cout << "\ nAverage for global:

}
if((argv[i][0]=="-")&&(toupper(argv[i][1])=="Y"))

<< average,

DoGraphic=argv[i][2]-48; // 0 or 1
cout << "\ nDoing graphic" << endl;

}



if((argv[i][0]=="-")&&(toupper(argv[i][1])=="H))
shift=atoi (argv[i+1]);
cout << "\ nShift: << shift;
}
if((argv[i][0]=="-")&&(toupper(argv[i][1l])=="U))

DoAl sod obal =argv[i][2]-48; // 0 or 1
cout << "\ nDoAl soGLobal : << DoAl sod obal ;
}

if((argv[i][0]=="-")&&(toupper(argv[i][1])=="1"))
Max! t erations=atoi (argv[i+1]);

cout << "\ nMaxlterations: << Maxlterations;

}
if((argv[i][0]=="-")&&(toupper(argv[i][1])=="S"))
strcepy(TypeO Si nul ation, argv[i +1]);
i f(strcnp(argv[i+1], "onl yBad") ==0)

GUMFO; GDU=0; BUU=1; BDM-1,;
cout << "\nType of sinulation: onlyBad";

}
el se if(strcnp(argv[i+1], "onl yGood")==0)

GUMF1; GDU=1; BUU=0; BDM-0;
cout << "\nType of sinulation: onlyGood";

}
else if(strcnp(argv[i+1], "al |l Four")==0)

{
GUMEL;, GDU=1; BUU=1; BDM-1,
cout << "\nType of sinulation: allFour";

}
el se if(strcnp(argv[i+1], "onl yGUM') ==0)

GUMF1; GDU=0; BUU=0; BDM-0;
cout << "\nType of sinulation: onlyGUV;

}
el se if(strcnp(argv[i+1], "onl yGDU") ==0)
{

181

GUMFO; GDU=1; BUU=0; BDM-0;
cout << "\nType of sinulation: onlyGU';

}
el se if(strcnp(argv[i+1], "onl yBUU") ==0)

{
GUMFO; GDU=0; BUU=1; BDM-0;
cout << "\nType of sinulation: onlyBUU';

}
el se if(strcnp(argv[i+1], "onl yBDM' ) ==0)

GUME0; GDU=0; BUU=0; BDM-1;
cout << "\nType of simnulation: onlyBDM;

}
el se if(strcnp(argv[i+1],"w t hout GDU") ==0)
GUMEL;, GDU=0; BUU=1; BDM-1,

cout << "\nType of sinulation: wthoutCDU';

}
else if(strcnp(argv[i+1],"w t hout GUM') ==0)
{
GUMFO; GDU=1; BUU=1; BDIMVF1;

cout << "\nType of simulation: wthout GUM;

}
else if(strcnp(argv[i+1],"w t hout BUU") ==0)
GUMF1l; GDU=1; BUU=0; BDMF1;

cout << "\nType of sinulation: wthoutBUU';

}
el se if(strcnp(argv[i+1],"w t hout BDM') ==0)
GUMEL;, GDU=1; BUU=1; BDM=O0;

cout << "\nType of simulation: wthout BDM;

}

el se
{
cout << "\nNOT found the configuration *"
<<"*r<< endl;
exit(0);

}
}

Struct Li st =ReadCaseStruct (Fi | eCaseStruct);
/] ShowCaseStruct (StructList);

1

1

1

1

<< argv[i+1]



//cout << "\nAlt:
representation!"”;
/] Shuffl e(Fi | eCaseBase, StructList);
/1 Shuffl e(Fil eReal Set, StructList);

Shuffle works only for the Twol nOne case

i f(options)
{

cout << "\nOptions:";

cout << "\n n\tnormal retrieval";

cout << "\n Wtintrospective |learning";

cout << "\n p\ttest for pivotals";

cout << "\n i\twith Target in CaseBase";
cout << "\n I\twith Target NOT in CaseBase";
cout << "\n b\tBig random Case Base";
cout << "\n e\tElimnate N L val ues";
cout << "\n y\tbuild a toy CaseBase for
cout << "\n d\tdiscrimnatory power";
cout << "\n t\ttine calcul ation";

cout << "\n o\ttine with old al gorithm FlatSearch)";
cout << "\n 4\tCA5(L.OIN";

cout << "\n 5\tc45(L.OQUT)";

cout << "\n a\tcalculate AVE and SMA\n g\tquit”

pivotal ";

<< endl ;
cout << "\ nChoice: ";
cin >> choice;

swi t ch(choi ce)

case 'n' : /| ******reg| gystent*
Tar get Li st =ReadAl | Target s(Fi |l eTarget, StructList);
Caseli st =ReadCaseBase( Fi | eCaseBase, StructList);

Br anches=Bui | dWebOf Poi nt er s( St ruct Li st, CaselLi st);

Fi ndCases( Caseli st, Target Li st, Branches, StructList,"tinmes");
Tar get Li st =Del et e( Tar get Li st);

br eak;

case 'i' : [] ******| eave One |In**
Cr eat eCopy( Fi | eCaseBase) ;
LeaveOnel n(StructList,"tinmes");
br eak;

case '|"' : /] ******| eave One Qut**

CaselLi st =ReadCaseBase(Fi | eCaseBase, StructList);
Br anches=Bui | dWebOf Poi nt er s( St ruct Li st, CaselLi st);

case

case

case
and"
case
case
case
t est s*

case

182

W /]

p'

a7/

b o /]

e /]

LeaveOneCQut ( Struct Li st, Caseli st, Branches);
br eak;

*x¥*x** x| ntrospective | earning**
I ntrospectiveTest (StructList);
br eak;

*x*x*xxtest for pivotal s**
Test For Pi votal s(StructList);
br eak;

*xx*xxxdjiscrimnation power**
cout << "\nMust add \"None\" in file Sol utions
<< "all cases nust have a solution”

<< "\ nNow give a nunber";

Caseli st =ReadCaseBase( Fi | eCaseBase, StructList);
Struct Li st =Bui | dDecTree(StructLi st, CaseLi st);
br eak;

*x*x*x**xrandom case- base (|l eave one IN)**
Bi gCaseBase( StructList);

Creat eCopy(Bi gFil e);

LeaveOnel n(StructList,"times");

br eak;

***x%xFljmnate NIL val ues**
CaselLi st =ReadCaseBase(Fi | eCaseBase, StructList);
El i m nat eNI L( CaselLi st, Struct Li st);

br eak;

y' /] *****Build a toy CaseBase for the pivotal
ToyCaseBase() ;
br eak;

"ttt /] ****x*tinpe with random case base**

cout << "\nNane of the output file: ";
cin >> Ti neNaneg;
Bi gCaseBase( StructList);
Cr eat eCopy(Bi gFil e);
cout << "\nrepetition=2"
repetition=2;
br eak;

<< endl ;



case '0' : [/ ******time with old algorithmrx*****

cout << "\nNane of the output file:
cin >> Ti neNane;
Bi gCaseBase( StructList);
Cr eat eCopy(Bi gFil e);
cout << "\nrepetition=2" << endl;
repetition=2;
br eak;

case '4'" : /] ****C45(LeaveOnel N) ****x*x*
Cr eat eCopy( Fi | eCaseBase) ;
CA5_I N(StructList);
exit(0);
br eak;

case '5' : /] ****C4A5(LeaveOneQUT) ***x**x*
Cr eat eCopy( Fi | eCaseBase) ;
CA5_QUT( Struct List);
exit(0);
br eak;

case 'a' : [/ ***cal cul ate AVE and SNMA*****
AVE( St ruct Li st);
br eak;

case 'q" :exit(0);

FindCases.C

#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
#i ncl ude <mat h. h>

#i ncl ude "header1. h"
#i ncl ude "header 2. h"
#i ncl ude <tine. h>

doubl e Fi ndMaxAct ( Si nCase *SublLi st)
{
doubl e MaxAct =-999;

