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ABSTRACT
Cloud owners are allowing their users to specify the level of
resources being used in the different geographical locations
that make up the cloud. The carbon emissions caused by
powering these resources can vary greatly between different
geographical regions. The traffic for a given service can come
from anywhere on the planet and the further the request has
to travel the greater the negative effect on quality of service
(QoS). It is desirable to route traffic to the resources which
cause the lowest carbon emissions but this can affect the
QoS. A framework that characterizes this trade-off between
carbon emissions and QoS is established in this paper. An
algorithm that attempts to minimize the total cost of the
trade-off described is presented. A traffic generator is used
to generate load for a server to establish functions which de-
tail the carbon emissions and QoS of a service. We use these
functions to simulate the performance of the algorithm in
minimizing the total cost. Our results imply that carbon
emissions can be reduced with little effect on the QoS under
static traffic conditions and favourable energy supply condi-
tions.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management

General Terms
Algorithms, Economics, Performance

Keywords
Subgradient Method, Relative Price Function, Carbon Emis-
sions

1. INTRODUCTION
Cloud computing is a new paradigm for the delivery of

internet services. A cloud based service provider (CBSP)
provides the illusion of infinite resources and the ability to
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quickly alter the level of resources being used by the cloud
user. The cloud user can, therefore, change the level of re-
sources to react to changes in the demand for that service.
A cloud may be comprised of several data centers (DCs) at
different geographical locations. If a global distribution of
servers is used with load balancing it has many potential
benefits. Reduced latency and increased data transmission
rates can be achieved due to the decrease in the length of
the links between the client and server. Some CBSPs will
select the location of the resources for the cloud user au-
tomatically. Other CBSPs, however, allow the cloud user
to select the level of resources operating at the different ge-
ographical locations. For example, in the case of Amazon
EC2, a user can choose servers located in Dublin, Singa-
pore, Tokyo and in two locations in the United States. This
presents a cloud user with a number of interesting options.
He/she can select the number of servers he/she wishes to use
in the various DCs that make up the cloud. He/she can then
use Domain Name Service (DNS) to load balance the traffic
among servers to attempt to achieve various goals. The cloud
user may wish to route load to the closest DC in order to
minimize the latency between client and server. This is cru-
cial for some applications such as conference Voice-over-IP
(VoIP) software and interactive online games. The financial
cost of servers at different geographical locations is not al-
ways equal [1] so the cloud user may want to route load to a
single data center which has the cheapest servers available.
Motivated by [15], we propose a framework which describes
the trade-off between the various associated factors in order
to characterize the optimal server distribution for the cloud
user.

Recently the amount of carbon emitted by electricity gen-
erators to power the different DCs has also become impor-
tant. Greenpeace report the percentage of electricity utilized
by various data centers which is generated by power plants
that emit a relatively large amount of carbon [8]. For exam-
ple, a power plant that uses coal as a fuel emits a relatively
large amount of carbon. It is possible to calculate the car-
bon emissions caused by a DC for a given time. In order to
calculate this value we examine the fraction of total power
being generated by a power plant using a particular fuel and
the carbon emitted per kilowatt hour by this particular fuel.
We sum the product of these for all the power plants of the
electricity supplier in order to establish the carbon emissions
caused by a DC for a given time. The carbon emitted per
kilowatt hour by a power plant using a particular fuel is
detailed in [5, 9].

A cloud user will rarely want to concentrate on carbon
emissions solely. Reducing the carbon emissions associated
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with a service is important, but a reasonable quality of ser-
vice (QoS) must also be maintained. Anecdotal evidence
suggests that increasing the latency of a web service by half
a second has been found to lead to a 20% drop in traffic and
in revenue [10]. Routing service requests to the DC with the
lowest carbon emissions can result in a negative effect on
QoS. Hence, there is a trade-off between carbon emissions
and QoS and we represent the trade-off as a cost function.
A relative price function is used to represent the relative im-
portance of the two factors. A similar approach is used in
active queue management (AQM) [15]. This paper makes
the following contributions:

• The development of a framework which describes the
trade-off between the carbon emissions and the QoS
of a service is proposed. A distributed algorithm to
minimize the total cost in the trade-off described by
the framework is presented.

• Experimental data is presented to establish functions
describing the carbon emissions and QoS of the service.

• We evaluate the performance of the proposed algo-
rithm in minimizing the total cost in the trade-off de-
scribed by the framework. The carbon emissions can
be reduced with little effect on the QoS under static
load conditions and favourable energy supply condi-
tions.

