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Abstract: Continuing a line of work initiated in (Boyer et al., 2007hetgeneralisation of stochastic string distance to
a stochastic tree distance is considered. We point out sdttmerto overlooked necessary modifications to
the Zhang/Shasha tree-distance algorithm for all-patbsvéarbi variants of this stochastic tree distance. A
strategy towards an EM cost-adaptation algorithm for theaths distance which was suggested by (Boyer
et al., 2007) is shown to overlook necessary ancestry prasen constraints, and an alternative EM cost-
adaptation algorithm for the Viterbi variant is proposedkpé&iments are reported on in which a distance-
weighted KNN categorisation algorithm is applied to a carpicategorised tree structures. We show that a
67.7% base-line using standard unit-costs can be impravéd.5% by the EM cost adaptation algorithm.

1 INTRODUCTION as potential means to adapt atomic costs given a cor-
pus of training tree pairs.

Section 2 recalls the standard definitions of string-
and tree-distance. Section 3 goes on to first recall the
stochastic string-distance as proposed by (Ristad and
Yianilos, 1998) and then defines stochastic variants of

The classification of tree structures into cate-
gories is necessary in many settings. In natu-
ral language processing an example is furnished by

uestion-Answering systems, which frequently have . ) . '
Q 95y g y tree-distance, which we ter#ll-scripts and Viterbi-

a Question-Categorisation sub-component, whose" ** ! oY
Q g P script stochastic Tai distanceg (S, T) andA¥(S,T).

purpose is to assign the question to one of a number of X
predefined semantic categories (section 5 gives some) "€ standard algorithm of (Zhang and Shasha, 1989)

details). Often one would like to obtain such a clas- for the tree-distance is then recalled and some nec-
sifier by a data-driven machine-learning approach essary modifications to allow correct and efficient
rather than by hand-crafting one. Thfistance " computation of the All-scripts and Viterbi variants
based approach to such a classifier is to have a pre-2r€ described. Section 4 concerns how one might
categorisecexample seind to compute a category adapt atomic costs from a training corpus of same-

for a test item based on its distances to examples in C&t€g0ry neighbours via Expectation-Maximisation.
the example set, such as via k-NN. The string-case is recalled and then a brute-force, ex-

With items to be categorised represented as trees,'oonemi"’lIIy expeqsive .method.for ad.apting th_e param-
a crucial component in such a classifer is the mea- eters of theAll-scriptsdistance is outlined. Whilst for
the linear case, a particular factorisation is applica-

sure used to compare trees. The tree-distance firstb ) ; C ;
: . : ; le which permits efficient implementation of the EM
proposed by (Tai, 1979) is a well motivated candidate aII-scriptsF;nethod we showpby means of a counter-

measure (see later for further details). This measure S .
can be seen as composing a relation between trees Ouclexa}mpl.e that for t.he tree case th|§ kind of factori-
of several kinds of atomic operations (match, swap, satlond IS n%t appllcatile,zgggour?h I hasTbhe_enl Sl:jg'
delete, insert) the costs of which are dependent on thegeste in ( (()jyer er;{ ?jf d ) that 'L IS. IS lea Sf
labels of the nodes involved. The performance of such to a proposed method for adapting the parameters o

a distance-based classifier is therefore very dependen r;s w?ég{;:ﬁrfttﬂ'gaa?:eéigrgs:::'eng)\(mé'ﬁgsnigl?z'l; (-
on the settings of these atomic costs. : P P

In the work presented below probabilistic variants comes obtained with this EM procedure for adapting

. . the Viterbi-script distance.
of the standard tree-distance are considered and then P

Expectation-Maximisation techniques are considered



2 NON-STOCHASTIC SEQUENCE M the(i, j) € o: the 'matches’ and 'swaps’

AND TREE DISTANCES D theieSs.t.VjeT,(i,]) € o: the 'deletions’
I thejeTstVieS(,]) ¢ o: the 'insertions’

Let us begin by formulating some definition relation WhereZ is the label alphabets of source and target
to the familiar notion of string-distance. The formu- aag lety(i) be the label of nodé Let C be acost
lations follow closely those of (Ristad and Yianilos, table’of dimensions%| + 1 x |2 + 1. The cost of a

1998) and are chosen to allow an easy transition to mapping is the sum over the atomic costs definéd by
the stochastic case.