Si mCase *ptr=SubLi st;
whi | e(ptr!=NULL)
{

1

183

br eak;
default :cout << "\n\nNo options with this key!!"
endl ;
exit(0);
}
else // only retrieval
{

Tar get Li st =ReadAl | Target s(Fil eTarget, StructList);
CaselLi st =ReadCaseBase( Fi | eCaseBase, StructList);
Br anches=Bui | dWebOf Poi nt er s( St ruct Li st, CaselLi st);

Fi ndCases( Caseli st, Target Li st, Branches, StructList,"tinmes");

Tar get Li st =Del et e( Tar get Li st);
}

systen("rm-f .CB*");
system("rm-f simul");
systen("rm-f sinul2");
systen("rm -f Bi gCB");
systen("rm-f auxil");
system("rm -f . CBCopy");
system("rm -f . CBCopyBis");
systen("rm-f WittenCaseBase");
cout << "\n";

i f(MaxAct <ptr->G veAct())
MaxAct =pt r - >G veAct () ;
ptr=ptr->next;

}
return MaxAct;
}

voi d Reset Activation(OneCase *Caseli st)

OneCase *PCase=Caseli st;
whi | e( PCase! =NULL)

PCase- >Reset Act () ;
PCase=PCase- >next ;

}



}
voi d Reset CaseBase(OneCase *Caseli st)

OneCase *PCase=Caseli st;
whi | e( PCase! =NULL)

OneFeat *PFeat =PCase->G veFeat s();
whi | e( PFeat ! =NULL)

PFeat - >ChangeHi ghest (1. 0);
PFeat - >ChangeWei ght (1. 0) ;
PFeat - >SwapWei ght s() ;
PFeat =PFeat - >next ;

}

PCase- >Kc=1. 0;

PCase- >Fc=1. 0;

PCase- >Thi sCasel sUsed=0;
PCase- >Reset Act () ;
PCase=PCase- >next ;

}
}

voi d Fi ndCases(OneCase* Caseli st, OneCase* TargetLi st,
branch* Branches, TypeNode* StructLi st,
char *Ti meNane)

FILE *results;

char Final Sol [ 160] ;

Si mCase *SubLi st =NULL, *Fi nal Li st =NULL, *pt r =NULL;
doubl e MaxAct =0;

OneCase *PTar get =Tar get Li st, *PCase=NULL;

SAN *Li st Of Sol =NULL;

long t1,t2;

resul t s=fopen(Resul tsFile,"a");

whi | e( PTar get ! =NULL)
{ //big | oop
fprintf(results,"\nTarget % %", PTarget -
>G veName(), PTarget - >G veSol ());
i f (ThereAreNoConstraints(StructList)) //No need of Base
filtering

{
PCase=Caseli st ;

whi | e( PCase! =NULL)

/1l The case goes in SubList only if it is not a target
/1 for testing purposes
i f (PCase- >Thi sCasel sUsed==0)
SubLi st =new Si nCase( PCase, SubLi st);
PCase=PCase- >next ;

}

else // There is at |east one constraint
SublLi st =BaseFi | t eri ng( PTar get, Branches, Struct Li st);

i f (gl obal ==0)
Spr eadi ngAct i vati on( SubLi st, Struct Li st, PTarget, Branches);
el se

G obal Spreadi ngActi vati on( SubLi st, StructLi st, PTarget, Branches)

1

/1 1 find the maxi mum activation

MaxAct =Fi ndMaxAct ( SubLi st);

[/ cout << "\nMaxAct: " << MaxAct;

if(MaxAct>0) // if the max act is > 0 | give solution

pt r =SublLi st ;
whi | e(ptr!=NULL)

{
i f(ptr->G veAct ()==MaxAct)

fprintf(results,"\nRetrieved: % % %", ptr-
>G veNane(),
ptr->G veSol (), ptr->G veAct());

Fi nal Li st = new Si nCase(ptr->G veCase(), Final List);
NunCasesRet ri eved++;

}

ptr=ptr->next;

i f((updat eWei ght s==1) &&(mul ti pl ==0) &&( gl obal ==0))
Local Wei ght sSun{ Fi nal Li st, PTarget, StructList);

i f((updat eWei ght s==1) &&(mul ti pl ==1) &&( gl obal ==0))
Local Wei ght sMul (Fi nal Li st, PTarget, StructList);

i f((updat eWei ght s==1) &&(mul ti pl ==0) &&( gl obal ==1))
G obal Wei ght s( Fi nal Li st, PTarget, Struct Li st);



Li st O Sol =Anal yse(Fi nal Li st, PTar get -

>G veNane(), MaxAct, Li st Of Sol ) ;
}

else // if max act is <=0 | don't
Li st O Sol = new SAN("None", "None", 0, Li st Of Sol ) ;

SublLi st =Del et e( SubLi st) ;
Fi nal Li st =Del et e( Fi nal Li st);

Reset Acti vati on(CaselLi st);
PTar get =PTar get - >next ;
} //big | oop

fclose(results)

strcpy(Fi nal Sol , ChooseFi nal (Li st Of Sol ));

Li st O Sol =Del et e( Li st Of Sol ) ;

resul t s=fopen(Resul tsFile,"a");

fprintf(results,"\nSol: %", Fin
fprintf(results,"\n--------- \n");

fclose(results)

char

CommandLi ne[ 80], posi ti on[ 32], Stri ngabDaSt anpar e[ 320] ;

IntrospectiveLearning.C

#i
#i
#i
#i
#i
#i

i nt

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<stdi o. h>
<stdlib. h>
<string. h>
<i ostream h>
"header 1. h"
"header 2. h"

Maxl t erati ons, NunCasesRetri eved;

doubl e Eval uat e()

NuntConf | i ct s=0, NunCor r ect =0, NunRet ri eved, NunCorrect| yRetri eved

nt ItlsCorrect;
doubl e

’double hi ghest Act =0. 0;

al Sol ) ;

185

FI LE *Ti poDi Stri nga
/ * LBONZ*/
Ti poDi St ri nga=f open("/dd/csc/abonzano/ GHM /ti poDi Stringa”,"r")

’fscanf(TipoD'Stringa,"@&\n@&",position,StringaDaStanpare);
fcl ose(Ti pobi Stringa);

/'l strcpy(Final Sol, FilterSol (Final Sol, StringaDaSt anpare));
/1 FilterSol is for giving the wong solution
/1 and to nmake it readable to controllers

strcat (Stri ngabDaSt anpar e, Fi nal Sol ) ;

/ * LBONZ*/

st rcpy( CormandLi ne, "/ dd/ csc/ abonzano/ | SAC/ Suggesti on -
geonetry ");

strcat ( ConmandLi ne, posi tion);

strcat (CommandLi ne, " \"");

strcat (ConmandLi ne, St ri ngaDaSt anpare) ;

st rcat (CommandLi ne, "\" &");

syst en( CormandLi ne) ;
}

char 1ine[80], *token, Suggesti on[ 80], Tar get Sol [ 80] ;
FILE *fileptr=fopen("./results","r");
whil e(fgets(line,80,fileptr))
if(line[0]=="T")
{
t oken=strtok(line," ");
t oken=strtok( NULL," ");
t oken=strtok( NULL," ");

strcpy( Target Sol , Del ECL(t oken));
NunRet ri eved=0;

}
if(line[0]=="R)



t oken=strtok(line," ");

t oken=strtok( NULL," ");

t oken=strtok( NULL," ");

st rcpy( Suggestion, Del EOL(t oken));
st rcat (Suggestion, "&end&");

t oken=strtok(NULL," ");

doubl e acti vati on=at of (t oken);

i f (highestAct<activation)

hi ghest Act =acti vati on;
NunRet ri eved=1;
NuntCorrect! yRetri eved=0;
}
el se
NunmRet ri eved++;

i f (Casel sCorrect(Suggestion, Target Sol ))
NuntCorrect! yRetri eved++;