In the next section we present related work. Section 3 for-
mulates the problem as a cost function. Section 4 details the
algorithm to minimize the cost function. Section 5 discusses
the experimental data used to establish the cost function and
the simulation setup used to evaluate the algorithm. Section
6 presents the results of the simulations. Section 7 discusses
future work.

2. RELATED WORK
In this section we discuss related work which considers

electricity when assigning load. Qureshi et al. [13] present
data on the fluctuation of energy prices and perform simu-
lations on the economic gain that can be achieved using a
distance constrained electricity price optimizer. This essen-
tially routes load from the client to the DC with the lowest
electricity price in some radial geographical distance. An-
other proposal by Stanojević et al. shows a distributed algo-
rithm to equalise the change in the cost of energy [16]. This
is shown to be equivalent to minimizing the cost of energy
while maintaining a level of QoS. Another proposal by Wen-
dell et al. [17] proposes a general framework for the mapping
of traffic between clients and servers. This framework allows
for a variety of mapping policies to be implemented to allow
the mechanism which controls the traffic to aim for different
objectives.

Related ideas can also be found in AQM. In AQM algo-
rithms the router responds to traffic to achieve certain goals.
Often, there is a conflict between the utilization and average
queuing delay which is dependent on router buffer size. The
conflict between utilization and average queuing delay are
represented as a benefit function with a relative price func-
tion [15]. Algorithms which attempt to maximize the benefit
function are also presented. In this paper we use a similar
idea to characterize the optimal server distribution for the
cloud user.

Our work requires the minimization of a convex function.
The subgradient method is used to solve convex optimiza-
tion problems. The method uses a subgradient which is the
slope of a line which touches a point on the convex function
and does not go above the function at any point. It uses
this to converge in an iterative manner. The rate of conver-
gence is dependent on the step size. Subgradient methods
are well established techniques for solving convex optimiza-
tion problems [12, 2]. The subgradient method is used in
the algorithm to minimize the total cost in the trade-off de-
scribed by the framework.

3. PROBLEM FORMULATION
We begin by examining the cost function for a scenario

where a cloud user opts to use servers in a single DC. The
cloud user can vary the number of servers n that are pro-
viding a service. A cost function can then be established to
represent the average job time T (n), the carbon emissions
G(n), and the relationship between them. The average job
time will decrease as the number of servers increases, but
the amount of carbon emitted as a consequence will increase
as the number of servers increase. The cloud user would like
to minimize the average job time and carbon emissions or
some combination thereof. The cost function can be defined
as:

C(n) = T (n) + P (G(n)),

where P (G(n)) is the relative price function between average
job time and the carbon emissions. A relative price function
is used to represent the fact that carbon emissions G(n) have
the same importance as an average job time P(G(n)) to the
cloud user. We assume that C(n) is a convex function of n so
that convex optimization techniques can be used to minimize
the cost function. This seems like a reasonable assumption
as the average job time will decrease as the number of servers
increases until a point is reached where the carbon emissions
will cause the cost function C(n) to increase.

We can incorporate multiple DCs in this framework. If
n = {ni} is the vector of the number of servers at each DC
and N is the total number of DCs, the cost function can be
redefined as:

C(n) =

N∑
i=1

(
Ti(ni) + P (Gi(ni))

)
.

The goal of the problem is to minimize C(n) and it can be
stated as an optimization problem as follow:

minimize C(n) =

N∑
i=1

(
Ti(ni) + P (Gi(ni))

)
subject to ni ≥ 0 ∀i

4. ALGORITHM
The subgradient method can be used to solve this problem

and the pseudo-code for the algorithm is presented in Figure
1. The number of servers operating at each DC is initially
set to be S

N
. Where S is the total number of starting servers.

The cloud user will set the S value based upon an estimate
of the number of servers required to provide the service. Ini-
tially an equal fraction of the estimated number of servers
is activated at each DC. The subgradient of C(ni) at each
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1 UpdateServerNumber()
2 Once every ∆ units of time do
3 for i = 1 : N
4 g(k) = Subgradient of C(ni) in ni(k)
5 ni ← ni − αkg(k)
6 endfor
7 k ← k + 1
8 enddo

9 InitializeServerNumbers()
10 for i = 1 : N
11 ni ← S

N
12 endfor

Figure 1: Pseudo-code for algorithm

DC will then be calculated and used to update the number
of servers operating at the DC. The goal of this update is to
gradually move toward the optimal point of the cost func-
tion. αk is the step size. It determines the stability and
responsiveness properties of the algorithm. k is the iteration
number and is used in the calculation of the step size. The
use of k is required to ensure convergence as a diminishing
step size is usually required to reach the optimal point.