Let = be an alphabet. Let the set of edit operation for (i, j) € M costisC[y(i)][y(j)]
identifiers,EdORp be defined by forie D cost isCly(i)][0]

forjer costisC[0][y())]
EdOp= ((ZU{A}) x (ZU{A})\AA) _ ) .
The so-calledinit-costmatrix, (o1 has 0 on the diag-

and let anedit-scriptbe a sequence;...en#,n >0,  onal and 1 everywhere else. For a given cost matrix
with eache, € EdOpand with # as a special end-of- ¢, the Tai- or tree-distance\(S, T) is defined as the
script marker. Given an edit-scrip, it can be pro-  ¢ost of the least-costly Tai mappimgbetweerS and
jected into a 'source’ stringrc(4) € £*, by contenat- T

ing the left elements of the contained operations, and  Thereis an alternative, more procedural definition

likewise into a 'target’ stringrg (1) € =*: route, viatree-edit operations analogous to string-edit
operations. The table below depicts the three edit op-

Sy —sroa) g —ug() NS

Src((A,y)A) = sri A trg({x,A)A) =trg(4 operation script element

sro((x.y)A4) =x sro(A)  trg((x,y)2) =y trg(A) T ) o

xd)T)
% — (mfcﬁ’)

Theyield of edit-script-2 can be defined as pair
of strings(src(4),trg(4)). If (s,t) =yield(4), each
g € A isinterpretable as an edit operationin a process
of transformingstot: deletion(a,A), insertion(A,b),
or match/substitutiotia, b). Let E(s,t) be all scripts
which yield (s,t). The multiple scripts irE(s,t) de-
scribe alternative ways to transfosintot. _ A (mT(xd)7) (X,Y)

If costs are defined for such edit-scripts, a string- <"« y mi (v d
distance betweesandt can be defined as the cost of
the least-cost script iB(s;t). o )

Alternatively one can consider thgartial, 1-to- Thus dgletlon involves making the daughters of some
1, order-respectingnappings fronsto t. Costs can ~ hodex into the daughters of that node’s parent
be defined for such mappings and a distance mea-insertion mvoIve_s taking some of the daughers of a
sure defined via minimising these costs. Script-based"odeém and making them instead the daughters of a
and mapping-based definitions are equivalent (Wag- "W daughtey of m, and swapping/matching involves
ner and Fischer, 1974): fundamentally an edit-script SIMPly replacing some nodewith a nodey at the
is viewable as a particular serialisation of a mapping. Sa@me position. _

For ordered, labelled trees, the analogue to stan-  The right-hand column shows the script element
dard string distance was first considered by (Tai, Which is used to record the use of particular edit op-
1979). We develop the definitions relevant to this €ration. Using the same table of c@stas was used
below, starting first with anappingbased definition. ~ for costing a mapping, a cost can be assigned to the

(A.y)

The equivalenscriptbased definition follows this. script describing the operations to transform a tee

A Tai mapping is aartial, 1-to-1mappingo from into a treeT, .and.a_sc_rlpt-baged definition of distance
the nodes of source tr&o a target tred which re-  then given via minimising this cost.
spectdeft-to-right orderandancestry. For the pur- The mapping- and script-based definitions are
pose of assigning a score to such a mapping it is con-equivalent (Tai, 1979; Kuboyama, 2007), with a script
venient to identify three sets: serving as a serialised representation of a mapping.

(Zhang and Shasha, 1989) provided an efficient algo-
rithm for its calculation.

1S0if (i1, j1) and(iz, j2) are in the mapping, then (T1) 2See also (Emms and Franco-Penya, 2011) in these pro-
left(iq,io) iff left(j1, j2) and (T2)and(iy,i2) iff and(jy, j2) ceedings.



To illustrate, below is shown first a mapping be- yield. They then define thall-paths stochastic edit
tween two trees, and second the sequence of edit-distancel?(s,t), as the sum of the probabilities of all
operations corresponding to it, with some of the inter- scriptse € E(s,t), whilst theviterbi versionY(s;t) is
mediate stages as these operations are applied; witlthe probability of the most probable one.

unit-costs the distance i$:3 It is natural to consider to what extent the proba-
. g bilistic perspective adopted for string-distance by Ris-
| PR tad and Yianilos can be applied to tree-distance. The
/6\ ---- ~a a, b simplest possibility is to use exactly the same model
a kl) b k}) kl) of edit-script probability, which leads to the notions:
lg _ 7 -7 Definition 1 (All-scripts stochastic Tai similari-
‘a a ty/distance) The all-scripts stochastic Tai similarity,

| | O4(ST), is the sum of the probabilities of all edit-
/jK (b,b)(a,a)(b,b)(..2) /?\ - _(bb)a,) scripts which represent a Tai-mapping from S to T.

_________ -

a b b a a b The all-scripts stochastic Tai distana&(S, T), is its
kIJ tl) tI) voa negated logarithm, ie.
/N .
AL @@ _a a b 27551 =4S T)
a a b=""7" kl) [!, Definition 2 (Viterbi-script stochastic Tai similari-
tl) llo ty/distance) The Viterbi-script stochastic Tai similar-

ity, ©Y(S,T), is the probability of the most proba-

Itis easy to see that for strings encoded as linear, P1€ edit-script which represents a Tai-mapping from
vertical trees, the string-distance and tree-distance co-svto T. The Viterbi-script stochastic Tai distance,
incide. We will use tree-distance and Tai-distance in- 2 (S T), is its negated logarithm, ie.
terchangeably, though the literature contains several AV
other, non-equivalent notions bearing the naree- 27881 —@Y(sT)
distance Based, as it is, simply on the notion of map-
pings respecting the two defining dimensions of trees,  For ©4 and©{ the probabilities on each possi-

the Tai distance seems a particularly compelling no- ble component of an edit scripEdOpuU {#}, must
tion. be defined. In a similar fashion to the non-stochastic

case, let this be defined by a talil@ of dimensions
|Z| +1x ||+ 1such that:

