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Dense packings of spheres in cylinders: Simulations
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We study the optimal packing of hard spheres in an infinitely long cylinder, using simulated annealing, and
compare our results with the analogous problem of packing disks on the unrolled surface of a cylinder. The densest
structures are described and tabulated in detail up to D/d = 2.873 (ratio of cylinder and sphere diameters). This
extends previous computations into the range of structures which include internal spheres that are not in contact
with the cylinder.
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I. INTRODUCTION

The dense packing of monodisperse (equal-sized) hard
spheres in a cylinder has been found to produce a remarkable
sequence of interesting structures as the ratio of the cylinder
diameter to the sphere diameter is varied. We have explored
computationally the densest of these packings in detail using
simulated annealing, following the work of Pickett et al. [1],
and the first four packings in this sequence are shown in Fig. 1.
We have reported extensive results, together with analytic
approximations which serve to elucidate our findings [2].
The present paper and its future continuations amplify the
previous reports by Mughal et al. [2] and by Chan (second
author of the present paper) [3], and extend them in various
directions. In particular, new results are provided for larger
cylinder diameters and we include full details of all structures
in a form suitable for future reference.

We shall refer to these quasi-one-dimensional (quasi-1D)
packings as columnar crystals since they are periodic; each
structure can be assembled by stacking unit cells ad infinitum
along the length of the cylinder with each subsequent unit cell
rotated by the same twist angle with respect to the previous one.

For smaller cylinder diameters, up to and beyond the range
investigated by Pickett et al. [1], the densest packings only
consist of spheres that are in contact with the surface of
the cylinder. Eventually at larger cylinder diameters dense
packings are found for which there are internal spheres that
are not in contact with the surface. Nevertheless we extend
the study of structures with only cylinder-touching spheres to
larger diameters, for its own sake. As already explained in
Ref. [2], these structures are readily understood by recourse to
a yet simpler problem, in which circular disks are placed on a
cylinder. This can be fully worked out in analytical terms.

In parallel with our computational study using simulated
annealing and a separate investigation by Chan [3] using
sequential deposition, a number of experiments have been
undertaken on the packing of solid spheres and small bubbles
under gravity. Many of the simulated structures are observed.
While we will have cause to mention these experiments, their
presentation will be reserved for a later paper [4].

Some of the structures that we describe (particularly the
more elementary ones) have been observed in biological
microstructures [5]. Columnar crystals have also been realized

in numerous experimental contexts including foams (both
dry [6–10] and wet [4]) in tubes, colloids in microchannels
[11–15], and fullerenes in nanotubes [16–18]).

We have not attempted to rigorously prove that the densest
packings identified by simulations are indeed the densest
possible. This ought to be achievable for some of the simplest
ones.

II. MOTIVATION AND BACKGROUND

The identification of dense packings has always played
an important part in condensed matter physics and physical
chemistry [19]. The entities which are to be packed are often
spherical, or well approximated as such, and they may be
monodisperse. In the idealized case of hard spheres (with no
interaction when not in contact) the problem of finding the
maximum density with given boundary conditions constitutes
a classic mathematical challenge. If posed for an unbounded
packing, it is long associated with the name of Kepler [20].

Here we are concerned with the case in which spheres
of diameter d are to be contained in an unbounded cylinder
of diameter D. We shall pursue it up to D/d = 2.873
which represents the limit of the capability of our present
computational resources and methods.

Our primary objective is to identify the structure with the
largest value of �, defined as the fraction of volume occupied
by the spheres.

There are close connections between this topic and that of
phyllotaxis, a subject arising out of biology and having to do
with the dense arrangement of similar units on the surface
of a cylinder, exemplified by pine cones, pineapples, or corn
cobs [21]. This connection will be explored in detail here.

III. SOME SIMPLE COLUMNAR CRYSTALS

For certain specific values of D/d the optimal packing
structure can be easily surmised. These structures are directly
related to the analogous two-dimensional problem of finding
the smallest diameter circle into which N nonoverlapping
circles, each of diameter d, can be packed. A description of
these special cases will serve to illustrate the general problem
that we will address.
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FIG. 1. (Color online) The first four densest sphere packings in a
cylinder.

The first five of these special solutions, labeled CN , are
shown schematically in Fig. 2 and (for N > 2) consist of disks
placed at the vertices of a regular polygon. The diameter of
the enclosing circle is given by

Dc(N ) =
{

d if N = 1,

d
(
1 + 1

sin(π/N)

)
if N � 2,

(1)

where Dc(2) = 2d, Dc(3) = 2.1547d, Dc(4) = 2.4142d,
Dc(5) = 2.7013d.

Replacing the circles with N spheres we define a unit cell
which can be repeated along the length of the tube as follows.
Each successive layer, indicated by alternating yellow (light
gray) and blue (dark gray), can be generated by translating the
previous layer through a distance,

Lc(N ) =
{

d if N = 1,

d
2

√
3 − (1−cos(π/N))

(1+cos(π/N)) if N � 2,
(2)

along the tube and rotating it by a twist angle αc(N ) = π/N .
Using the above formula the volume fraction � of these
simple columnar crystals can easily be computed, �(1) =
2/3, �(2) = 0.4714, �(3) = 0.5276, �(4) = 0.5441, �(5) =
0.5370.

We shall label these simple columnar crystals with the
notation CN to indicate that their structure can be derived
in a simple way from the circle packing problem.

IV. SIMULATION

For general values of D/d, the optimal packing structure
cannot be guessed easily and we must turn to heuristic
methods. Our search method is confined to structures that are
periodic in the following sense. There is a primitive cell, of
length L, containing N spheres, the structure being generated

FIG. 2. (Color online) (Top) The first five solutions of the circle
packing problem. (Bottom) Five columnar structures corresponding
to the first five solutions of the circle packing problem. The unit cells
are shown in yellow (light gray) and blue (dark gray).

from this by the screw operation of (i) translation along
the cylinder axis by nL (where n is any integer) combined
with (ii) rotation about the axis by an angle nα. This screw
operation represents the underlying symmetry of columnar
crystals (which are not to be confused with columnar phases,
originating in the study of liquid crystals and related instead
to the packing of columns).

Our primary method of simulation is based on the well-
known approach of simulated annealing. This provides a
reasonably exhaustive and unbiased search for maximum
density. Appendix A summarizes the technical details of the
present application (such as annealing schedules). The search
procedure described in Appendix A looks for the minimum
possible value of L, for a given N , treating α and the sphere
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TABLE I. Specification of densest structures, up to D/d = 2.873. Bold numerals designate the line-slip type (see text section VII A). The
break in the table denotes the point beyond which packings with internal spheres are observed.