}
if(line[0]=="S)

NunConfl i ct s++;
i f(NunRetri eved! =0)
NuntCor rect +=NuntCorrect| yRet ri eved/ NunRet ri eved;
hi ghest Act =0. 0;
}
}

fclose(fileptr);
doubl e ToBeRet ur ned=NuntCor r ect/ NumConfl i ct s*100;
i f (ToBeRet ur ned>100)

{
cout << "\nexiting because the performance is bigger than
100: "
<< ToBeReturned << ". Check the file results" << endl;
exit(0);
cout << "\ nANALYSI NG RESULTS: " << 100-ToBeReturned << " "
<< endl ;
return ToBeRet urned;
}

voi d I ntrospectiveTest (TypeNode *StructList)

186

FI LE *target, *gl obal Test;

int i, MaxLoop;

doubl e Etr[20], Et s[ 20], MaxPer f or m

char Fil eNane[ 32];

OneCase
*CaseLi st =NULL, * Tar get Li st =NULL, *t est Set =NULL, *t r ai ni ngSet =NUL
L;

branch *Branches=NULL;

for(i=0;i<Maxlterations;i++)

Etr[i]=0.0;
Ets[i]=0.0;
}
Trai ni ng_Test (Fi | eReal Set, StructList);
gl obal =0;
cout << "\n *****| OCAL WEI GHTS*****" << endl;

t est Set =ReadCaseBase(" Test Set . bi s", StructLi st);

t rai ni ngSet =ReadCaseBase( " Tr ai ni ngSet . bi s", Struct Li st);
CaselLi st =ReadCaseBase(Fi | eCaseBase, StructList);

Br anches=Bui | dWebOf Poi nt er s( St ruct Li st, CaselLi st);

updat eWei ght s=0;

MaxPer f or m=Test i ng(t est Set, CaselLi st, Branches, Struct Li st);
cout << "\n*Error BEFORE IL on test set: " << 100- MaxPerform
<< endl ;

strcpy(Fil eNanme, "zzz.");
strcat (Fi |l eNane, TypeO Si mul ati on);

gl obal Test =f open(Fi | eNane, "a") ;
fprintf(global Test,"\n% ", 100- MaxPerfornj;
fcl ose(gl obal Test);

cout << "\n*lterating on training set:";
MaxPer f or m=0. O;
for(i=0;i<Maxlterations;i++)

i nt Var ChangeHi ghest =0;
doubl e Thi sPerform

i f (DoG aphi c)



strcat (Fi |l eNanme, TypeO Si rTuI at ion);

updat eWei ght s=0; gl obal Test =f open( Fi I eNane, "a");
Et s[i]=100- Testi ng(test Set, CaselLi st, Branches, Struct Li st); fprintf(global Test,"\t% ", 100- MaxPerfornj;
fcl ose(gl obal Test );
updat eWei ght s=1; i f (DoAl sod obal)
Thi sPer f orm=Testi ng(trainingSet, Caseli st, Branches, StructList); gl obal =1;
i f (Thi sPerfornmMaxPerform cout << "\n\n\n *****G.OBAL WElI GHTS*****" << endl ;

for(i=0;i<Maxlterations;i++)

Var ChangeHi ghest =1; {
MaxPer f or m=Thi sPerform Etr[l]: 0;
} Ets[i]=0.0;
Updat eWei ght s( Caseli st, Var ChangeHi ghest) ; }
Etr[i]=100-Thi sPerform
} updat eWei ght s=0;
Updat eHi ghest ( Caseli st); MaxPer f or m=Test i ng(t est Set, CaselLi st, Branches, Struct Li st);
cout << "\n*Error BEFORE IL on test set: " << 100-
i f (DoGraphi c) MaxPer f or m
{
strcpy(Fil eNane, "ppp."); strcpy(Fil eNanme, "zzz.");
strcat (Fi | eName, TypeOf Si nul ati on); strcat (Fi | eNane, TypeOF Si nul ati on);
strcat (Fil eName,".etr");
FILE *fptril= fopen( Fil eNane "a"); gl obal Test =f open(Fi | eNane, "a");
strcpy(Fil eNane, "ppp."); fprintf(global Test,"\t% ", 100- MaxPerform;
st rcat (Fi | eName, TypeOf Si mul ation); fcl ose(gl obal Test);
strcat (Fil eNanme, ".ets");
FI LE *f ptr2=f open( Fi | eNane, "a"); i f (aver age==0)
for(i=0;i<Maxlterations;i++) {

{ cout << "\n*lterating on training set:";
fprintf(fptrd,"%2f\t", Etr[i]

) MaxPer f or m=0. O;
fprintf(fptr2,"%2f\t", Ets[i]); for(i=0;i<Maxlterations;i++)
}

fprintf(fptrl,"\n"); i nt Var ChangeHi ghest =0;
fprintf(fptr2,"\n"); doubl e Thi sPerform
fclose(fptrl); i f (DoG aphi c)
fclose(fptr2);
/| Hi stogran(StructList, CaseLi st); updat eWei ght s=0;

} Ets[i]=100-

Testing(testSet, CaselLi st, Branches, Struct Li st);
updat eWei ght s=0;
MaxPer f or m=Test i ng(t est Set, CaselLi st, Branches, Struct Li st);
cout << "\n*Error AFTER IL on test set: " << 100- MaxPerform updat eWei ght s=1;

strcpy(Fil eNane, "zzz."); Thi sPerform=Testi ng(traini ngSet, Caseli st, Branches, StructLi st);

187



i f (Thi sPerfornmMaxPerform

Var ChangeH ghest =1;
MaxPer f or m=Thi sPerform

}
Updat ed obal Wi ght s( Struct Li st, Var ChangeHi ghest) ;
Etr[i]=100-Thi sPerform
} /1 end for
i f (DoG aphi c)
{

strcpy(Fil eNane, "ggg. ") ;

strcat (Fi | eName, TypeOf Si nul ati on);
strcat (Fil eNane,".etr");

FILE *fptril= fopen(FlIeNarTe "a");
strcpy(Fil eNane, "ggg. ") ;

strcat (Fi | eName, TypeOf Si nul ati on);
strcat (Fil eNane,".ets");

FILE *fptr2= fopen(FlIeNarTe "a");
for(i=0;i<Maxlterations;i++)

{
fprintf(fptrl,"o2f\t", Etr[i]);
fprintf(fptr2,"%2f\t", Ets[i]);
1,"\n
2,"\n
)

intf r
r
rl);

(fpt
intf(fpt
ose(fpt
ose(fptr2);

r ")
r ")

I

I

Hi st ogram( StructLi st, CaselLi st);

}
fp
fp
fc
fc
/1]

}

el se // average==
{
cout << "\nCal culating the average fromthe local..." <<
endl ;
Cal cAver ageFromLocal (Struct Li st, Caseli st);

}
Updat ed obal Hi ghest (StructList);

updat eWei ght s=0;

MaxPer f or m=Test i ng(t est Set, CaselLi st, Branches, Struct Li st);

cout << "\n*Error AFTER IL on test set: " << 100-
MaxPer f or m

strcpy(Fil eNane, "zzz.");
strcat (Fi |l eNane, TypeO Si mul ati on);

gl obal Test =f open( Fi | eNan®e,
fprintf(global Test,"\t%", 100 I\/BxPerform)
fcl ose(gl obal Test );

t est Set =Del et e(t est Set ) ;

trai ni ngSet =Del et e(trai ni ngSet);
Caseli st =Del et e( CaselLi st);

Br anches=Del et e( Br anches) ;
Struct Li st =Del et e(StructList);

doubl e Testing(OneCase *Set, OneCase *Caseli st, branch
*Br anches, TypeNode *Struct List)

FI LE *target;
OneCase *TargetLi st =NULL, *PTest =Set ;

systen("rm./results");
whi | e( PTest! =NULL)
{

t arget =f open(Fi | eTarget, "w');
i f(representation==1)

ToFi |l e(PTest,target, StructList);
fprintf(target,”\n");
ToFi | e( PTest - >next, target, StructList);
PTest =PTest - >next ;
}
el se
ToFi |l e(PTest,target, StructList);

fprintf(target,”"\n");
fclose(target);

Tar get Li st =ReadAl | Target s(Fi |l eTarget, StructList);

Fi ndCases( Caseli st, Target Li st, Branches, StructList,"

Tar get Li st =Del et e( Target Li st);
PTest =PTest - >next ;

return Eval uate();

times");



E.2 Files for the Interface Between ISAC and GHMI

These are the filesin the directory GHMI.

| SAC Bada. C I SAC_t woAC

| SAC_Bada. H I SAC_wr ongDi r
| SAC_Bada. dat a

I SAC_Cal cul ate. el //TACs

I SAC_Cal cul ate.
I SAC_Functi ons.