3 STOCHASTIC SEQUENCE AND for (x,y) €Zx T  p({xy)) =C°(x,y)
TREE DISTANCES forxe X P((x.A)) =CO((i),0)
foryes P((\.y)) =C®(0,y(j))

(Ristad and Yianilos, 1998) introduced a probabilis- p(#) =C®(0,0)
tic perspective on string distance, defining a model
which assigns a probability to every possible edit-
script. Edit-script compoments € EdOpU {#} are
pictured as generated in succession, independently o
each other. There is an emission probabitityn edit-
script components, such thJtceqopii# P(€) = 1,

and a script’s probability is defined by

For convenienc€®(0,0) is interpreted ap(#). The
sum over all the entries in this table should be 1. It
1js clear that an equivalent cost-tat#® can be de-
fined, containing the negated logs of 168 entries,
and thatAY (S, T) can be equivalently defined by an
additive scoring of the scripts using the entrie€t
ThereforeAY (S, T) coincides with the standard no-
Pler...en) = l_l o(&) tion of _tree-distan(feif t_he cost—tab_lt_a is restricted to
o i be the image of a possible probability-table under the
negated logarithm mapping. We will call such tables
stochastically valid cost tables. Again it is easy to see
that with sequences encoded as vertical trees, these

31t is worth noting that for the equivalence between notions coincide with those defined on sequences by
mapping-based costs and script-based costs, the scriptRjstad and Yianilos.
which correspond to mappings mention each source andtar-—
get symbol exactly once. Thus the 'short’ script segments 4A\S’(ST) will include a contribution from the negated
shown in the picture are not representative of the scripts log of p(#). As all pairs will share this contribution, any
which correspond to a mapping application ranking pairs can ignore this contribution.

For a given string paifs,t), as beforeE(st) de-
notes all the edit-scripts which hays,t) as their



For the Viterb-scriptdistanceAY (S, T), the well | nput:traversals S %”d T of two trees
known Zhang/Shasha algorithm is an implementa- a cost table
tion. The Viterbi-script sir.nilarifcye‘s’ canalsobe ob-  compute KRS), KR(T)
tained by a variant replacing with x. Implementing create table 7%, size| S| x | T |
the All-script distanceA?(S,T) (or equivalent simi-  create table 7%, size| S| + 1 x | T | + 1
larity ©4(S, T)) turns out though to require one sub-
tle change to the original Zhang/Shasha formulation. TD*(ST) {

.. ; for each i € KR(S) in ascending order{
This is explained at further length below. for each j € KR(T) in ascending order{

Figure 1 gives an algorithm fd4 andAY . To dis- execute treadist (i, })}
cuss it first some definitions from (Zhang and Shasha, }
1989) are required. The algorithm operates on the return F*[|S][|T|]
left-to-right post-order traversals of trees.klfs the
index of a node of the tree, theft-most leafl (k), is

the index of the leaf reached by following the left- treedist(i, j) {

where ig=I1(i)—1,jo=1(j)—1

branch down. For a given leaf there is a highest ~gxjgjjo = o initialize
node of which it is the left-most leaf and any such  for is=I(i) to is=i {
node is called &ey-root For any tr_ees KR(S) is FX¥ligllio] = F¥[is— 1][jo] + CA(y(is),0) }
the key-roots ordered by position in the post-order for ji=I(j) to ji=] {
traversal. Ifi is the index of a node o, Si] is the FX[io)[it] = F¥[io][Jt — 1 +CA(O,v(jr)) }
sub-tree ofS rooted ati (i.e. all nodesn such that _ ) o
I(i) < n<i). Wherei is any node of a tre&, for ]for ',S:'I('.) tols=1 |
anyis with [ (i) < is < i, the prefix ofSfi] from (i) to or Je=l(j)to je=1j ~  loop
is can be seen asfarestof subtrees offfi], denoted Mx B ?X lis = 3]{je = 1] +E (v(is), ¥(it))
For(I(i),is). D= FXlis—1[jt] + C(v(is),0)
’ T . . 1*= 7¥[ig][jt —1] + C2(0,y(jt))
The description instantiates to two algorithms, X aX[j (i) iy NIRIT