Number of spheres Average contact
Structure Range in unit cell Notation number Description Chirality

1 (C1) D/d = 1 1 Straight chain 2 – Achiral
2 1 � D/d � 1.866 1 Zigzag 2 – Achiral
3 1.866 � D/d � 1.995 1 Twisted zigzag 4 – Chiral
4 1.995 � D/d < 2.0 2 (2,1,1) 4 Line-slip Chiral
5 (C2) D/d = 2.0 2 (2,2,0) 5 Maximal contact Achiral
6 2.0 < D/d � 2.039 2 (2,2,0) 5 Line-slip Chiral
7 D/d = 2.039 1 (3,2,1) 6 Maximal contact Chiral
8 2.039 � D/d � 2.1413 2 (3,2,1) 5 Line-slip Chiral
9 2.1413 � D/d < 2.1545 3 (3,2,1) 16/3 Line-slip Chiral
10 (C3) D/d = 2.1547 3 (3,3,0) 6 Maximal contact Achiral
11 2.1547 < D/d � 2.1949 3 (3,3,0) 16/3 Line-slip Chiral
12 2.1949 � D/d � 2.2247 2 (3,2,1) 5 Line-slip Chiral
13 D/d = 2.2247 2 (4,2,2) 6 Maximal contact Achiral
14 2.2247 � D/d � 2.2655 2 (4,2,2)\(4,2,2) 5 Line-slip Chiral
15 2.2655 � D/d � 2.2905 3 (3,3,0) 16/3 Line-slip Chiral
16 D/d = 2.2905 1 (4,3,1) 6 Maximal contact Chiral
17 2.2905 � D/d � 2.3804 3 (4,3,1) 16/3 Line-slip Chiral
18 2.3804 � D/d < 2.413 4 (4,3,1) 11/2 Line-slip Chiral
19 (C4) D/d = 2.4142 4 (4,4,0) 6 Maximal contact Achiral
20 2.4142 < D/d � 2.4626 4 (4,4,0) 11/2 Line-slip Chiral
21 2.4626 � D/d � 2.4863 3 (4,3,1) 16/3 Line-slip Chiral
22 D = 2.4863 1 (5,3,2) 6 Maximal contact Chiral
23 2.4863 � D/d � 2.5443 3 (5,3,2) 16/3 Line-slip Chiral
24 2.5443 � D/d � 2.5712 4 (4,4,0) 11/2 line-slip Chiral
25 D = 2.5712 1 (5,4,1) 6 Maximal contact Chiral
26 2.5712 � D/d � 2.655 4 (5,4,1) 11/2 line-slip Chiral
27 2.655 � D/d < 2.7013 5 (5,4,1) 28/5 line-slip Chiral
28 (C5) D/d = 2.7013 5 (5,5,0) 6 Maximal contact Achiral
29 2.7013 < D/d � 2.71486 5 (5,5,0) 28/5 line-slip Chiral
30 2.71486 � D/d < 2.7306 6 (1,5) 26/6 − (1,5) Chiral
31 D/d = 2.7306 6 (1,5) 40/6 Maximal contact Chiral
32 2.7306 < D/d � 2.74804 6 (1,5) 26/6 + (1,5) Chiral
33 2.74804 � D/d < 2.8211 11 (1,10) 40/11 − (1,10) see Sec. VIII
34 D/d = 2.8211 11 (1,10) 60/11 Maximal contact Achiral
35 2.8211 � D/d < 2.8481 11 (1,10) 58/11 +(1,10) Chiral
36 2.8481 � D/d < 2.8615 7 (2,5) 32/7 − (2,5) Chiral
37 D/d = 2.8615 7 (2,5) 34/7 Maximal contact Chiral
38 2.8615 � D/d � 2.8711 7 (2,5) 30/7 + (2,5) Chiral
39 2.8711 � D/d � 2.873 15 (2,13) 72/15 − (2,13) Chiral
40 D/d = 2.873 15 (2,13) 90/15 Maximal contact Chiral

positions as variables. It does this for increasing values of
N until the (likely) optimal structure is apparent, or further
computation is not practical.

In the previous simulations of Pickett et al. [1], a periodic
boundary condition without any twist was used. If, for
example, the densest structure has a twist angle α equal to π/5,
then 10 cells would combine to satisfy the simpler boundary
condition.

V. NUMERICAL RESULTS

In this section we present the full range of results for several
significant properties as a function of D/d. These include the
volume fraction and chirality, for the densest structures that

we have found. The following figures and Table I summarize
the main results.

Table I enumerates all the densest packings observed, from
our numerical work, in the range 1 � D/d � 2.873. The
table lists the range of D/d over which each structure is
observed, the number of spheres in the primitive unit cell
(from which the extended structure can be constructed), and the
average number of contacts per sphere. The table also classifies
the structures into two groups: those which are chiral and
those which are not (achiral)—see below for a more detailed
discussion of chirality.

The break in Table I, between structures 29 and 30,
highlights the fact that beyond D/d = 2.7379 the densest
structures are those which contain spheres not in contact
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FIG. 3. (Color online) Volume fraction of the densest packing as a function of D/d . Discontinuities in the derivative are indicated by vertical
lines. Red dotted lines indicate solutions to the circle packing problem. The main graph shows results in the range 1.8 < D/d < 2.71486; the
inset are continuations of the same graph showing the regions 1 < D/d < 1.8 (left) and 2.71486 < D/d < 2.873 (right). Structures above
D = 2.71486 include internal spheres while those below do not; the division between these two regions is denoted by a heavy blue dashed line.

with the cylindrical boundary. The unit cell for packings
with internal spheres are described using the notation (u,v),
where the first integer is the number of internal spheres and
the second is the number of spheres which are in contact
with the cylindrical boundary. So, for example, in the case of
structure 30 the unit cell contains six spheres of which five
are in contact with the cylindrical boundary and one is not.

A. Volume fraction

Figure 3 presents the maximum density found by our
prescribed procedure, for the full range of D/d that we
have explored. A discussion of the method we use to
compute the volume fraction is given in Appendix A. By
simple finite difference we approximate the derivative of the
volume fraction as a function of D/d, as shown in Fig. 4. This
is to clearly identify the singular behavior discussed below.

The vertical lines indicate a discontinuity in the derivative
of the volume fraction; there is either (i) only a sudden
change in the derivative, or (ii) the simultaneous presence
of such a sudden change and a square-root singularity in the
derivative, the two cases of which are denoted by vertical blue-
dashed and red-dotted lines, respectively. Note the square-root
singularities in the derivative coincide with the CN (circle
packing) structures.

Let us discuss this behavior by reference to Fig. 5 which
is a simplified cartoon of the observed changes in the volume
fraction as a function of D/d. Qualitatively, the variation of the

maximum density takes the following form: Its dependence
on D/d is everywhere continuous while the derivative is
piecewise continuous. We distinguish two types of singular
points, as in Fig. 3, at which the derivative changes.

The first occur when a maximum number of contacts
is reached. These points correspond to highly symmetric
structures, such as the Cn structures described above. At
such points—represented by the vertices labeled a and c,
in Fig. 5—the previous trend of structural change cannot

FIG. 4. (Color online) The numerically computed derivative
(finite difference) of the volume fraction curve, as shown in Fig. 3.
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Φ

a c

b

d

D/d

FIG. 5. A schematic representation illustrating variations in the
volume fraction of the densest packing arrangements as a function of
D/d (see text).

be continued; in effect, the structure has jammed due to the
formation of new contacts. In other words, if the separations
of contacting sphere centers is to be maintained, the system
is overconstrained and no such solution exists beyond this
point. Instead, some existing contacts are released and a
new structural trend proceeds. The structure itself varies
continuously through the singular point, with a downward
change in the derivative of the density, corresponding to the
line segments ab and cd in the cartoon.

At the second kind of singular point the structure is simply
overtaken by another more dense packing. Here the structure
itself changes discontinuously, and the derivative obviously
must change in a positive sense. In Fig. 5 this transition
corresponds to the points labeled b and d where, for example,
the line segment bc illustrates the increasing trend in density
immediately following such a transition. The dashed lines
indicate the continuation of the previous structure which now
has a lower density compared with the optimal packing.

These remarks are based on observation of the results. We
have, for example, no proof that the change of derivative at
points of the first type is always negative, although we can offer
a proof that the dependence of (maximum) density on D/d

cannot have any discontinuities at which the density undergoes
a finite upward or downward change. This is discussed in detail
in Appendix C.

B. Chirality

A chiral object is one which cannot be superimposed on
its mirror image (or inverse) by translations and (proper)
rotations. The question of chirality is interesting in the present
context, for example, in relation to designing chiral molecular
filters that will discriminate between enantiomers.