ITIO0OOIO

eval uationl

I SAC I nterface. k1l // MACs

I SAC I nterface. konflictl

I SAC_MAC. C

| SAC_MAC. H I SAC_wr ongDi r:
ISAC Print.C trafficSanpl es
I SAC Print.H zz_andy. bar
ISAC_Bada.C

#i ncl ude <stdio. h>

#incl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <i ostream h>

voi d FronmBada(char *tipo, double *rate, double *MaxAlt)
{

int TypeFound=0, t ypelLen;

FILE *fileptr;

char *token,line[180],fil eNane[12],tenmpFN 12];

fileptr=fopen("|SAC Bada.data","r");

whil e(fgets(line, 180,fileptr))

{

t oken=strtok(line,"_");
strcpy(tenpFN, t oken);

189

t oken=strtok( NULL, "

zz_di a. hun
zz_frank. dow
zz_guy.tod
zz_leif.lun
zz_loui.sil
zz_peter.eri
zz_ray.dowd
zz_rod. ncg

bada:

AT42__. PTF
SYNONYM LST

"y

whi | e(strcnp(token, x| =0)

}

i f(strcnp(token,tipo)==0)

strcpy(fil eName, t empFN) ;

TypeFound=1;

}
t oken=strtok(NULL," ");

}
fclose(fileptr);

i f ( TypeFound==0)
{



printf("\nFile for the type NOT found!");
fflush(stdout);
exit(0);

}
typeLen=strlen(fil eName);
fflush(stdout);

strcpy(line,"./badal");

i
strcat (line, fileNane);
for(int |—typeLen i <6;i ++)
strcat(llne ")
strcat(lin . PTF");
fileptr=fopen(line,"r");

doubl e aveSpeed=0. 0, rmxAlt—O 0;
whil e(fgets(line, 180,fileptr))

/] extracting the MaxAltitude and C i mabRate
t oken= strtok(llne ")
i f(strcnp(token,"clinb")==0)

t oken=strtok(NULL," ");
t oken=strtok( NULL," ");
t oken=strtok(NULL," ");
aveSpeed=at of (t oken) ;

}
i f(strcnp(token, "cruise")==0)

ISAC_Calculate.C

#i ncl ude " CoreConstants. H'
#i ncl ude "Hi psCore. H'

#i ncl ude "Zones. H'

#incl ude "Rul es. H'

#i ncl ude " At nosphere. H'
#include "Constraints. H'
#i ncl ude "Hi psCor eAPI . h"
#include "AirPosition. H'

#i ncl ude <stdio. h>
#i ncl ude <mat h. h>
#i nclude "1 SAC _Cal cul ate. H'

i nt Cal cul at ePoi nt s(Hi ps ph, OneAircraft *ACl, OneAircraft *AC2)

t oken=strtok(NULL," ")
t oken=strt ok( NULL, ")
t oken=st rt ok( NULL, )
aveSpeed+=at of ('t oken),
t oken=strtok(NULL," ")
t oken=strtok(NULL," ")
t oken=strtok(NULL," ")
t oken=strtok(NULL," ")
t oken=strtok(NULL," ")
t oken=strtok(NULL," ")
t oken=strtok(NULL," ")
maxAl t =at of (t oken);
}
i f(strcnp(token, "descent") ==0)
{

t oken=strtok(NULL," ");

t oken=strt ok( NULL, "),

t oken=strtok(NULL," ");

aveSpeed+=at of ('t oken),

}

}

fclose(fileptr);
*r at e=aveSpeed/ 3;
*VaxAl t =maxAl t ;

}

doubl e xbef ore, ybefore;
Hi ps_Fl i ght Pl an *Pf p;
Hi ps_ConflictList *Pcl;

/1 cal culating the point
no- go zone

Pcl =Hi ps_Get Confli ct s(ph, ACLl- >nane) ;
int i=0;

on the boundary of the horizontal

whi l e(strcnp(Pcl ->Conflict[i].Environnent Name, AC2- >nane) ! =0)
{
i ++;
i f(i==Pcl->NunberCf Conflicts)

// it was -1 in two aircraft conflicts

190



printf("\nWarning: these two aircraft are NOT
conflicting.\n\n");
return O;

}

}
AC1- >xOnConf | =Pcl ->Conflict[i]. nt[0].
AC1- >yOnConf | =Pcl ->Conflict[i]. Poi nt [O].
AC1->ti meOnConfl =Pcl ->Conflict[i]. Point
/1 Calculating the point before the one on the conflict
Pf p=Hi ps_Get Fl i ght Pl an( ph, AC1- >nan®) ;
i =0;
whi | e( ACL- >t i meOnConf | >Pf p->Pl anPoi nt[i]. Ti nme)

. Ti nme;

xbef ore=Pf p->Pl anPoi nt[i]. X
ybef or e=Pf p->Pl anPoint[i].Y
i ++;

AC1- >xbef or e=xbef or e;
AC2- >ybef or e=ybef or e;

/1l verify for boundaries

i nt NumOnBound=0;

Pf p=Hi ps_Get Fl i ght Pl an( ph, AC1- >nan®) ;
i =0;

whi | e(i <Pf p- >Nunber O Pl anPoi nt s)

i f(Pfp->TrajDatali].OnBoundary==1)
NunOnBound++;
i ++;

}
i f (NumOnBound! =
printf("\n###% has % points on boundaries!!!!###",
Pf p- >Nane, NunOnBound) ;
return 1;

}

voi d Cal cul at eHor Conf | Conf (Hi ps ph, OneAircraft
*ACL, OneAircraft *AC2)

1 —h

our options (analysed in this order):
head-on if angle bigger than 150

191

/1l - converging if 2 or nore pts in common and at the same
point in the future

/1l - diverging if 2 or nore pts in common and at separate

points in the future

/1l - crossing if one point in comon

/1 | first see if they have nore than 2 points together.

/1 If yes | check whether they are converging or diverging
/1 If not | check whether they are haed-on or crossing

/1 all this is independent on the sector boundaries

int i,j,ComonPoi nt s=0, NOPP1, NOPP2

doubl e HCCangl e;

char angle[12];

HCCangl e=Get Angl e( AC1- >xbef or e, ACl1- >ybef ore,
AC1- >xOnConf | , AC1- >yOnConf
AC2- >xbef or e, AC2- >ybef or e,

AC2- >xOnConf | , AC2- >yOnConfl ) ;

i f (HCCangl e>Bi ggest Angl e)
strcpy(angl e, "headon");
el se
{ //huge if
Hi ps_Fl i ght Pl an *Pf p;

/1 1 store in tw vectors the flight plans of the two
aircraft

/1 if the flight plan has nore than 50 points | have an
error!

doubl e x1[50], y1[50], ti nel[50];

doubl e x2[50], y2[50],tinme2[50];