: : ’ TM = 7X(I(is) — 1[I (jt) — 1 + T]is|[J¢]
with x =V for Viterbi, andx = A for All-Scripts. Lif(l(is)==I(i) and I1(j1) ==1(})) {
In both cases, it is a doubly nested loop ascending FXig][jt] = OP(M* DX, 1%)
through the key-roots & and T, in which for each ZT’;[i(sl](Ut%;:V(l_x) (*)}l(_ 1)
pair of key-rootgi, j), a sub-routingree dist*(i, j) is ATLIs) 7 10) or Tt ]
called. Values in @reetable 7 are set during calls to {#is][jt] = OP*(D*, I, TMH)}
treedist*(i, j) and persist. Each call toee-distX(i, j) Figure 1: Viterbi and All-paths tree-distance algorithms.

operates on a sub-regiof theforesttable 7, from Set x to V throughout for Viterbi, with OP= min,
I(i)—1,1(j)—1toi,j. The loop is designed so that and x to A for All-paths, with O = logsum, where
Fligl[jt] is the forestdistance fromFor(l(i),is) to logsuntxs ... xn) = —log(3i(27%)).

For(I(j),jt). F-entries do not persist between sep-

arate calls tareedist*(i, j).

In the Viterbi case TDV, there is no inversion for the asterixed line, which in the original would be:

from neg-logs to probabilities, and the algorithm can TVIidli] = FVIidli
be applied wherC? is an arbitrary table of atomic lis][jt] = 7 [ig] [jt] ()
costs. Whereas the original (**) formula for updating the

It is the design of case 2 that enforces that only tree table in case 1 updates it to store the true tree-
Tai mappings are considered: when a forest distancedistance betwee§[is] andT[j¢], the (*) variant stores
FVIis[jt] is to be computed, the possibility thatis justMV, the cost of the least-cost script for an align-
mapped toj; is factored into a forest+tree combina- ment ofFor(l(is),is) to For(l(jt), jt) in which nodes
tion TMY = FV[I(is) — 1[I(jt) — 1] + TV[i)[jt], so  isand j are mapped to each otheiFor the Viterbi
that descendants @f can only possibly match with  cost, (*) and (**) could be interchanged and so have
descendants gf and vice-versa. TVig][jt] store a cost in whicks and j; might not be

Settingx to V for Viterbi, the algorithm is almost ~ Mapped to each other: in such a case when the values

identical to that in (Zhang and Shasha, 1989), exceptin 7" are called on in case 2, theM" component
will just be equal to one or other of th¥ or DY com-

T , ponents over which the minimum is calculated.
The initialisation sets the left-most column of this to . . . A
represent the pure deletion cases (I (i),is) to 0, and the Reading the algorithm now withset toA, 7 and

uppermost row to represent the pure insertion cdses F* represent the "all-scripts’ probabilities, sums over
For(I(j), jt) all scripts which serialize a Tai mapping between the



relevant trees or forests. Looking again at the aster- HUM('the question expects a human being to be iden-

ixed line, through not setting[is][jt] = F"[is][jt], tified as the answer’) drCC ('the question expects a
TAig][jt] is notthe log of the sum of the probabilities location to be identified as the answer’).
of all the scripts which can aligfis] andT [j;] but in- For the tree-distance measures, the performance

stead the sum over all the cases in whigis mapped  of the classifier is going to vary with the atomic pa-
to j. For the subsequent use ®f* in case 2, thisis  rameter settings in the cost-talil8. One might ex-
now a necessary feature: 4A[ig][j;] does not have  pect that scripts between pairs of trees (or strings)
this interpretation then when these values are calledthat belong to thesame categorgiffer from scripts
uponin case 2, probabilities of scripts ending in either between pairs of trees (or strings) that belonglife
deletion ofis or insertion ofj; are doubly counted. ferent categories For example, for the question-
Example Lett; =t = (b (b) (a b)), and suppose categorisation scenario, on same-category pairs one
the cost-table to the right below, which represents as might expect that the substitutiofwho/when to
negated logs the assumptions that all probabilites arebe less frequent that the substitutistate/country.

0 except forp(a,A) = 1/8 = p(A,a), p(b,b) = 1/4, In terms of the parameters of the stochastic dis-
and p(#) = 1/2. The left is the only Tai-mapping tances this would correspond B(whowhen <<
which is associated with a non-zero probability edit- P(state country), or equivalently in terms of negated

script in this setting logs, C®(whawhen >> C?(statgcountry). This
leads to the idea that one might be able to use
| A a b Expectation-Maximisation techniques (Dempster et
/b\" o >/b\ A1 3 inf al., 1977) to adapt edit-probs from a corpussafme-
b a b =a z; 3f in; inf category nearest neighbours
RN inf inf 2
57 ) N AN

-7 nearest

same—category EM

By inspection, ©A(ti,t) = (1/2)°%(1/64), neignbours 4 7N 7N —

oY (t1,tz) = (1/2)5(1/128), and these are the L

values, or rather their negated logs, which will be PN

calculated by the algorithm in Figure 1. However,

if 7”[as][as] were to include the probabilities for Such a technique, for the case of stochastic string

scripts involving the deletions or insertions af  distance, was first proposed by (Ristad and Yianilos,
©%(t1,t2) would be incorrectly calculated to be 1998).