According to this definition an object is either chiral or
it is not (it is achiral). The reported structures are classified
accordingly in Table I.

But chirality may be manifested in physical properties to a
greater or lesser extent: The degree of chirality of the structure
itself is a tempting concept. While it may be useful to think of

this in practice, there is no unique quantitative definition that
will have general relevance. Any appropriate property could
be used as an index of chirality. Nevertheless one may offer a
working definition for use in relation to simulations, as Pickett
et al. did [1]. Here we will employ another definition that is
perhaps more transparent.

We define a chirality index χ in terms of the degree to
which an object can be superimposed upon its mirror image.
For a given columnar crystal, our method is to start with the
sphere centers and generate a mirror image of the structure
by reflecting the coordinates of the centers in the x-y plane
(i.e., the cross-sectional plane of the cylinder). For each
sphere in the packing we compute its distance to the nearest
sphere in the mirror image. The overlap function is defined as
the sum of these distances divided by the number of spheres in
the original packing. Clearly when a packing can be completely
superimposed upon its mirror image the overlap function
vanishes.

The computational challenge then is to find the arrangement
of the mirror image (by rotation and translation) that minimizes
the overlap with respect to the original structure. This is done
in a straightforward manner by simulated annealing. Clearly
for chiral structures the overlap cannot vanish and by plotting
the overlap function we have a measure χ of the chirality as a
function of D/d, as in Fig. 6 .

VI. DETAILS OF STRUCTURES FOR D/d UP TO 2.71486

Up to D/d = 2.71486, all the structures that are found are
of a special character, helpful for their interpretation. Every
sphere is in contact with the cylinder surface. Therefore all of
their centers lie on an inner cylinder, of diameter D-d, and they
touch another cylinder of diameter D-2d. They may therefore
be considered as the densest packings of spheres on a cylinder.

Clearly inner spheres must appear in the optimal packing
when D-2d is greater than d, that is, D > 3.0, in fact they
are first found at D/d > 2.71486, and we reserve them for a
separate discussion in the next section. We also treat structures
for low D/d separately in Sec. VI C.

A. Maximal contact structures

We have already noted the special points at which the
structure changes continuously, with the formation of new
contacts and the breaking of old ones. We have previously
called them symmetric structures, but this term is really only
meaningful in the disk-packing analysis below. Here we shall
apply the term maximal contact instead. For D/d � 2, all of
these structures are depicted in Fig. 7 and labeled using the
phyllotactic notation explained in Appendix B.

They include the simple Cn packings which we have already
described and are labeled n,n,0 in the phyllotactic notation
(see Appendix B). This relates to the pattern of sphere centers
and contacts, “rolled out” onto a plane, and identified with
rhombic or triangular lattices. This does not apply to the first
of the structures, the straight chain, and is rather confusing if
applied to the next two, hence we use it only for the subsequent
structures.

We begin with the case of D/d = 2: This is the close-
packed, achiral, structure C2 previously described. Each sphere
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FIG. 6. (Color online) A plot of the chiral index χ (D/d), which measures the degree of mismatch between a packing and its mirror image
(see text). Vertical lines indicate structural transitions as in Fig. 3. The main graph on the left shows results in the range 1.8 < D/d < 2.71486
while the graph on the right is a continuation but focuses on the region 2.71486 < D/d < 2.873.

has five contacts (not including contact between a given
sphere and the cylinder); these consist of a contact with the
neighboring sphere in the same unit cell and four contacts with
spheres in adjacent cells. All of the rest of the maximal contact
structures so far considered are composed of spheres with six
contacts. Packings of the type Cn are achiral while the rest are
chiral.

B. Line-slip structures

We now turn to the intervening structures, which are
modified versions of the maximal contact packings, adjusted
to fit around the cylinder. Such staggered helices were first
observed by Pickett et al. in their simulations [1]. We label
these line-slip structures to indicate that the modification
consists of the release of half of the contacts along one line
separating two of the spiral chains of the symmetric structure,
and a consequent relative slip of the two sides. Such line-slip
arrangements are a feature of hard sphere packings and are
evident in the rolled out patterns of Fig. 8.

There are in general three possible choices for the direction
of the line slip and the results of Fig. 8 correspond to those
that maintain the highest density as in Fig. 3.

We continue to higher values of D/d in Sec. VIII.

C. Structures below D/d = 2.0, and the square root singularity

We return to examine the structures for low D/d, which
are somewhat different. The reason for such a difference
will become clearer when we explore the relationship to disk
packing, in a later section. These first four structures are shown
in Fig. 1.

Structure 1 is the elementary case of a straight chain
of spheres, like peas in a pod, as shown in Fig. 1. This
trivial, achiral structure has a volume fraction of �(1) = 2/3.
Similarly structure 2 is obvious and consists of a zigzag planar
arrangement of spheres such that the change of the azimuthal
angle from one ball to the next is equal to π ; each sphere makes

contact with one sphere from above and one from below. When
the zigzag packing (i.e., structure 2) encounters additional
contacts between its second neighbours at D/d = 1.886 (so
that each sphere now has four contacts), it is forced to take the
form of an increasingly twisted spiral (structure 3). By direct
numerical calculation one may follow this to its end point at
structure 7, but structure 6 intervenes with higher density, so
that there must be a transition below D/d = 2.0. This is found
at D/d = 1.995, strikingly close to 2.0, beyond which the
densest packing is a line-slip modification of structure 6. The
smallness of the interval in which this is found is largely due
to the existence of a square-root singularity.

The variation of volume fraction, as any of the Cn or
n,n,0 structures is approached with increasing D/d, exhibits
a square-root form, whereas it is linear in other cases;
that is,

�0 − � ≈
((

D0

d0

)
−

(
D

d

))1/2

, (3)

where the quantities with a subscript 0 belong to a Cn or n,n,0
structure. The derivative plot shown in Fig. 4 is intended to
make this singular behavior more evident. The square root
arises from the special symmetry of these achiral structures.

VII. RELATIONSHIP TO CIRCULAR DISK PACKINGS
ON A CYLINDER

Many aspects of these results are made more understand-
able by recourse to the packing of circular disks on a cylinder.
We have already noted that the same sequence of symmetric
structures is found. The similarity extends further to the
line-slip structures and some of the details of the analytic
form of the curve in Fig. 3 (not yet noted).

This qualitative correspondence attracts our attention to the
cylindrical disk packing problem, which we pursue below.
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FIG. 7. (Color online) Maximal contact structures, with the corresponding “rolled-out” pattern of contacts. The vector V (corresponding to
the perimeter of a cylinder cross section) is indicated by the red arrows.

A. Disk packings

Densest packing of circular disks in a plane places their
centers on a triangular lattice where each disk has six
contacts; this was rigorously proved about a century ago [19].
Cylindrical surface packing of disks with the same density is
generated by rolling this pattern onto a cylinder, when possible.

To see how this can be achieved seamlessly let us define a
periodicity vector V between any pair of disk centers of the
triangular lattice packing as shown in Fig. 9(a). The region
between the start and end of V, which is bounded by lines
perpendicular to V, can then be excised and wrapped onto
a cylinder whose circumference is equal to the length of V.
The resulting structure is a dense, homogenous packing—
in the sense that all disk sites are equivalent—which we
call a symmetric packing. Any such symmetric packing is
characterized by this periodicity vector. In the phyllotactic
scheme V can be defined by a set of three ordered positive
integers (l = m + n,m,n), as discussed in Appendix B [a
simple operational method to assign indices is to count the
number of lattice rows that cross the periodicity vector in the
three directions, as shown in Figs. 9(a) and 9(c)].