5. EXPERIMENTAL SETUP
In this section we describe the experiments used to estab-

lish realistic average job time Ti(ni) and carbon emission
Gi(ni) functions and the setup for the simulation of the al-
gorithm described in Section 4. In order to simulate the
operation of the algorithm we needed to establish realistic
average job time Ti(ni) and carbon emission Gi(ni) func-
tions. To do this we used the httperf [11] traffic generator
to generate load for an Apache web server. Our test load
involved the fetching of a dynamic webpage which required
50ms of computation and the transfer of 300kB of data. This
load was selected as it is equivalent to the average size of a
webpage in experiments carried out by google [6] and it con-
tains a computation component which consumes more power
than data transfer only. The server we used was a Dell R300
with an Intel 64 bit Xeon processor and 2Gb of RAM. A
number of webpage requests were directed to the server and
the average job time was recorded. The number of webpage
requests was gradually increased while recording the average
job time. We then used these results to establish a Ti(ni)
function for a given number of requests for a service.

We assume that the sources of load are globally distributed.
By this we mean that the clients of the service are distributed
evenly across the globe. If a large portion of the load is di-
rected to a single DC there will be a negative effect on the
average job time. There are two reasons for this:

• The internal network topology of some DCs means that
links become more oversubscribed in terms of band-
width as overall traffic increases [7].

• The average job time is affected by the computation
time, the length of the links between the client and
the server [14] and the time spent in router buffers
before being forwarded to the next link. If the load is
globally distributed, the average distance between the
client and server along the links will increase as more
load is sent to a single DC.
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Figure 2: Overall cost function for different numbers
of servers at the two DCs.

This negative effect was incorporated into Ti(ni) function by
increasing the average job time when a large portion of the
load is assigned to a single DC.

The server was connected to an electricity usage monitor
and its power consumption was recorded under the same load
conditions used to establish the average job time function.
This data was used to establish a carbon emission function
for a specific number of requests for a service. Our results
found that idle power is ∼70% of the server’s peak power.
This is consistent with the results which indicate that the
idle power of servers is between 60% and 75% of the peak
power [3, 4]. In order to establish a realistic carbon emission
function we need to know the carbon emissions per kilowatt
hour. This is dependent on the electricity supplier used by
each DC.

In our simulations we construct a scenario where the traf-
fic is being divided among two DCs. The first data center
uses relatively clean energy with associated emissions of 100
grams of carbon per kilowatt hour 100g/kWh. The second
DC uses relatively dirty energy with associated emissions of
500 grams of carbon per kilowatt hour 500g/kWh.

In selecting these values we attempted to pick contrasting
but realistic carbon emission profiles. A DC using the clean-
est energy possible would cause approximately 20 grams of
carbon per kilowatt hour 20g/kWh [5, 9]. Such a figure is
difficult to achieve currently as it would require energy from
purely renewable sources. A DC using the dirtiest energy
possible would produce approximately 900 grams of carbon
per kilowatt hour 900g/kWh [5, 9]. Electricity suppliers,
however, will rarely use coal and oil only, as hydro and gas
power plants are the best to react to sudden changes in de-
mand.

To simulate the algorithm we have assumed static traffic
conditions but the algorithm easily extends to dynamic con-
ditions. The service receives 96,000 requests every minute.
We chose this level of requests as we felt it was a reasonable
demand for a service offered by a medium sized business. We
also assumed that the requests and servers in the DCs are
homogenous. By this we mean that all requests require the
same amount of computation and data to be transferred. By
homogenous servers we mean that all servers have identical
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Figure 3: Close-up of optimal point of overall cost
function for different numbers of servers at the two
DCs.

processors, RAM and network cards. This means that the
servers will complete a computation in the same amount of
time and use the same power to complete it. As a result
T1(n1) = T2(n2).

In order to establish a reasonable value for the relative
price function we must examine the cost function at one
of the DCs. Under initial conditions the average job time
at the first DC is 85ms T1(n1) = 85ms, and the carbon
emissions are 6.6g/min; namely G1(n1) = 6.6g/min. This
yields a total cost of C1(n1) = T1(n1) +G1(n1) = 85 +6.6 =
91.6 if P (G(n)) = G(n). In this case a drop of 10ms in
the average job time would justify an additional 9g/min of
carbon emissions. We feel that this is not a reasonable trade-
off between carbon emissions and QoS. The relative price
function was then scaled to P (G(n)) = 10G(n) to provide
a more reasonable trade-off between carbon emissions and
QoS.