(1/2)8(3/64).
As a final remark concerning the algorithm for the 4.1 All-scripts EM
Viterbi case, it is straightforward to extend the algo-
rithm so that it returns not just the cost of the best As a first step towards a cost-adaptation algorithm,
Script but also the best Script itself. Hence we shall consider the fo||owing)rute_f0rce a”-scripts EM al-
write (V) =TDY(ST). gorithm, EMp, consisting in interations of the fol-
lowing pair of steps
(Exp)a generate a virtual corpus of scripts by treat-

4 EMFOR COST ADAPTATION ing each training pail(S, T) as standing foall the

edit-scriptso, which can relate S to T, weighting
As noted in section 1, a possible use of a distance  each by its conditional probability @/@4(S, T),
measure is for deploymentin a k-NN classifier, deter- under current probalities €

mining a category for a testitem based on its distances(max) apply maximum likelihood estimation to the
to examples in a pre-categorised example set. Thisis  vyirtual corpus to derive a new probability table.

the case in the experiments reported on in section 5., . . :
. : . A virtual count or expectatiops T (0p) contributed by
In those experiments the categorised items are the N
S, T for an operatomp can be defined by

syntax-structures of natural language questions, and

the categories are broad semantic categories, such as P(o)

e op) = ————— x freqlopec
6The reason for the premultiplyind,/2)® factor in these ¥s7(0p) O:gT[GQ(S,T) q(op< o))

numbers is that it is easier in this case to calculate first ig- .

noring p(#) and from a table in which all entries are twice and the(Exp)a accumulating these valuggr(op)

as large, and then to correct for the over-estimation; the on  for all possibleop's over all training pairs. The pic-
scripts making any contribution all have length 5 ture below attempts to illustrate this for a particular



operation(a,A) occuring in various scripts between a ST e
i - 6~
particular tree pair | R R ~, (i)
s L //4.m 6. i P,

NN S = oce.
& =3P@) - N \(?}»Gl (_Toce of (
P Ll R ‘Z\K ¢
! 7 [N
v &
/K fa/ﬁ‘/mv /\J\nf(égﬂ\b: N A\
‘ b b bb ) aab
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AN /d,,(j{‘f
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=

. Figure 2: The swap-case in expectation calculation
For the case dinear trees this amounts to the same

adaptation proposal as that put forward by (Ristad
and Yianilos, 1998). This brute-force algorithm is

exponentially expensive. To obtain a feasible equiv-
alent algorithm one may attempt to apply the same
strategy as that used by (Ristad and Yianilos, 1998)

For the pair of trees, we wish to calculate the position-
dependent expectatioyi4,4](m,m’). (Boyer et al.,
2007) propose an algorithm implying the correctness
of the factorisation

for the case of linear trees, which is for each tree Ygeg(sT), (m4n~( go[ (0)] (2)
pair (S,T), to first computeposition-dependerex- =3 o1eE([(-1)] ) IP(O1)]x [
pectationsys1)[i][j](0p) for each operation and then ¥ 62€E([(-2)( )[p( 2)] x p(m, ) [(i)]
sum these position-independent expectations to give 3 05 (4 ))] [( J(e(s))) [P(T3)] [(iii)]
the expecations per-pajfst(op). In this approach,
YsT)li][i](m m'), the expectation for a swafpn, m) where the terms (i)—(iii) corresponds to the indicated
at(i, j) has the semantics regions in Figure 2. The problem is with final term
o ©) (iii) in the product. Each edit-scripgt € E(S,T) rep-
Y[l 1M ) = S oeest).mom)col SA -] resents a Tai mapping betweSandT. The summa-
VETOE(sT)
S

_ @A(1$T) X Y oce(sT)mm)eo[P(O)] tion 3 gee(sT),(mymy co[P(0)] refers to those scripts
A

which represent a Tai mapping with the property that
or in words, it isthe sum over the conditional prob- my is mapped taw,. This means that if an ances-

abilities of any scripto containing a mm, substitu-  tor of my is in the mapping (ie. not deleted) then
tion, given that it is a script between Sand T its image under the mapping must be an ancestor of
For the case oflinear trees the position- m,, and vice-versa. The final term in the product,
dependent expectationyss ) i][j] can be computed sk ((o(5),[+(6(5))) [P(T3)], sums overany script
feasibly because firstly, the summation in the above between these two sub-trees®&ndT and this will
can be factorised into a product of 3 terms include scripts in which node of Sis mapped tos
of T, and this corresponds to a mapping in which an
ZOGE(ST),(m,nfj)eo[p(G)] (1) ancestor ofry is mapped to a non-ancestorrof:
= zdpregE(Sl:l,l,Tl:j,l)[p(opfe)] x ®--—~~"" "~~~ -—--- - _ 7.
p(m, ) x 6 AN
2 0sutt€E(S 11 7Tj+1:J)[p(O-SU”>] / ‘m /T m’ R
. . . ° [ ] ([ J (] L4 \d
and secondly the summations over the possible scripts1 47 5 2 44 | 6‘
prefixing (mi,m}), and the possible scripts suffixing N - |-
(mi, ;) can be straightforwardly calculated; the first ® 2 1* 3’ 5

is the aII-scripts algorithm, and the second an easily
formulated 'backwards’ variant.