For other values of the cylinder circumference, the sym-
metric packing may be distorted in some way to wrap
around the cylinder. The most obvious adjustment is an affine
transformation of the triangular lattice, as shown in Fig. 9(b).
We illustrate the effect of the transformation by reference to
the shaded triangle in Fig. 9(a). The affine transformation
distorts the equilateral triangle into an isosceles triangle by
keeping the length of two adjacent sides fixed and varying the

third; consequently, the disk centers form a rhombic lattice
which has a lower density (area fraction) compared with the
triangular lattice since each disk now has only four contacts
(the lowest area fraction corresponds to a square lattice). The
transformation may be adjusted to make the length of V equal
to πD. The resulting pattern can be wrapped onto the surface
of the cylinder. We may call these asymmetric or affine lattice
packings.

If D/d is varied the disk centers of such a structure
are eventually brought back into coincidence with the sites
of a triangular lattice; see Fig. 9(c). In this manner the
strained structure proceeds from one symmetric packing
to another. Since there are three possible choices for the
affine transformation, the rules for this process—as reported
previously [2]—are, when applied to the second and third
phyllotactic indices, as follows:

(m,n) → (m − n,n), (m,n) → (m + n,m),

(m,n) → (m + n,n),

where the new phyllotactic indices may have to be rearranged
into descending order.

Intermediate asymmetric packings may be labeled using
rhombic notation [p,q], where the ordered indices p � q are
the indices common to both the initial and final symmetric
states. Once again, the integers p and q count the number of
lattice rows crossing the periodicity vector V.

We illustrate the use of these rules with an example. In the
case of the symmetric packing [5,4,1] [illustrated in Fig. 9(a)]
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FIG. 8. (Color online) Line slip structures at arbitrarily chosen values of D/d within their respective ranges, with corresponding rolled out
patterns of contacts. The vector V is indicated by an arrow.

the above rules yield

(4,1) → (3,1), (4,1) → (5,4), (4,1) → (5,1).

Thus the symmetric packing [5,4,1] is connected to [4,3,1]
via the rhombic structure [4,1], to [9,5,4] via [5,4]—which
are shown in Figs. 9(c) and 9(b), respectively—and to [6,5,1]
via [5,1].

Although such asymmetric packings are the simplest type
of dense structure, intermediate between two symmetric
packings, they are not the densest. As reported previously [2],
asymmetric packings are in general superseded by another
type of packing involving an inhomogeneous shear of the
symmetric lattice in which there is a localized strain or slip
along a line (and its periodic replicas).

We can describe such line-slip packings with reference
to the symmetric packing [5,4,1]. Again there are three
possibilities and we describe each of these in turn. In the
first case, four lattice rows cross the periodicity vector
in the horizontal direction, as shown in Fig. 9(a). We
allow the final, fourth row to “slide over” the previous row
until the disk centers are once again arranged into a triangular
lattice. Thus as illustrated in Fig. 9, the line slip in question
is intermediate between the symmetric packing [5,4,1] and
[6,4,2]. By allowing the disks in the final row to slide in the
opposite manner we find that the symmetric packing [5,4,1] is
connected to [4,4,0]. In the second case five lattice rows cross
the periodicity vector. Four rows are held fixed while the final
layer of disks slides over the penultimate row—thus [5,4,1]
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FIG. 9. (Color online) (a) symmetric packing [5, 4, 1], the black arrow represents the periodicity vector; (b) the square packing [5, 4];
(c) the symmetric packing [9, 5, 4] which is connected by an affine shear to [5, 4, 1]; (d & e) show a line slip connecting [5, 4, 1] to the
symmetric packing [6, 4, 2], which is shown in (f).

is connected to [5,3,2] and [5,5,0]. In the third case only a
single lattice row crosses the periodicity vector and we find
that [5,4,1] is connected to [6,5,1] and [4,3,1].

This localized shear allows the length of V to vary
continuously. The disks involved in the line slip have five
contacts while the rest of the structure remains symmetric and
close-packed, with six contacts for every disk. Clearly the
surface density of disks has a maximum, corresponding to the
symmetric packings, while the intermediate line-slip packings
have a lower value. As reported previously [2], there is a simple
rule for the close-packed structures that are the end points of
line-slip solutions,

(1) (m,n) → (m + 1,n) or (m − 1,n),

(2) (m,n) → (m,n + 1) or (m,n − 1),

(3) (m,n) → (m + 1,n − 1) or (m − 1,n + 1),

where the leading numbers denote the direction â1, â2 or â3

of the line slip. Again the above rules apply to the second and
third phyllotactic indices of a given close packed structure and
keep either n, m, or l constant. For example, using the above
rules, the symmetric packing [5,3,2] is connected by a line
slip along â1 to [6,4,2] or [4,2,2], a line slip along â2 yields
[4,3,1] or [6,3,3], and a line slip along â3 yields [5,4,1] or
[5,3,2] (note in the third case—along â3—a rearrangement of

the phyllotactic indices into descending order was necessary
and the new structure is the same as the initial structure).

In Table I we use bold numerals to denote the direction of
the line slip. In the table we only have cause to mention the
first column of line-slip structures, that is, we denote

(1) [l,m,n] → [l + 1,m + 1,n] by [l,m,n],

(2) [l,m,n] → [l + 1,m,n + 1] by [l,m,n],

(3) [l,m,n] → [l,m + 1,n − 1] by [l,m,n].

A full derivation of such connection rules for both the
asymmetric and line-slip packings will be given in a future
publication.

Figure 10 presents analytical results for the density of
these disk packings. Here we see for the first time some
of the structures of lower density, as well as those of
maximum density. Even at this stage, we find a qualitative
resemblance between Fig. 10, the disk packing problem, and
the corresponding sphere packings (as shown in Fig. 3).

A simple method for achieving a semiquantitative descrip-
tion of the sphere packing problem relies on the fact that for
the range 1 < D � 2.71486 all the spheres in the packing are
in contact with the cylindrical boundary. Thus there exists an
inner cylinder on which the centers of all the spheres are to be
found. The pattern formed by the intersection of the spheres
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FIG. 10. (Color online) Surface density � of disk packings on the plane which are consistent with wrapping onto a cylinder of
diameter |V|/π . Asymmetric packings are shown by (red) dashed curves; line-slip solutions are (black) continuous curves. Symmetric
structures labeled [l,m,n] correspond to points of maximum density while intermediate asymmetric packings are labeled using the rhombic
notation [p,q].

with the surface of the inner cylinder bears a close resemblance
to the disk packing problem, which we now consider in detail.

B. Relation to sphere packing

We now explore more closely the quantitative correspon-
dence between disk and sphere packings, and find a way of
bringing them as close to each other as is possible without
undue complication.

Consider again a packing of spheres, all touching the
confining cylinder of diameter D. Their centers lie on an inner
cylinder of diameter D′ = D − d, so that a given center is
located at (D′/2,θ,z) in cylindrical polar coordinates. The
separation of contacting spheres in three dimensions is d

but if the inner cylinder is rolled out onto the plane [i.e., a
given sphere center is mapped to the 2D cartesian coordinates
(s = D′θ/2,z)], then the distance between the centers of
contacting spheres in two dimensions depends on their mutual
orientation.