Pf p=Hi ps_Get Fl i ght Pl an(ph, AC1->nane); // first aircraft
i f (Pfp->Nunber O Pl anPoi nt s>50)

printf("\nWarning: % Flight Plan with nore than 50
points: ", ACl->nane);

printf("l cannot cal cul ate the Horizontal Confli ct
Configuration");

i =0;
whi | e(i <Pf p- >Nunber O Pl anPoi nt s)

x1[i]=Pfp->Pl anPoint[i].
y1[i]=Pfp->PlanPoint[i].
timel[i] =Pf p->Pl anPoi nt[l] Ti me;



i ++;

1

}
NOPP1=Pf p- >Nunber Of Pl anPoi nt s- 1;

Pf p=Hi ps_Get Fl i ght Pl an( ph, AC2->nane); // second aircraft
i f (Pfp->Nunber O Pl anPoi nt s>50)

printf("\nWarning: Flight Plan with nore than 50 points:

1

printf("l cannot cal cul ate the Horizontal Confli ct

Configuration");

i =0;
whi | e(i <Pf p- >Nunber O Pl anPoi nt s)

x2[i]=Pfp->PlanPoint[i].X;
y2[i]=Pfp->PlanPoint[i].Y;
time2[i]=Pfp->PlanPoint[i].Tine;
i ++;

}
NOPP2=Pf p- >Nunber Of Pl anPoi nt s- 1;

i =NOPP1;
whi | e(i >=0)

j =NOPP2;
whi | e(j >=0)

doubl e di st;
dist=((x2[i]-x2[j])*(x1[i]-x2[j])+
_ C(yifi]-y2[i])*(y1[i]-y2[j]));
i f(dist<4)

ConmonPoi nt s++;
-3

==

}

i f (ComonPoi nt s>1)

two or nore points in common:

catching if one of the two last points is in conmon
and at the sane tinme (less than 1 nminute) and

at the sane alt

ot herwi se di verging

~~—~
~~—~

192

/1 if any of this point is close to the other,
are catching
/1 USE W DESCREEN
i f( ((((x1[NOPP1] - x2[ NOPP2] ) *(x1[ NOPP1] - x2[ NOPP2] ) +
(y1[ NOPP1] - y2[ NOPP2] ) * (y1[ NOPP1] - y2[ NOPP2] ) ) <4) &&
((timel[ NOPP1]-tine2[ NOPP2])<1)) ||
((((X1[ NOPP1-1] - x2[ NOPP2] ) * ( x1[ NOPP1- 1] - x2[ NOPP2] ) +
(y1[ NOPP1- 1] - y2[ NOPP2] ) * (y1[ NOPP1-1] -
y2[ NOPP2])) <4) &&
((timel[ NOPP1-1]-tinme2[ NOPP2])<1))
((((x1[ NOPP1] - x2[ NOPP2-1]) *( x1[ NOP
(y1[ NOPP1] - y2[ NOPP2- 1] ) *(y1[ NOPP

t hen they

I
P1] - x2[ NOPP2- 1] ) +
1] - y2[ NOPP2-
1])) <4) &&

((ti mel[ NOPP1] -ti me2[ NOPP2] - 1) <1)) ||

((((x1[ NOPP1- 1] - x2[ NOPP2- 1] ) * ( x1[ NOPP1- 1] - x2[ NOPP2-

(y1[ NOPP1- 1] - y2[ NOPP2- 1] ) * (y1[ NOPP1- 1] - y2[ NOPP2-
1]))<4) &&
((timel[ NOPP1-1]-time2[ NOPP2]-1)<1)) )
strcpy(angl e, "convergi ng");
el se
strcpy(angl e, "di verging");

else // less than two points crossing
strcpy(angl e, "crossi ng");
} // end of huge if
strcpy( ACL- >Hor Conf | Conf, angl e);
strcpy( AC2- >Hor Conf | Conf, angl e);

}

voi d Cal cul ateAl titudeConfiguration(H ps ph, OneAircraft* AC1,
OneAircraft* AC2,int alt,int altl,
doubl e tine)

/1l is the al/c clinbing,
CONFLI CT BEG NS)

int NextAlt,NextAltl,i;
Hi ps_Fl i ght Pl an *Pf p;
Hi ps_Traj Position *Ptraj;

descendi ng, stable? (WHEN THE

strcpy(ACL->AltIntention,"stable");
strcpy(AC2->AltIntention,"stable");

Pf p=Hi ps_Get Fl i ght Pl an( ph, AC1- >nan®) ;



Pt r aj =Pf p- >PI anPoi nt ;

i =0;
while(Ptraj[i]. Ti me<ACl->ti meOnConfl)
i++; // this is the trajectory point

begi ns

}

i--

i f(i==Pfp->Nunmber Of Pl anPoi nts-1)
printf("\nsonething strange in Altlntention");

if((int)Ptraj[i+1].Altitude-(int)Ptraj[i].Atitude>5)
strcpy(ACL->AltIntention,"clinbing");

else if((int)Ptraj[i].Atitude-(int)Ptraj[i+1].Al titude>5)
strcpy(ACl->AltIntention, "descendi ng");

Pf p=Hi ps_Get Fl i ght Pl an( ph, AC2- >nan®) ;
Pt r aj =Pf p- >PI anPoi nt ;

i =0;
while(Ptraj[i].Ti me<ACl->ti meOnConfl)
i++;, // the aircraft is before this trajectory point

==

i f(i==Pfp->Nunmber Of Pl anPoi nts-1)
printf("\nsonething strange in Altlntention");

if((int)Ptraj[i+1].Altitude-(int)Ptraj[i].Atitude>5)
strcpy(AC2->Al tIntention,"clinbing");

else if((int)Ptraj[i].Atitude-(int)Ptraj[i+1].Al titude>5)
strcpy(AC2->AltIntention, "descending");

/1 cal cul ati ng SonmebodyC i nbi ng
if((strcmp(ACl->AltlIntention,"clinbing")==0)]|
(strcnmp(AC2->Al tIntention,"clinbing")==0))

{
st rcpy( AC1- >SonebodyC i mbi ng, "yes");
st rcpy( AC2- >SonebodyC i mbi ng, "yes");

el se
{
st rcpy( AC1- >Sonrebodyd i mbi ng, "no"

)
st rcpy(AC2- >Sonebodyd i nmbi ng, "no");
}

before the no-go zone

193

voi d Cal cul at eEasyToExit (Hi ps ph, OneAircraft *ACl, OneAircraft

// nore accurate function: | don't
wher e

[/l the aircraft is, but
t he no-go zone
/'l noreover, |
but

/]l the actual

cal cul ate the angles from
fromthe previous pointS considering

don't use any nore the centre of the conflict

trajectory of the aircraft

/| EasyToExitRi ght/Left val ues:
/1 - veryEasy (if the aircraft
direction and the

/1 angle is less than 10 degrees or
than 5 degrees)

is already turning that

if the angle is less

/l - easy (if the angle is |l ess than 10 degrees)

/1l - possible (if the angle is between 10 and 15 degrees)
/1l - difficult (if the angle is bigger than 15 degrees)
/1 Al these value inply that there nust not be other

envi ronmnent al
/1l no-go zones

int i,j,startingK first=1,1ast;

doubl e angl e, gl obal Angl e, | gap, rgap, | nogo, r nogo;
doubl e xextrene, yextrene;

doubl e Smal | est Lnogo=999, Snal | est Rnogo=999;
doubl e Smal | est Lavai | =999, Snal | est Ravai | =999;
H ps_Fl i ght Pl an *Pf p;

Hi ps_ZonelLi st *Pzl;

H ps_Zone *Pz;

Pzl =Hi ps_Get Zones( ph, Hi ps_Rout eDi agram ;
Pz=Pzl| - >Zone;

Pf p=Hi ps_Get Fl i ght Pl an( ph, AC1- >nan®) ;