For the case of general trees (as opposed to linear,
trees) (Boyer et al., 2007) propose such a factorisa-
tion approach. Their proposal turns out, however, to
be unsound, factorizing the problem in a way which
is invalid given the ancestry-preservation aspect of Tai
mapping$. To explain this, consider Figure 2, which
reproduces the essentials of an example from their pa-

pef.

7A fact which they concede p.c. An approximation to the the All-scripts proposal con-
8Fig. 3 p61 sists in simply in replacing thExpa step by

For example if the only non-zero probability script
rom (-s('s)) to (-7(-6('5))) is one mapping the; of
Sto the g of T theny[4,4](m,n) should be zero,
though according to (2) it will not be.

For general trees, a feasible equivalent to the

brute-forceE Mfif remains an unsolved problem.

4.2 \iterbi EM



(Exp)v generate a virtual corpus of scripts by treat-
ing each training pair (S, T) as standing for
the best edit-script g, which can relate S to
T, weighting it by its conditional probability
P(0)/@4(S,T), under current costg’

Where? is the best-script, the virtual count or expec-
tationyst(op) contributed byS, T for the operatomp
would in this case be defined by

©(ST)

oS T) x freglope V)

YisT)(0p) =

and the (Exp)y step accumulates these values
YisT)(0op) for all possibleop's over all training pairs.
The picture below attempts to illustrate this for a par-
ticular operation(a,A) occuring on the best-pat#’
between a particular tree pair

-
& =5P@) /d'/’"', . d PV) () =occ. of (a,.)
a - u’// \ — on best-path
L W“
/T\ ﬁk%f V‘ 7l 4\ J1N
b b o \ / 7 bbb

- -- =7

Figure 3 spells out this Viterbi cost-adaptation algo-
rithm for stochastic tree-distanée.

input: a set P of tree pairs(ST)

a cost table C size |Z|+1 x |¥|+1

create tablesy,Cpew Same size as C

whil e(conv # true) {

zero all entries iny

for each (§T) € P {
let (v, ¥)=TDY(ST), a=TDA(ST)
YAJAJ+=27Y /272
for each (x,y) € EdOp{

VIX|[y]+=(freq of (xy) in ¥)x27V/2"2
}

}
Chew= —log(y/suny))
if (Chew# C){C =Cnew} else {conv=true}

return C

Figure 3:Viterbi EM cost adaptation for tree-distance. Note
> isthe label alphabet of the tree-pairsih The algorithms
TDY and TD! are as defined in Figure 1

Such Viterbi training variants have been found
beneficial, for example in the context of parameter
training for PCFGs (Benedi and Sanchez, 2005).

9Simple modifications of the algorithm as formulated
force it to generate a symmetric expectation tgble

5 EXPERIMENTS WITH VITERBI
EM COST-ADAPTATION

We have conducted some experiments with this
Viterbi EM cost-adaptation approach. In particular
we have considered how it might adapt a tree-distance
measure that is put to work in a k-NN classification
algorithm.

Figure 4 outline the distance-weighted kNN clas-
sification algorithm which was used in the experi-
ments.

knn_cl ass( ExamplesC?,k; T) {
let D = SORT{(SAY(ST)) | S € Examples}
whi | e(!resol ved) {

P=topk, D), ¥V =weighting P)

if(no winner in ) {set k =k +1}

else { resolved = true }

}

return category with highest vote in?/

Figure 4: Distance-weighted k nearest neighbour classifi-
cation

top(k, D) basically picks the firsk items from D10,
The weighting converts the panel of distance-rated
items to weighted votes for their categories, and in the
experiments reported later, the options for the con-
version of an item of categol®@, at distanced, into

a votevoteC,d) are Majority: votgC,d) = 1; Du-
dani: voteC,d) = (dmax— d)/(dmax— dmin), or 1 if
Omax = Amin, Wheredmax and dmin are maximum and
minimum distances in the panel (Dudani, 1976).

It can arise that the test tr8econtains a symbol
for which C2 has no entry. One option is to assign
all operations involving the symbol some default cost
K. See the Appendix for a proof that the ordering of
neigbours is independent of the value chosenfor

In applying theEMV cost-adaptation in the con-
text of the k-NN classification algorithm, the training
set for cost-adaptation was taken to consists of tree
pairs(S,T), where for each example-set ti§¢eT is a
nearest same-category neighbour. The training algo-
rithm should less the stochastic tree-distance between
these trees.