In general, the required contact rule, in three dimensions,
for a pair of spheres (each having diameter d) whose centers,
in cylindrical polar coordinates, are located at r1 = (D′/2,θ,z)
and r2 = (D′/2,θ + �θ,z + �z) is [3]

(�z)2 + D′2

2
(1 − cos �θ ) = d2. (4)

We plot the parametric equation [Eq. (4)] in Fig. 11 for various
values of D/d [where the distance �s ≡ (D′/2)�θ is referred

to as the “arc length”]. We see that, as D/d increases above
2, the “surface packing” resembles the packing of oval disks,
which may be approximated by ellipses. For contacting spheres
that lie directly in a line parallel to the direction of the cylinder
axis, the separation of their centers is still S|| = d, while for

FIG. 11. (Color online) A plot of Eq. (4) for various values of
D/d , showing the approach toward elliptical, and eventually circular,
packing as D/d increases beyond 2.
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FIG. 12. (Color online) Comparison of simulated and analytic volume fractions for the densest packings—upper and lower curves,
respectively. Dotted lines are a guide for the eye to the detailed correspondence. In the analytic results, the line-slip structures are identified by
black continuous lines, and the red dashed-dotted lines denote asymmetric packing structures. The numbers 1, 2, and 3 (see text) denote the
type of line slip observed (upper curve) or predicted (lower curve) with 1\2 denoting a degenerate case. The shaded region on the right is the
continuation of the single layered structures for D/d > 2.71486.

those that lie in the perpendicular plane, it is

S⊥ = D′ sin−1

(
d

D′

)
. (5)

For simplicity we take the major and minor axes of the ellipse
to have the S⊥ and S||, so that the distance on the plane for a
pair of contacting spheres is approximated by

S2 = d2 sin2(φ) +
[
D′ sin−1

(
d

D′

)]2

cos2(φ). (6)

Comparing the circumference of the inner cylinder πD′
with the length of the periodicity vector |V|d (i.e., measured
in units of the disk diameter d), gives a stretch factor,

X = πD′

|V|d = S⊥
d

, (7)

where the last term is the ratio of the arc distance between
contacting spheres, which lie perpendicular to the direction
of the cylinder axis. In this way the sphere packing is related
to the planar packing of elliptical disks, which is merely a
stretched version of a circular disk packing. Given any packing
of circular disks in the plane, it may simply be stretched in the
direction of the vector V, by a factor X, and wrapped onto a
cylinder of diameter,

D′ = d

sin(π/|V|) , (8)

[obtained using Eqs. (5) and (7)], to create a good approxima-
tion to a sphere packing.

Thus a correspondence that at first seems distant may
be brought much closer. Figure 12 presents the resulting
transformed curves for sphere packing density; asymmetric
and line-slip structures are shown by red (dashed) and black
(continuous) lines, respectively. The peaks in the density
correspond to symmetric packings. The lower (dashed) heavy
black line accentuates the curve of maximum density, as
predicted by our analytical approach. This is to be compared
with the results of simulated annealing shown by the upper
curve. We have extended our simulated annealing study of
single layer packings to D > 2.71486, as shown by the gray
region in Fig. 12, by searching for the densest structures in
which all the spheres have centers on the surface of a cylinder
of diameter D′. From this we see that the maximum possible
density, for single layer packings, is found at �(2.4863) =
0.5446 and corresponds to the symmetric packing (5,3,2).
Beyond this the packing density steadily diminishes since
spheres are to be found only on the surface of the cylinder
and the interior is empty.

The analytical method presented here gives the correct line-
slip solution in the majority of cases. There are, nevertheless,
notable discrepancies between the analytical and numerical
results. These are due to the simplicity of the transformation
used to map the disk packing problem into the sphere packing
problem; as a consequence, the analytical results always
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predict type (3) line-slip solutions leading up to n,n,0 packing
while simulations in fact find a region split between a type
(2) line slip followed immediately by a type (3) line slip. A
more accurate (and more complicated) transformation ought
to account for this by pushing the type (2) curve above the type
(3) solution, for part of this region. This is borne out by the
fact that as the diameter of the cylinder increases, and higher
order corrections to the transformation diminish in importance,
the type (2) solution in the simulations are observed over an
increasingly smaller range in the split region.

VIII. STRUCTURES BEYOND D/D = 2.71486, WITH
INTERNAL SPHERES

We are able to pursue the same simulations to higher
cylinder diameters, finding the anticipated occurrence of
internal spheres, initially at D/d = 2.71486. The structures
involved are tabulated in the final section of Table I. In some
cases phyllotactic notation may still be useful, but much of the
simplicity of the previous sections is lost, and increasingly so.
The extension of the curve of volume fraction, as far as present
computing resources allow, is shown on the right-hand side of
Fig. 3.

It is of the same general character as before; that is, we
observe peaks corresponding to maximal contact structures—
which are labeled using the notation (u,v) in Table I— and
decreasing or increasing D/d yields structures with fewer
contacts which can in some way be deformed steadily into
the maximal contact packing; these are labeled −(u,v) and
+(u,v), respectively.

Packings with internal spheres are depicted in Fig. 13 where
in each case the middle diagram shows the entire structure
viewed side-on. Although the introduction of inner spheres
produces more complicated structures there remains an outer
shell of spheres contacting the confining cylinder. The rolled-
out pattern made by these outer spheres is shown to the left of
each packing. The arrangement of the inner spheres is depicted
in the diagram to the right of each packing, whereby the outer
layer is transparent and the inner spheres are in yellow.

The first packing with internal spheres is structure 30,
or −(1,5), which consists of a basic unit cell containing
six spheres. Of these one sphere is not in contact with the
cylindrical surface and is found at the center of the cylinder.
The remaining five spheres, which are in contact with the
cylinder, form a tilted pentagonal ring around the central sphere
(i.e., tilted at an angle with respect to the plane perpendicular
to the cylindrical axis). The extended structure can be made
by translating the unit cell along the cylinder and rotating it
by π . The result is a chiral packing with an internal chain of
noncontacting spheres along the cylindrical axis and an outer
layer of touching pentagonal rings. As can be seen, in the
corresponding rolled-out diagram of the outer layer in Fig. 13,
there is only a single point of contact between outer rings
corresponding to a sphere with four surface neighbors. The
location of this sphere alternates by an azimuthal angle of π

between successive layers.
Some of the spheres in the outer layer have only two

contacts with other spheres in the outer layer. However,
mechanical stability is assured by their contact with the internal

chain of spheres and the average number of contacts per sphere
for the structure as a whole is above four.

Increasing D/d reduces the tilt of the pentagonal rings
until at D/d = 2.7306 we have the maximal contact packing
(1,5). Thus in structure 31 the spheres in the internal chain are
in contact with each other and, compared with structure 30,
there are now a greater number of contacts between successive
pentagonal rings. Increasing D/d breaks some of these surface
contacts and forces the chain of internal spheres to form a
twisted zigzag structure. Thus structure 32, or +(1,5), is chiral
and is superseded at D/d = 2.74804 by a new type of packing.

Structure 33, or −(1,10), consists of a basic unit cell
containing 11 spheres. Of these 10 touch the cylindrical surface
and are arranged as a pair of pentagonal rings stacked on top
of each other. The 11th, internal sphere is found above the 10
surface spheres and is located at the center of the cylinder. The
extended structure can be described as an alternating sequence
of surface spheres followed by an internal sphere. However,
on average each sphere is only in contact with 40/11 = 3.636
other spheres; this number is too low for mechanical stability,
which we explain as follows.

As shown by the rolled-out diagram of the outer sphere
centers, surface spheres from adjacent unit cells are not in
contact. Thus the pairs of pentagonal rings are free to rotate,
by a certain amount about the cylindrical axis while internal
spheres remain fixed in position. Whether structure 33 is
achiral or chiral depends on the relative orientation of the
surface spheres with respect to each other. No other optimal
cylindrical packing yet discovered has this property.