/1 1 check if the aircraft is turning left or
whi |l e(Pfp->Traj Data[first]. OnBoundary! =1)
first++;
| ast =Pf p- >Nunber Of Pl anPoi nt s- 1;
whi | e( Pf p->Traj Dat a[ | ast] . OnBoundar y! =1)
| ast--;
if(first>last)

right



printf("\nError: sonmething wong in the flight plan of {
%\ n\n", for(j=0;j<Pz[i].Nunber O Points;j++)
Pf p- >Nane) ; {
exit(0); xextreme=Pz[i].Point[j]. U
yextreme=Pz[i].Point[j].V;
angl e=Cet Angl e2( Pf p- >Pl anPoi nt[ st arti ngK] . X,

if(last==first+1) Pf p- >Pl anPoi nt [ starti ngK] .Y,
gl obal Angl e=0; AC1- >xOnConf | , AC1- >yOnConf
el se xextreme, yextrene);

gl obal Angl e=Cet Angl e2( Pf p- >Pl anPoi nt[first-1]. X Pfp- i f((angl e<0) &&( fabs(angl e) <fabs(lavail)))
>Pl anPoint[first-1].Y, | avai | =angl e;
Pf p->Pl anPoi nt [l ast]. X, Pf p->Pl anPoi nt[| ast] .Y, i f((angl e<0) &&( angl e<ravail))
Pfp->Pl anPoint[first]. X, Pfp->PlanPoint[first].Y); ravai | =angl e;
}
/1 1 need to find the point on the traj which is on the }
sect or boundary }

/1 but before the point on the no-go zone boundary
i f(Smal | est Lnogo>f abs( | nogo))

for(int kk=0; kk<Pf p->Nunber O Pl anPoi nt s; kk++) Smal | est Lnogo=f abs(| nogo) ;
i f((Pfp->Traj Dat a[ kk] . OnBoundar y==1) && i f(Smal | est Rnogo>f abs(rnogo))
( Pf p->PI anPoi nt [ kk] . Ti me<AC1->ti neOnConfl)) Smal | est Rnogo=f abs(rnogo) ;
startingK=kk; i f(Smal | est Lavai | >fabs(lavail))
Smal | est Lavai | =f abs(| avail);
whi | e( ACL- >t i meOnConf | >Pf p- >Pl anPoi nt [ starti ngK]. Ti ne) i f(Smal | est Ravai | >f abs(ravail))
Smal | est Ravai | =f abs(ravail);
doubl e 1 nogo=0, rnogo=0, | avai | =-90, ravai | =90; starti ngK++;
for(i=0;i<Pzl->Nunber Of Zones; i ++) }
if(strenp(Pz[i].Environment Nane, AC2- >nane) ==0) | nogo=f abs( Smal | est Lnogo) ;

r nogo=f abs( Snmal | est Rnogo) ;
for(j=0;j<Pz[i].NunmberOf Points;|j++)
{ i f(Smal | est Lavai | <Snal | est Lnogo)

xextreme=Pz[i].Point[j]. U | gap=0;
yextreme=Pz[i].Point[j].V; el se
angl e=Cet Angl e2( Pf p- >Pl anPoi nt[ st arti ngK] . X, | gap=f abs( Snual | est Lavai | - Smal | est Lnogo) ;
Pf p- >Pl anPoi nt [ starti ngK] .Y,
AC1- >xOnConf |, AC1- >yOnConf | , i f(Smal | est Ravai | <Smal | est Rnogo)
xextreme, yextrene); r gap=0;
i f (angl e<l nogo) el se
| nogo=angl e; r gap=f abs( Smal | est Ravai | - Snal | est Rnogo) ;
i f (angl e>r nogo)
rnogo=angl e; /1 here | should be able to determ ne whether the no-go zone
} is on the

/] sector boundaries or not
el se

194



/1l here | could put 10 but the
maxi mum bet ween

/1 10 and gl obal Angl e

as the mnimum angl e not

i f(((rgap>5)&&(rnogo<10) &&( gl obal Angl e>0)) || (rnogo<5))
strcpy( ACL- >EasyToExi t Ri ght, "veryEasy");
el se if((rgap>5)&&(rnogo<10))
strcpy(ACl- >EasyToExi t Ri ght, "easy");
el se if((rgap>5)&&(rnogo<15))
st rcpy(ACl- >EasyToExi t Ri ght, " possi bl e");
el se
strcpy(ACl- >EasyToExi t Ri ght, "difficult");

i f(((lgap>5)&&(I nogo<10) &&( gl obal Angl e<0))| | (1 nogo<5))
strcpy(ACl- >EasyToExi tLeft, "veryEasy");
el se if((l gap>5)&&(1 nogo<10))
strcpy(ACl- >EasyToExi tLeft, "easy");
el se if((l gap>5)&&(1 nogo<15))
st rcpy(ACl- >EasyToExi t Left, "possi bl e");
el se
strcpy(ACl- >EasyToExitLeft,"difficult");

i f((strcnmp(ACl->EasyToExi t Ri ght, "veryEasy")==0)| |
(strcnp( ACL- >EasyToExi tLeft, "veryEasy")==0))
strcpy(ACl- >EasyToExi t Hori zontal |y, "veryEasy");
el se if((strcnp(ACLl->EasyToExitRi ght, "easy")==0)]| |
(strcnp( ACl- >EasyToExi t Left, "easy")==0))
strcpy(ACl- >EasyToExi t Hori zontal |y, "easy");
el se if((strcnp(ACLl->EasyToExitRi ght, "possi bl e")==0)] |
(strcnp( ACl- >EasyToExi t Left, " possi bl e")==0))
strcpy(ACl- >EasyToExi t Hori zontal | y, "possi bl e");
el se
st rcpy(ACl- >EasyToExi t Hori zontal Iy, "difficult");

voi d Cal cul at eBoundari es(Hi ps ph, OneAircraft *AC)

/1 The distance to the boundary is the distance between the
/1 first point of the trajectory which is in the no-go zone
/1 and the entry or exit point in the sector, i.e the points
/1l of the trajectory which are on the boundary

/1 the entry point is inportant, too,

/1l the entry point the controller should coordinate with the
/'l previous sector

because if too close to

195

int ind=0;

doubl e ti neBefore,ti neAfter;

Hi ps_Fl i ght Pl an *Pf p;

Pf p=Hi ps_Get Fl i ght Pl an( ph, AC- >nane) ;

/1 1 already have xOnConfl
yOnBound
whi | e( Pf p- >Pl anPoi nt [ i nd] . Ti me<AC->ti neOnConfl)

and yOnConfl, | need the xOnBound,

i f (Pfp->Traj Datalind].OnBoundary==1)
ti meBef or e=Pf p- >Pl anPoi nt [i nd] . Ti ne;
i nd++;

}

i nd=0;
whi l e(! ((Pfp->Pl anPoint[ind]. Ti me>AC- >ti neOnConfl ) &&
(Pfp->Traj Dat a[ i nd] . OnBoundar y==1) ))
i nd++;
ti meAft er=Pf p->Pl anPoi nt[ind]. Ti me;

/1 ask NIGEL for here: is it 4 mnutes fromthe a/c or

/1 fromthe beginning of the conflict?