EMV like all other EM algorithms needs an ini-
tialisation of its parameters. We will ug#,(d) for
a 'uniform’ initialisation with diagonal factod. This
will mean thatC2,(d) is a stochastically valid cost-
table, with the additional properties that (i) all diag-
onal entries are equal (ii) all non-diagonal entries are
equal (iii) diagonal entries aittimes more probable

19Modulo some niceties concerning ties which space pre-
cludes detailing



than non-diagonal. For these purposes the cost-tablesults using theDudani-votingvariant of k-NN; the
entry for p(#) is treated as non-diagonal. As an illus- Majority-votingvariant was less effective.
tration, for an alphabet of just 2 symbols, the initiali-

sationsC2(d) for d = 3, 10, 100, and 1000 are: _ e

o IR .
3[]A a b 10N a b sk & A%
A| 3737 37 A | 4755 4755 4755 ar )
a| 3.7 2115 37 a | 4.755 1433 4755 ©er o
b| 3737 2115 b | 4755 4755 1433 o
100/ a b 1000(A  a b g F
A 7.693 7693 7693 A 10.97 1097 1Q97 § o =
a 7.693 105 7.693 a 10.97 1005 1097 8 NF
b 7.693 7693 105 b 10.97 1097 1005 X - —
2F
As asmoothingoption concerning a tablg® de- © = o untrained stochastic
rived by EMV, let C2, be its interpolation with the w | # trained stochastic unsmoothed
originalC2,(d) as follows Z E; er"’]‘i't”‘cegs‘:‘;o‘;hasnc smoothed _
< 7 | | | | | [

[y
al

10 20 30 50 100 200
k values

With 0<A<1lwithA=1 _giY"‘g allthe We_ight tothe Figure 5: Categorisation performance with unit costs and
derived table, and = 0 giving all the weight to the  gome stochastic variants

initial table.

The dataset used was a natural language processThe first thing to note is that performance with unit-
ing one, being a corpus of (broadly) semantically cat- costs {7, max. 677%) exceeds performance with the
egorised, and syntactically analysed questions, whichnon-adapte@?®,(3) costs ¢, max. 638%). Though
was created by from two pre-existing datasets. Ques-not shown, this remains the case with far higher set-
tionBank (QB) is a hand-corrected treebank for ques- tings of the diagonal factor. Performance after ap-
tions (Judge et al., 2006; Judge, 2006b), (Judge,plying EMV to adapt costs/(, max. 532%) is
2006a). A substantical percentage of the questionsworse than the initial performance,(max. 638%).
in QB are taken from a corpus of semantically cat- A Leave-One-Out evaluation, in whiotxample-set
egorised, syntactically unannotated questions (CCG, items are categorised using the method on the remain-
2001). From these two corpora we created a corpusder of the example-set, gives accuracies of 91% to
of 2755 semantically categorised, syntactically anal- 99%, indicatingEM" has made the best-scripts con-
ysed questions, spread over the semantic categories agecting the training pait®o probablepver-fittingthe

2-ChY — \ (2 CO) 4+ (1= p) (2~ Couldb))

follows!! cost table. The vocabulary is sufficiently thinly spread
over the training pairs that its quite easy for the learn-
Cat HUM ENTY DESC NUM LOC ABBR ing algorithm to fix costs which make almost every-

N 647 621 533 461 455 38

% 2348 2254 1935 1673 1652 1.38 thing but exactly the training pairs have zero proba-

bility. The performance when smoothing is applied
) (+,max. 648%), interpolating the adapted costs with

For further details of the software and data see the initial cost, withA = 0.99, is considerably higher
(Emms, 2011). Figure 5 shows some results of a than without smoothing/(), attains a slightly higher
first set of experiments, with unit-costs and then with  maximum than with unadapted costs)(but is still
some stochastic variants. For the stochastic variants,yorse than with unit costsc).
the cost initialisation wa€2,(3) in each case. All The following is a selection from the top 1% of
the experiments followed a stratified 10-fold cross- agapted swap costs.
validation approach. The data was randomly split into
10 equal size folds, with approximately equal distri- 8.50 7 . 12.31 The the
bution of the categories in each. Then in turn each 8.93 NNP NN 1265 you |
fold has taken as the test data, and the remaining 9 947 VBD VBZ 13.60 can do

f 9.51 NNS NN 13.83 many much

folds used as the example set. When cost-adaptation 078 a the 13.92 city state
was applied this means that the training pairssit 11.03 was is 13.93 city country
come from the example set. The figure shows re- 11.03 s is

l1gee (CCG, 2001) for details of the semantic category For the data-set used, these learned preferences are to
labels some extent intuitive, exchanging punctuation marks,



words differing only by capitalisation, related parts of

speech (VBD vs VVZ etc), verbs and their contrac-

tions and so on. One might expect this discounting of
these swaps relative to others to assist the categorisa-
tion, though the results reported so far indicate that it
did not.