With increasing D/d the pentagonal rings from adjacent
unit cells are eventually locked into position at D/d = 2.8211
to give (1,10). Thus packing 34 is a maximal contact achiral
structure, corresponding to a peak in Fig. 3. The spheres in the
outer layer form a perfect rhombic [5,5] lattice when rolled out
onto the plane and the internal spheres lie along the cylindrical
axis. An increase in D/d results in the loss of two contacts
(on average) between the surface spheres and the internal
spheres, and +(1,10) proceeds downward in density. As the
trend continues we observe a decrease in the separation of
neighboring internal spheres and a modulation in the rhombic
surface pattern; this latter symmetry breaking is responsible
for structure 35 being a chiral structure.

Packing 36 includes an internal linear chain of noncon-
tacting spheres lying along the central axis of the confining
cylinder. These are surrounded by an outer layer of spheres
which form a complex chiral structure. As D/d is increased
the spheres in the internal chain are brought ever closer to
each other until they make contact at D/d = 2.8615, which
corresponds to the maximal contact, chiral structure 37.

A further increase in D/d forces the internal chain of
spheres to form a twisted zigzag structure. As a result there is a
loss of two types of contacts: the breaking of contacts between
spheres in the outer layer (as seen from the corresponding
rolled-out pattern in Fig. 13) and a break in contact between
spheres in the outer and inner layer. Thus there is a decrease
in density as we proceed from structure 37 along 38 [i.e., as
we increase D/d for +(2,5)].

Structure 39 is remarkable in that we find an internal chain
of spheres (along the central axis of the cylinder) but the
chain is composed of a pair of touching spheres followed by
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FIG. 13. (Color online) Structures with internal spheres. In the case of structures which are not maximal contact the images are produced
from numerical results for arbitrarily chosen values of D/d within their ranges. The central image shows each structure viewed side-on. The
image on the right shows the inner layer by making the outer layer transparent. The image on the left, for each packing, is the rolled out
structure generated by the outer layer of spheres which contact the cylindrical boundary - the periodicity vector V is indicated by the red arrow.

a gap; this is the structure −(2,13). Increasing D/d produces
structure 40, a maximal contact chiral packing (2,13), which
compared with structure 39 has an increased number of
contacts between internal-surface and surface-surface spheres.

This remarkable sequence of structures would have been
difficult to imagine in advance. It is likely to be followed by an
equally rich scenario, whenever it becomes possible to pursue
higher values of D/d. The structures reported are new, to our
knowledge, except in so far as they correspond to dry foam
structures mentioned below in Sec. X.

IX. RELATED EXPERIMENTS

Columnar sphere packings appear in a variety of different
experimental contexts, such as the packing of C60 buckyballs
inside carbon nanotubes [16] and polystyrene spheres inside
the pores of silicone membranes [14]. The structures that are
commonly identified are the straight chain (structure 1 in our
Table I), zigzag (structure 2), twisted zigzag (structure 3), and

structure 5, although more complicated structures have also
been observed (e.g., [13]).

However, care needs to be taken when directly comparing
these experimental observations with the simple hard sphere
simulations described here, which might well only serve as a
first guide of what structures to expect. The minimization of
interaction energy may replace the maximization of density as
the guiding principle.

For example, the polystyrene particles in the experiments
of [14] have been charge-stabilized and thus repel each other.
Unlike the situation in our simulations, this results in a prefer-
ence to sit near the wall of the pores (i.e., the cylinder wall).

Furthermore the comparison of our simulation results with
packings of buckyballs might be limited. Experiments by [16]
show that while it is possible to fill C60 into double-walled
nanotubes down to the ratio D/d = 1.13 (resulting in a simple
linear chain), it is not possible to fill single-walled carbon
nanotubes below D/d = 1.25 (D is the inner diameter of the
tube in both cases). This reflects the role of the van der Waals
forces between C60 and the confining nanotube walls.
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A. Present experiments with ball bearings and bubbles

However, we have identified two other experimental sys-
tems that provide very good comparison with our simulation
data (details to be provided in a follow-up paper).

The first are metal spheres of a few millimeter in diameter
(the type used in “ball bearings”) packed into perspex
tubes. The filled tubes were mechanically agitated over an
extended period. At the end of this “annealing” procedure this
resulted in clearly identifiable ordered sphere packings. These
experiments were carried out for a large range of values of
D/d (up to 3.15), and resulted in about 16 different structures,
of both the maximal contact and the line-slip type.

We have also carried out more extensive experiments with
equal-volume gas bubbles (with diameter of a few hundred
microns). These are produced by bubbling gas into surfactant
solution with the bubble diameter easily variable by adjusting
the gas flow.

The bubbles are then gathered into vertically placed
cylinders. They maintain a (nearly) spherical shape, even
when in contact, up to a column height of a few millimeters,
corresponding to the capillary length for the surfactant solution
in use.

We were able to produce straight chain, zigzag, and a
large number of maximal contact structures, and also many
structures with internal bubbles, up to and well beyond the
point reached by the present simulations. There is also some
evidence of the twisted zigzag structure and line-slip struc-
tures. The subsequent paper presenting these experimentally
obtained structures will include the use of x-ray tomography
to establish their internal configurations.

B. Ordered dry foam structures

Extensive and detailed results have been published for the
various structures that form when equal volume bubbles with
diameter exceeding a few millimeters (i.e., larger than the
capillary length) are collected in vertical tubes [8,22]. In this
case, the liquid drains and a dry foam is created—a packing of
polyhedral bubbles, with its volume fraction � approaching
unity.

The surface pattern displayed by these ordered foams is
hexagonal (apart from the so-called bamboo structure which
is simply an array of parallel soap films). The phyllotactic
notation is thus the obvious choice for their classification, at
least as long as there are no internal bubbles (see, e.g., Fig. 14).

Restricting ourselves for the moment to this case it would
appear that all ordered dry foam structures have corresponding
sphere packings (wet foams) (i.e., they can be classified by
the same phyllotactic notation). These include the straight
chain (bamboo) and zigzag structure (called 2-1-1 or staircase
structure in the foam literature), and all of the 10 maximal
contact structures, except structure 25 (5-4-1) which has not
yet been observed. None of the ordered dry foam structures is
of the line-slip type.

Note that since the bubbles are deformable, the average
contact number in the case of dry foams is generally higher
than in hard sphere packings.

Unlike their sphere packing counterparts, the various dry
foam structures are found over ranges of values of D/d (in
the foams literature d refers to the equivalent sphere diameter

FIG. 14. (Color online) In the dry foam equivalent of the zigzag
structure (often called the staircase structure) equal-volume gas
bubbles are separated by thin liquid films. (a) Computer simula-
tion using the SURFACE EVOLVER software of Ken Brakke [23].
(b) Photograph of bubbles in a cylinder of about 1 cm in diameter.

of a bubble). Hysteresis plays a large role in the standard
experimental procedure, leading to overlapping ranges of
stability for the various structures.

The structure of minimal energy for a given value of D/d

may be determined from computer simulations [22,24–27].
We find these ranges always to be lower than the value of
D/d for the corresponding sphere packing, reflecting their
much smaller volume fractions. It remains for future research
to establish the phase diagram (which may be rather complex)
that connects these two limiting cases.

There are also observations of over 20 different ordered
dry foam structures with internal bubbles [8], but the precise
internal arrangements have only been identified for the three
simplest cases, with the aid of SURFACE EVOLVER simulations
[23,26].

The dry foam with a surface pattern equivalent to structure
28 (C5) has six bubbles in the periodic unit cell (i.e., one
more than C5). A pentagonal dodecahedron in the center of
the cylinder is surrounded by a ring of five bubbles in contact
with the cylinder surface. The dodecahedra of neighboring unit
cells are in contact.