/1 CloseToBound is the snmallest time to go to the cl osest
boundary

doubl e m ni nus=ti neAfter-AC >ti neOnConfl ;

i f(m ni nus>AC->ti meOnConfl -ti neBefore)

m ni mus=AC- >t i neOnConf | -t i neBef or e;
AC- >Cl oseToBound=ni ni nus;

}

voi d Cal cul at eLevel sAvai | abl e(H ps ph, OneAircraft
InitLevel,

* AC1, doubl e

doubl e tine)

int i;

I evel |ev[Numievel s];
doubl e Fi nal Level ;

H ps_Fl i ght Pl an *Pf p;

Pf p=Hi ps_Get Fl i ght Pl an( ph, AC1- >nan®) ;
Fi nal Level =Pf p- >Pl anPoi nt [ Pf p- >Nunber & Pl anPoi nt s-
1] . Al titude;



/'l the fina
flight plan

level is the altitude of the |ast point of the

/1 1 ook where in the trajectory, the a/c is

int j=0;

Hi ps_Di agranPoint Start;

whi | e( (Pf p->Pl anPoi nt[j +1] . Ti ne<ti me) &&( (j +1) <Pf p-
>Nunber O Pl anPoi nt s))

j ++;

Start =Hi ps_MapPoi nt ( ph, Pf p-
>Pl anPoint[j], H ps_Al titudebi agram;

Reset Level s(l ev);
CheckLevel s(l ev, ph, Start. U);
in the

/1 Start.U the X of the aircraft
/1 H ps_AtitudebDi agram

/1 1 look for the indices of the initial and final |evels
doubl e Cl osest Fi nal =999, Cl osest I nit=999; // this is the
di stance of the

/]l actua

altitude | evels

int Finallnd=0,Initiallnd=0;
for(i=0;i<Nunievel s;i ++)

aircraft level fromone of the allowed

if(Cdosestlnit>(fabs(InitLevel-lev[i].nane)))

Closestlnit=(fabs(lnitLevel-lev[i].nane));
Initiallnd=i;

i f (C osestFinal >(fabs(Fi nal Level -lev[i].nane)))

Cl osest Fi nal =(f abs(Fi nal Level -1ev[i].nane));

Fi nal | nd=i
}
}
/11f the aircraft is Stable the possible values are
/1 - NONE (it neans that in each of the |evels above and
bel ow there is at
/1 | east a no go zone generated by another aircraft)
/1 - YESABOVE (it nmeans that one of the two |evels above is
completely free)
/1 - YESBELOW (it means that one of the two levels belowis

completely free)

196

// 1f the aircraft
val ues are:

is clinmbing or descending the possible

/1 - NONE (it neans that none of the internediate |evels, the
starting |eve

/1 and the final level are free)

/1 - YES (it means that there is at |east one |eve

avail abl e: conpletely free)

/1 - YESW THSPACES (it means that there are no levels free

but in sone there
/1 are sone spaces between the no go zones)

i f(Initiallnd==Finallnd)
{1/ alc is Stable

i nt above=0, bel ow=0;

if((lev[linitiallnd].free==1)||(lev[Initiallnd+1l].free==1)]|
(lev[Initiallnd+2].free==1))

above=1;

if((lev[linitiallnd].free==1)||(lev[Initiallnd-1].free==1)]|
(lev[Initiallnd-2].free==1))

bel ow=1;

i f((above==1) &&(bel ow==1))

strcpy(ACL- >Level sAvai | abl e, "yes");
el se if(above==1)

st rcpy(ACl- >Level sAvai | abl e, "above");
el se if(bel ow==1)

st rcpy(ACl- >Level sAvai | abl e, "bel ow") ;
el se
strcpy(ACL- >Level sAvai | abl e, "none");

el se

{1/ alc is clinbing or
i nt found=0, spaces=0;
if(Initiallnd>Finallnd) // descending

descendi ng

for(i=lnitiallnd;i>=Finallnd;i--)
if(lev[i].free==1)
found=1;
if(lev[i].spaces==1)
spaces=1;

}
el se // clinbing
for(i=Initiallnd;i<=Finallnd;i++)

if(lev[i].free==1)



f ound=1;
if(lev[i].
spaces=1;

spaces==1)

}
i f(found==1)
strcpy(ACL- >Level sAvai | abl e,
el se if(spaces==1)
strcpy(ACL- >Level sAvai | abl e,
el se
strcpy(ACL- >Level sAvai | abl e,

"yes");
"wi t hSpaces");
"none");

}

voi d Cal cul at eSpeed( Hi ps ph, OneAircraft
*AC2, doubl e tine)

|| =================
{ o .

/1 1 calculate whether it is easy, possible or
exit the no-go

/1l zone by increasing or decreasing the speed.
/1 Easy -> change | ess than 0.01 Mach

/'l Possible ->0.02 M

/1 Difficult -> 0.03 Mand nore

/1 the val ue does not depend on the environnent
(yel l ow no go zones)

/1 but only on the red ones!!!!! CHANGE TH S!!!
/1 fare conme in Hor angle:
pi u'

/1 grossa per
zone and see
/1 if possible etc.
int j,zindice;
doubl e mach;
Hi ps_ZonelLi st
H ps_Zone *Pz;
H ps_Fl i ght Pl an *Pf p;

Hi ps_Di agranPoint Start,
Max. V=-999;

M n. V=999;

la red zone e la piu' piccola per

* Pzl ;

Max, M n;

Pf p=Hi ps_Get Fl i ght Pl an( ph, AC1- >nan®) ;
Pzl =Hi ps_Get Zones( ph, H ps_SpeedDi agram ;
Pz=Pzl| - >Zone,;

zi ndi ce=0;

*ACL, OneAircraft

difficult to

aircraft

cal cola TUTTE | e speed e prendo |a

la yell ow

197

whi | e(zi ndi ce<Pzl - >Nunber Of Zones)

i f(strcenp(Pz[zindice].
for(j=0;]j<Pz[zindice].

Envi r onnent Nane, AC2- >nane) ==0)
Nunber Of Poi nt s; j ++)

Point[j].V)

Max. V=Pz[ zi ndi ce] . Poi nt [ ] ] ,
Max. U=Pz[ zi ndi ce] . Poi nt [ ]

i f(Max. V<Pz[ zi ndi ce].

}
i f(Mn.V>Pz[zindice].

Point[j].V)
M n. V=Pz[ zi ndice] . Point[j].V;
M n. U=Pz[ zi ndice] . Point[j].U;
}
zi ndi ce++;
}
/1 1 ook where in the trajectory, the a/c is

int i=0;
whi | e( (Pfp->Pl anPoi nt[i +1] .
>Number O Pl anPoi nt s))
i ++;

Ti me<time) &&( (i +1) <Pf p-

/1 1 find the mach speed of the point where the a/c is
i f(Pfp->TrajDatali].CasNot Mach==1)

/1 1 convert from CAS to MACH
printf("\nflying in CAS");
mach=Mach_From TAS( TAS_Fr om CAS( Pf p- >Traj Dat a[i ] . CasMach,
Pfp->Pl anPoint[i]. Al titude),
Pfp->Pl anPoint[i]. Al titude);
}
el se

mach=Pf p- >Traj Data[i ] . CasMach;

/1 1 look for the actual position of the a/c in the Speed
wi ndow
doubl e t,d, nt, md, MaxGS, M nGS, MaxMach, M nMach;

Fl i ght Position fp;

Start =Hi ps_MapPoi nt ( ph, Pf p- >Pl anPoi nt[i]
UnMapPoi nt (Start,
t=fp. Time;

, Hi ps_SpeedDi agram ;
fp, H ps_SpeedDi agram ( Hi psCor e*) ph);



d=f p. Di st ance;

I look for the Mach speed of the Max & Mn points
I suppose that the altitude remains the sane
MapPoi nt (Max, f p, Hi ps_SpeedDi agr am ( Hi psCor e*) ph);
=f p. Ti ne;
=f p. Di st ance;
XxGS=(md-d)/(nt-t)*60;
MaxMach=Mach_Fr om TAS( MaxGS, Pf p- >Pl anPoi nt[i]. Al titude);

/1
/1
Un
nt
nd
Ma

UnMapPoi nt (M n, f p, H ps_SpeedDi agr am ( Hi psCor e*) ph) ;

nt =f p. Ti me;

nd=f p. Di st ance;

M nGS=(nd-d)/(nt-t)*60;

M nMach= Mach_From TAS(M nGS, Pf p->Pl anPoint[i]. Al titude);

st rcpy( AC1l- >Pl FSpace, "no");

Pzl =Hi ps_Get Zones( ph, H ps_Rout eDi agram ;
NOC=PzI - >Nurnber Of Cent r es;
Pc=Pz| - >Centr e;