Recall that the cost-table for the stochastic edit
distance is a representation of probabilites, with prob-
abilities represented by their negated base-2 loga-
rithms. A 0 in this case represents the probability
1. Because in a stochastically valid cost table, the
sum over all the represented probabilities must be 1,
a single 0 entry in a cost table impliésfinite cost
entries everywhere else. This means that a stochasti-
cally valid cost table cannot have zero costs on the
diagonal, which is the situation of the unit-cost ta- Figure 6: Categorisation performance: adapted costs with
ble, Co1. This aspect perhaps mitigates against suc- Smoothing and zeroing
cess. The diagonal factarin the cost initialisation
is designed to make the entries on the diagonal moreg  CONCLUSIONS
probable than other entries, but even with very high
values ford, indicating a high ratio between the diag-
onal and off-diagonal probabilities, the diagonal costs
are not negligible. This means that the unit-cost set-
ting, Co1, which is clearly 'uniform’in a sense, is not
directly emulated by the 'uniform’ stochastic initiali-
sationsC?(d). The performance with thenadapted
uniform stochastic initialisation was below the perfor-
mance with unit-costs. Although results in Figure 5
show just the outcomes witi;(3), this remained the
case with far larger values of the diagonal faatior
This invites consideration of outcomes if a final step
is applied in whichall the entries on the cost-table’s
diagonal are zeroedin work on adapting cost-tables
for a stochastic version atring distanceused in du-
plicate detection, (Bilenko and Mooney, 2003) used
essentially this same approach. Figure 6 shows out-
comes when the trained and smoothed costs finally

% accuracy

20
k values

30 50 100 200

One can tentatively conclude on the basis of these ex-
periments that the Viterbi EM cost-adaptation can in-
crease the performance of a tree-distance based clas-
sifier, and improve it to above that attained in the unit-
cost setting, though this does require smoothing of de-
rived probabilites and a final step of zeroing the diag-
onal.

Experiments with further data-sets is required.
One type of data of interest would be the digit-
recognition data-set represented by a tree-encoding
of outline looked at by (Bernard et al., 2008). It
would also be interest to look at applications not
to do with categorisation per-se. For example, in
the NLP-related tasks of question-answering and en-
tailment recognition, the aim is assess pairs of sen-
tences for their likelihood to be a question-answer or
hypothesis-conclusion pair. A training set of such

have the diagonal zeroed.

The (/) series once again shows the outcomes with
unit-costs. In this experiment, with the diagonal

zeroed, this is necessarily also the outcome ob-

tained with any unadapted uniform stochastic ini-
tialisation C2y(d). The other lines in the plot

show the outcomes obtained with costs adapted by

EMV, smoothed at varius levels of interpolationg
{0.99,0.9,0.5,0.1}) and with the diagonal zeroed.
Now the unit costs base-line is clearly out-performed,
the best result being 72.5% £ 20, A = 0.99), as
compared to 67.5% for unit-costs£ 20). Also bet-
ter results are obtained with the higher levels of the
interpolation factor, indicating greater weight given to
the values obtained dgMV and less to the stochastic
initialisation.

pairs could also serve as potential input to the cost
adaptation algorithm.

Alignments between different pairs of trees can
end up being represented by the same edit-script. A
minimal example is that the scriga, A)(b,B)(c,C)
can serve to connect both the paiftsl,t2) and
(t1',t2), where:

t1': (c(b(a))) t2': (C(B(A)))

Therefore the All-script and Viterbi-script
stochastic edit-distances are only a step towards a
fully fledged generative model of aligned trees. A
fully-fledged model would include further factors
to divide the probabilityP(a,A) x P(b,B) x P(c,C)



between the tree-pairs. A direction for further work
is the investigation of such a model of aligned trees,
and how it relates to some other recent proposals

Judge, J. (2006b)Adapting and Developing Linguistic Re-
sources for Question Answering?hD thesis, Dublin
City University.

concerning adaptive tree measures such as (Takasu etudge. J., Cahill, A., and van Genabith, J. (2006). Ques-

al., 2007), (Dalvi et al., 2009)
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APPENDIX

Proof concerning out of table costs

Let C* be a cost-table associated with a given la-
bel alphabet, let T be a tree with n symbolg %,
and letk be a fixed, out-of-table cost for arfy, u),
where xc U {A}, u¢ X. Suppose S is a tree whose
labels are inZ. Everyo € E(S,T) involve n out-of-
table events. Suppo$@ is the least-cost script, with
cost cost(). Now suppose under a higher setting of
K’ for out-of-table costs, that” # v is the least-cost
script, so cosk(7”) < cosi/(7). But recosting ac-
cording tok gives cost(?”) < cosk (%), which con-
tradicts minimality of?’ underk. So the minimal
script is invariant to changes of, andA),(ST) —
AY(ST)=nx (k—«k). It follows that neighbour or-
dering is invariant to changes &f
O