There is also a foam structure with a so-called Kelvin cell
(tetracaidecahedron) in the center, surrounded by six bubbles
in contact with the surface. Again the internal bubbles of
neighboring unit cells are in contact with each other.

The third identified structure with internal bubbles consists
of a total of 13 bubbles in the unit cell, 12 touching the surface,
and a bubble with 12 pentagons and three hexagons (Goldberg-
3) in the center [26]. Interestingly, in this case the internal
bubbles of neighboring unit cells are not in contact, similar to
the also achiral structure 34. The surface pattern of this foam
structure consists of an arrangement of bi-disperse hexagons.

X. CONCLUSIONS

Our simulations have provided detailed results for 40
distinct columnar crystals, of which many are new. They
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fall into three categories: the very simplest cases, where the
sphere diameter is of the same order as that of the cylinder,
a wide range of further “phyllotactic” structures, which may
be understood as related to surface packings of disks, and
structures that incorporate internal spheres.

Corresponding experimental observations are now avail-
able and will be reported in a second paper. Experiments
can already be pushed to much larger cylinder diameters,
providing further insights and challenges to simulation and
interpretation.

Such a further development should motivate a reassessment
of the simulation methods to be used; we make no strong claims
for the efficiency of that used here. We have necessarily been
cautious in using it, stipulating high degrees of convergence
and undertaking many repeated runs in search of the optimum,
to increase confidence in our conclusions. In parallel studies,
Chan [3] used a sequential deposition method that was
highly expeditious in determining optimal structures within
the restriction of that procedure, whose effect could not be
known a priori. Suitably adapted, it was able to reproduce the
structures reported here, up to at least D/d = 2.7013. Future
work will include an extension of this deposition approach to
higher values of D/d.

Finally we note some possible extensions to this work. An
example is the study of disordered hard sphere packings in
a cylinder; for such problems the definition of the volume
fraction recently given by Chan [3] may prove useful. A
simple problem that may be of significant practical interest
is to find the densest packing of hard spheres in a cylinder
which is capped on either side by hard walls (i.e., packing
in a cylindrical box). Even richer possibilities are offered
by packing hard sphere in a cylinder that is capped on both
ends by spheres held in a fixed position. Indeed, hard sphere
packings that are bounded by templated surfaces on all sides
are of significant current interest and are capable of realizing a
range of different morphologies (including the Weaire-Phelan
structure) [28].

ACKNOWLEDGMENTS

This research was supported by Science Foundation Ireland
(Grant No. 08-RFP-MTR1083) and European Space Agency
(MAP Grants No. AO-99-108:C14914/02/NL/SH and No.
AO-99-075:C14308/00/NL/SH). H.K.C. acknowledges sup-
port from the Irish Research Council for Science, Engineering
and Technology (EMPOWER Fellowship).

APPENDIX A: SIMULATION TECHNIQUE

1. Energy function

The simulation is addressed to a cylindrically shaped cell
of length L and diameter D. Contained within this space
are N points which represent the centers of N spheres, each
of diameter d. If a pair of spheres is sufficiently close that
they overlap we account for this using a pairwise potential as
described below. A similar overlap potential is used to prevent
the spheres from escaping the simulation cell in the radial
direction. The final structures will be the densest that we find
which have zero overlap energy.

In addition, we impose twisted periodic boundary condi-
tions on the top and bottom of the cylindrical cell as described
in the main text, with a twist angle α.

We model the overlap potential between spheres using a
Hookean, or “springlike,” pairwise interaction between the ith
and j th spheres, which have their centers at ri = (ri,θi,zi) and
rj = (rj ,θj ,zj ); the interaction energy between spheres is then
given by

ES
ij =

{
1
2 (rij − d)2 if rij � d,

0 if rij > d,
(A1)

where rij = |ri − rj | is the distance between the centers of the
spheres. Note the interaction energy falls to zero when there
is no overlap between the spheres.

The interaction energy between the ith sphere and the
boundary is given by

EB
i =

{
1
2 (riB − d/2)2 if riB � d/2,

0 if riB > d/2,
(A2)

where riB = |D/2 − ri |.
The twisted periodic boundary conditions on the ends of

the cylinder are incorporated as follows: The ith particle
in the simulation cell has an image at the top and bottom
of the simulation cell; the coordinates of these images are
given by r+

i = (ri,θi + α,zi + L) and r−
i = (ri,θi − α,zi −

L), respectively, where L is the length of the cylinder and
α is the twist angle.

Thus the total energy of the system is given by the
sum of the sphere-sphere, sphere-boundary, and sphere-image
interactions.

2. Numerical method

For a tube of diameter D we wish to find the unit cell,
composed of N spheres, which when rotated and stacked along
the tube has the highest volume fraction. In this section we
describe the simulation protocol used to achieve this.

For a given D and d we assign initial starting positions
to the N spheres and an initial value to the twist angle α by
using a random number generator. A small initial value for
the cylinder length L is chosen to ensure overlap between the
spheres.

Keeping D and L fixed, we search for the lowest energy
arrangement for the N spheres by varying their coordinates and
the twist angle. This is done using the standard METROPOLIS

simulated annealing algorithm, where for a cluster of N

spheres the algorithm was run with typically N × (5 × 106)
Monte Carlo steps. The temperature of the simulation was
decreased linearly. The average displacement of the spheres at
each temperature step was chosen by an automatic process to
give an acceptance probability of 0.5 ± 0.01. The results of the
simulated annealing are then put through a conjugate gradient
routine to ensure that a local minimum has been reached.

The whole process is repeated many times, using a new
randomly generated initial configuration, to give confidence
that the lowest energy state has been found. From this ensemble
we take the lowest energy configuration as the final state for
that particular run.
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After this first run we perform a subsequent run with a
slightly longer cylinder. Since the spheres have more room the
energy of the final state is lower compared to the final state
of the previous run. Using a divide-and-conquer approach we
are able to establish the cell length at which the energy per
sphere in the system falls to zero; in practice this means the
value of the energy is within a critical bound which is set
to be E/n = 1 × 10−8 ± 5 × 10−9. At this point the spheres
have a small overlap corresponding to a five decimal place
accuracy in the volume fraction (this is deduced by comparing
simulation with the analytically derived volume fraction for
the CN circle packing structures).

From this final result we compute the volume fraction which
is defined as

�(N,D) = NVs

Vc

, (A3)

where Vs = (4/3)π (d/2)3 is the volume of one of the hard
spheres and Vc = π (D/2)2L is the volume of the simulation
cell. Note that the volume fraction depends on both D and
N since different values of N yield unit cells with different
structures. Thus the whole procedure is repeated for a series of
different values of N = 1,2,3 . . ., typically up N = 15 for the
structures without internal spheres, before accepting the one
which gives the largest volume fraction, as shown in Table I.

APPENDIX B: CONTINUITY OF THE VOLUME FRACTION

We demonstrate that there can be no sudden finite dis-
continuities in the curve describing the maximum volume
fraction (density) as D/d is varied. This follows from lower
and upper bounds, as described below, which limit the variation
in volume fraction in the neighborhood of any point D0/d0. We
will see that square-root singularities observed in the numerical
results for the volume fraction are due to the arguments given
below.

1. Lower bound

For increasing D/d an obvious variational argument
bounds the density below. As D/d is increased from D0/d0,
the cylinder expands radially. We may take the structure
which has maximum density at D0/d0 as a trial structure for
D/d > D0/d0. The volume fraction of the structure, at D0/d0,
is

�(D0/d0) = Vs

π (D0/2)2L̄
, (B1)

and that of the trial structure is

�T(D/d) = Vs

π (D/2)2L̄
, (B2)

where Vs = Vs(d) is the volume of a sphere of diameter d, and
L̄ is the average separation between spheres in the ẑ direction.
Since �T(D0/d0) = �(D0/d0) it follows that

�T(D/d) >
D2

0

D2
�(D0/d0), (B3)

providing a lower bound for D > D0.