The requests are distributed evenly among all the servers
and a server runs at peak power when it is receiving 1200
requests a minute or more. This means that 80 servers run-
ning at peak power are able to service the static traffic con-
ditions of 96,000 requests every minute. We set the initial
number of servers to 80 (S = 80). The algorithm updates
every minute (∆ = 1min). This value was selected to al-
low enough time for the servers to switch on or off before
another update occurs. Using the established functions we
can plot the overall cost functions for different numbers of
servers at the two DCs using the relative price function for
the static traffic conditions. Figure 2 depicts the number
of servers operating at the first DC, n1, on the x axis, the
number of servers operating at the second DC, n2, on the y
axis and the corresponding cost C(n) on the z axis . Figure
3 is a close-up of Figure 2 and from this we can see that the
optimal point is when n1 = 50 and n2 = 30 or n = (50, 30).

6. RESULTS
The goal of the simulations is to show that the algorithm

converges to the optimal point of the cost function. Figure
4 depicts time on the x axis and the number of servers op-
erating at the DC on the y axis as the algorithm operates.
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Figure 4: Number of servers at the DCs with ak =
1√

k||g(k)||2
.

Each line represents the number of servers operating at a
DC. The number of servers in each DC moves steadily from
the initial configuration of n = (40, 40) to the optimal point
of n = (50, 30). This results in the carbon emissions drop-
ping from 39.6g/min to 33g/min. This represents a drop of
16% in carbon emissions with little effect to the QoS.

The rate of convergence to the optimal point is quite slow.
The optimal point is reached after 750 minutes. One reason
for this is that the step size was chosen to ensure convergence
to the optimal point and prevent large movements in the
number of servers operating. In this case the step size was:

ak =
1√

k||g(k)||2
.

The absolute value of the subgradient ||g(k)||21 is used to
provide a constant step length. We can use a step size that
contains an estimate of the optimal cost C(n∗) to improve
the rate of convergence. The step size we used to improve
the rate of convergence was:

ak = −0.1(C(n∗)− C(n))

||g(k)||2 + 1
.

Figure 5 depicts time on the x axis and the number of
servers operating at the DC on the y axis as the algorithm
operates. Each line represents the number of servers operat-
ing at a DC. Using the later step size the number of servers
operating at each DC converges from the initial configuration
to the optimal point more quickly. There are large jumps in
the number of servers operating but the optimal point is
reached after 10 minutes. This rate of convergence using
this step size is more than 70 times greater than the other
step size used. This allows the algorithm to perform well in
the dynamic environment of the cloud.

7. FUTURE WORK
This clearly demonstrates that achieving a trade-off be-

tween carbon emissions and QoS is a good thing. We’ve

1The value of ||g(k)||2 is calculated as ||g(k)||2 =
√
g(k)2.
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Figure 5: Number of servers at the DCs with ak =
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.

also demonstrated that adaptive algorithms can be used to
find the optimal point in real time. Much work, however,
remains to be done. This work will take two directions. One
is the algorithm. There is rich literature from distributed
optimization, adaptive control, neural networks and conven-
tional optimization, which can be applied to this problem.
All of which can be explored.

The second direction relates to relaxing assumptions. While
the results in this paper have shown that carbon emissions
can be reduced while maintaining QoS under static load con-
ditions, future work is required to examine the effects of re-
laxing some of our assumptions. Traffic conditions are rarely
static. A more realistic traffic pattern grows slowly, peaks
and then recedes slowly during a 24 hour period. The level
and duration of the peak will also vary from day to day.
Such an example using real data is given in [13]. In ad-
dition, the carbon emitted per kilowatt hour will also vary
with time. The reason for this is that an electricity supplier
will alter the carbon emitted per kilowatt hour by switching
power plants on and off to react to demand. This will affect
the carbon emissions of the electricity supplier. The carbon
emissions of the electricity supplier will also be affected by
the amount of power that can be generated by solar and
wind sources which will depend on weather conditions. As
a result the carbon emitted per kilowatt hour will change
with time. The optimal point will be constantly moving as
the traffic conditions and carbon emissions per kilowatt hour
will vary. It is possible to track the changes in the cost func-
tion once the optimal point has been reached and improve
the reaction speed to changes in the cost function.

Additionally, other factors can be considered in the con-
struction of the cost function. The usage cost of the servers
differs among the different geographical locations. An ad-
ditional relative price function can be used so that all the
factors can be considered when selecting the distribution of
servers providing a service. This increases the complexity of
the cost function but allows the cloud user to maximize the
economic benefit of the algorithm assuming the algorithm
remains convex. It is also possible to consider this problem
from the perspective of the CBSP who hides the location of
the servers from the cloud users. In this case the demand

must be divided up among the DCs. The CBSP will be at-
tempting to maximize the amount of revenue it receives for
the use of its machines and the QoS for the service users
while attempting to minimize the carbon emissions and cost
of electricity.
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