/1 Passing in front if going directly?
whi | e(strcnp( AC2- >name, Pc[i]. Envi r onment Nane) ! =0)
i ++;
angl e=Cet Angl e2(xstart,ystart,Pc[i].Point.U, Pc[i].Point.V,
Pc[i]. Vector. U, Pc[i]. Vector.V);

/1 Attention!!! Final Angle is not cal cul ated anywhere!!!!
/1 look for it in CalculateAvail Exit...
i f (( (ACL->Fi nal Angl e>0) &&( angl e>0))| | ( (ACL1-

>Fi nal Angl e<0) &&( angl e<0)))
strcpy(Passi nglnFrontDir, "yes");
strcpy(AC1->PlI FDi rect, Passi nglnFrontDir);

i f(fabs(MaxMach-mach) <=0.01)
st rcpy(ACl- >Faster, "easy");
el se if(fabs(MaxMach-nach)>0.02)

strcpy(ACl->Faster,"difficult"); /1l Passing in front if going where there is nore space?

el se /1 ATTENTI ON! | gap | nogo are not cal cul ated anywhere
st rcpy( AC1l- >Fast er, "possi bl e"); /1 if you need it go to Cal cul at eEasyToExi t
i f ((ACL1->l gap > ACl->rgap)&&(angl e<0)) // nore space on the
i f(fabs(mach-M nMach) <=0. 01) left and other al/c
st rcpy(AC1- >Sl ower, "easy"); /1l is going to the left

el se if(fabs(mach-M nMach)>0. 02)
strcpy(AC1->Sl ower, "difficult");

el se i f ((ACl1->rgap > ACLl->| gap) &&(angl e>0)) // nore space on the
st rcpy(AC1- >Sl ower, "possi bl e"); right and other al/c

st rcpy( AC1- >Pl FSpace, "yes");

/1l is going to the right
st rcpy( AC1- >Pl FSpace, "yes"); */
voi d Cal cul at el nFront (H ps ph, OneAircraft *ACL, OneAircraft
*AC2,
doubl e xstart, doubl e ystart) voi d Cal cul at eFroniTo( Hi ps ph, OneAircraft* AC)
|| =============—====== || ==================

/1 redo the function! don't use xstart & ystart FILE *fileptr;

/* //int trovati=0;

Hi ps_ZonelLi st *Pzl; i nt foundD=0, f oundA=0;

Hi ps_Centre *Pc; doubl e dl at, dl on, al at, al on, bl at, bl on, doneTr aj , t oDoTr aj ;
int i=0, NCC, char 1ine[80], *token, slat[12], sl on[ 12], beacon[ 12] ;

char Passi ngl nFront Di r[ 5], Passi ngl nFront Space[ 5] ;
doubl e angl e; /1 for depart and arrival
fileptr=fopen("aerodrones”,"r");

strcpy(Passi nglnFrontDir,"no"); whil e(fgets(line,80,fileptr))

198



{

t oken=strtok(line," "); st rcpy(auxBeacon, Pf p- >Tr aj Dat a[ i nd] . BeaconNane) ;
i f(strcnp(token, AC >depart) ==0) fileptr=fopen("AllBeacons","r");
whil e(fgets(line,80,fileptr))
f oundD=1; {
t oken=strtok(NULL," "); t oken=strtok(line," ");
strcpy(sl at, token); i f(strcnp(token, auxBeacon) ==0)
t oken=strtok(NULL," ");
strcpy(sl on, t oken); [lprintf("\nfound beacon: %", auxBeacon);
dl at =Lat ToDoubl e( sl at); st rcpy(beacon, auxBeacon) ;
dl on=Lat ToDoubl e(sl on); t oken=strtok(NULL," ");
} strcpy(sl at, t oken);
i f(strcnp(token, AC>arrival)==0) t oken=strtok(NULL," ");
strcpy(sl on, token);
f oundA=1; bl at =Lat ToDoubl e( sl at);
t oken=strtok(NULL," "); bl on=Lat ToDoubl e(sl on);
strcpy(sl at, t oken); }
t oken=strtok( NULL," ");
strcpy(sl on, token); fclose(fileptr);
al at =Lat ToDoubl e(sl at); }
al on=Lat ToDoubl e(sl on); i nd++;
} } }
fclose(fileptr); i f((foundD)&&(foundA))
/1 1 ooking for the beacon nane doneTr aj =Di st anceFr on(dl at, dl on, bl at, bl on);
i nt ind=0; t oDoTr aj =Di st anceFr on{ bl at, bl on, al at, al on);
char auxBeacon[12]; doubl e perc=doneTraj/ (doneTraj +t oDoTraj ) ;
H ps_Fl i ght Pl an *Pf p; }
Pf p=Hi ps_Get Fl i ght Pl an( ph, AC- >nane) ;
i f(foundA)
/1 1 take the cl osest beacon to where the aircraft is. { /] CoseToTOD is the distance in nmles fromthe TOD
/1 Not geographi cal point because | don't have lat |on. AC- >Cl oseToTOD=Di st anceFron{ bl at, bl on, al at, al on);
whi | e( Pf p- >Pl anPoi nt [ i nd] . Ti me<AC->ti neOnConfl) }
{ el se
[1printf("\nworking on %", Pf p->Traj Dat a[ i nd] . BeaconNane) ; AC- >Cl oseToTOD=-999;
i f(strcnp(Pfp->Traj Data[i nd].BeaconNane, "#CGEQ') ! =0) }
ISAC_MAC.C
#i ncl ude <stdio. h> {
#i ncl ude <string. h> i nt Found=0, Nunber O Sol =0, Maxi , j, i =0, NOC[ 12] , Nunber O Sarne;
char *token,line[256], sol s2[12][32], sol s[12][32], nan[ 12][ 8] ;
voi d Fi ndSol For MAC() char acMoved[ 12] [ 12], ac1[12][12],ac2[12][12], aux[ 256] ;

199



FILE *fileptr;

[ * LBONZ* /
fileptr=fopen("/dd/csc/abonzano/ | SAC/ Sol For MAC", "r");
whil e(fgets(line, 256,fileptr))

if(line[0]=="0)
Nurber OF Sol ++;
if(strlen(line)>2)

strcpy(sols[i],line);
NOC[ i ] =Nunber O Sol ;
i ++;

}

fclose(fileptr);
Maxi =i ;

for(i=0;i<Mxi;i++)
{

strcpy(aux, sols[i]);
t oken=strtok(aux,"_");
strcpy(man[i], t oken);
t oken=strtok(NULL,"_");
strcpy(aclf[i], token);
t oken=strtok(NULL,"_");
strcpy(ac2[i], token);

}
for(i=0;i<Mxi;i++)
{

if(man[i][0]=="h")
strcpy(sol s2[i], "hor");
if(man[i][0]=="5s")
strcpy(sol s2[i], "spe");
if(man[i][0] == u)
strcpy(sol 52[ | ] : "upp");
if(man[i][0]=
strcpy(sol 52[ i],"dow");

if(man[i][3]=="1")
{

strcat(sols2[i],acl[i]);
strcpy(achved[i],acl[i]);

i%(rmn[i][s]::'Z')

strcat(sol s2[i],ac2[i]);
strcpy(achMved[i], ac2[i

i%’(min[i][3]==' ")
strcpy(acMved[i], "both");

}
/1 1 check if there are sols in conmmon for ALL the different
conflicts
i =0;

Number OfF Sane=0;
whi | e(NOC[ i ]==1)

{
char sol ToCheck][ 32];
strcpy(sol ToCheck, sol s2[i]);

for(j=0;j<Maxi;j++)
{

i f((NOC[j]>1) &&(strcnp(sol ToCheck, sol s2[j])))
Nunber OF Same++;

}
i f (Nunber OF Same+1==Nunber Of Sol )

Found=1;
printf("\nFINAL SOL (FIRST STEP): %", sol ToCheck);
i ++;
}
// 1 check if there is a sane aircraft noved in all the
conflicts

/1 (useful to do?)

// 1 solve the closest conflict in order of tine
printf("\n");

200