2. Upper bound

For decreasing D/d, a more subtle argument bounds
the variation of density below by a square-root function.
Decreasing D/d forces the spheres to move radially inward
to avoid contact with the cylindrical boundary. The resulting
overlap between spheres can be eliminated by displacement of
their centers parallel to the cylinder axis.

Let us index the sphere centers in ascending height using
the index j so that zj > zj−1 for j > j − 1. Given the
structure at D0/d0 which has a maximum density, then an
extreme case is one where successive spheres all have the
same height. Consider in this case a pair of contacting spheres
with separation d. Reducing the cylinder diameter by a factor
of X, so that the new diameter is D = D0X, will force an
overlap so that the separation between sphere centers is now
dX. The overlap can be removed by moving one of the spheres
vertically a distance �, so that their separation is once again
d. It follows that d2 = �2 − (dX)2. Thus a constant C can be
chosen so that the following choice is sufficient,

� = C

√
D2

0 − D2. (B4)

In order to eliminate the overlap, the sphere centers are shifted
to a new height z′

j = zj + j�. The resulting trial structure has
the volume fraction,

�T = Vs

π (D/2)2(L̄ + �)
, (B5)

which when combined with Eq. (B1) results in the following
bound:

�T (D/d) <
D2

0

D2

L̄

L̄ + �
�(D0/d0). (B6)

Hence we again arrive at a (lower) bound for �T (D/d) which
goes continuously to �(D0/d0) as D/d → D0/d0 but in this
case with a square-root form.

[1] G. T. Pickett, M. Gross, and H. Okuyama, Phys. Rev. Lett. 85,
3652 (2000).

[2] A. Mughal, H. K. Chan, and D. Weaire, Phys. Rev. Lett. 106,
115704 (2011).

[3] H. K. Chan, Phys. Rev. E 84, 050302(R) (2011).
[4] A. Meagher (in preparation).
[5] R. O. Erickson, Science 181, 705 (1973).
[6] N. Pittet, P. Boltenhagen, N. Rivier, and D. Weaire, Europhys.

Lett. 35, 547 (1996).

[7] D. Weaire, S. Hutzler, and N. Pittet, Forma 7, 259 (1992).
[8] N. Pittet, N. Rivier, and D. Weaire, Forma 10, 65

(1995).
[9] P. Boltenhagen, N. Pittet, and N. Rivier, Europhys. Lett. 43, 690

(1998).
[10] S. Hutzler, D. Weaire, F. Elias, and E. Janiaud, Philos. Mag.

Lett. 82, 297 (2002).
[11] J. H. Moon, S. Kim, G. R. Yi, Y. H. Lee, and S. M. Yang,

Langmuir 20, 2033 (2004).

051305-16

http://dx.doi.org/10.1103/PhysRevLett.85.3652
http://dx.doi.org/10.1103/PhysRevLett.85.3652
http://dx.doi.org/10.1103/PhysRevLett.106.115704
http://dx.doi.org/10.1103/PhysRevLett.106.115704
http://dx.doi.org/10.1103/PhysRevE.84.050302
http://dx.doi.org/10.1126/science.181.4101.705
http://dx.doi.org/10.1209/epl/i1996-00102-1
http://dx.doi.org/10.1209/epl/i1996-00102-1
http://dx.doi.org/10.1209/epl/i1998-00418-8
http://dx.doi.org/10.1209/epl/i1998-00418-8
http://dx.doi.org/10.1080/09500830210128074
http://dx.doi.org/10.1080/09500830210128074
http://dx.doi.org/10.1021/la0358015


DENSE PACKINGS OF SPHERES IN CYLINDERS: . . . PHYSICAL REVIEW E 85, 051305 (2012)

[12] J. H. Moon, G. R. Yi, and S. M. Yang, J. Coll. Int. Sci. 287, 173
(2005).

[13] F. Li, X. Badel, J. Linnros, and J. Wiley, J. Am. Chem. Soc. 27,
7262 (2005).

[14] M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez,
F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla,
and F. Meseguer, Adv. Mater. 20, 2315 (2008).

[15] M. A. Lohr, A. M. Alsayed, B. G. Chen, Z. Zhang, R. D. Kamien,
and A. G. Yodh, Phys. Rev. E 81, 040401(R) (2010).

[16] A. N. Khlobystov, D. A. Britz, A. Ardavan, and G. A. Briggs,
Phys. Rev. Lett. 92, 245507 (2004).

[17] T. Yamazaki, K. Kuramochi, D. Takagi, Y. Homma,
F. Nishimura, N. Hori, K. Watanabe, S. Suzuki, and
Y. Kobayashi, Nanotechnology 19, 045702 (2008).

[18] J. Warner and M. Wilson, ACS Nano 4, 4011 (2010).
[19] T. Aste and D. Weaire, The Pursuit of Perfect Packing, 2nd ed.

(CRC Press, Boca Raton, 2008).

[20] T. Hales, Discrete Comput. Geom. 36, 1 (2006).
[21] H. Airy, Proc. R. Soc. 21, 176 (1872).
[22] S. Tobin, J. Barry, A. Meagher, B. Bulfin,

C. O’Rathaille, and S. Hutzler, Colloids Surf. A 382, 24
(2011).

[23] K. A. Brakke, Exp. Math. 1, 141 (1992).
[24] D. Weaire and R. Phelan, Phil. Trans.: Math. 354, 1989

(1996).
[25] D. Weaire, G. Bradley, and R. Phelan, Soft Condensed

Matter: Configurations, Dynamics and Functionality (Kluwer
Academic, Norwell, 2000).

[26] M. Saadatfar, J. Barry, D. Weaire, and S. Hutzler, Philos. Mag.
Lett. 88, 661 (2008).

[27] S. Hutzler, J. Barry, P. Grasland-Mongrain, and D. Weaire,
Colloids Surf. A 344, 37 (2009).

[28] R. Gabbrielli, A. Meagher, D. Weaire, K. Brakke, and S. Hutzler,
Philos. Mag. Lett. 92, 1 (2012).

051305-17

http://dx.doi.org/10.1016/j.jcis.2005.01.067
http://dx.doi.org/10.1016/j.jcis.2005.01.067
http://dx.doi.org/10.1021/ja052158v
http://dx.doi.org/10.1021/ja052158v
http://dx.doi.org/10.1002/adma.200701526
http://dx.doi.org/10.1103/PhysRevE.81.040401
http://dx.doi.org/10.1103/PhysRevLett.92.245507
http://dx.doi.org/10.1088/0957-4484/19/04/045702
http://dx.doi.org/10.1021/nn101111b
http://dx.doi.org/10.1007/s00454-005-1209-8
http://dx.doi.org/10.1098/rspl.1872.0040
http://dx.doi.org/10.1016/j.colsurfa.2010.11.024
http://dx.doi.org/10.1016/j.colsurfa.2010.11.024
http://dx.doi.org/10.1080/10586458.1992.10504253
http://dx.doi.org/10.1098/rsta.1996.0087
http://dx.doi.org/10.1098/rsta.1996.0087
http://dx.doi.org/10.1080/09500830802307658
http://dx.doi.org/10.1080/09500830802307658
http://dx.doi.org/10.1016/j.colsurfa.2008.12.021
http://dx.doi.org/10.1080/09500839.2011.645898

