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In recent years, there has been movement toward inter-
disciplinary work in the sciences. However, as with moving
between nations, there can be language barriers for scientists
from one discipline who try to begin work in another. In this
communication, I draw attention to a difference in symmetry
language between the standard usage in chemistry (and in
physics) and a very different one that has come to be adopted
in virology, and that is now beginning to enter chemistry;
students need to be made aware of this. I also attempt to explore
how this strange confusion may have come about.

From courses on the basic ideas of symmetry, chemistry
students know that the point groups1 of the tetrahedron (Td)
and octahedron (Oh) are often classified together as “cubic”, mean-
ing, having four three-fold axes. Given the excitement in recent years
over “Buckyballs”, they will probably also have some acquaintance
with the icosahedral group Ih, and will know that this has a much
higher symmetry than other polyhedral groups, and is classified
separately. Later, if the students move over to work in the biological
sciences, they are likely to encounter work on viruses at some time.
They may then be startled to find that in many virology textbooks2

those viruses that have approximately icosahedral symmetry are
described as “cubic”. One teaching Web site even claims that
“icosahedral symmetry is identical to cubic symmetry” (1).

I examine first what symmetry considerations may lie
behind this confusion and then give a brief history of the alter-
native, but mistaken, usage. This is traced to a very significant
paper in virology, whose authority has been great enough to allow
the error to spread widely. Several points along the way may be of
wider interest.

The Relation of Icosahedral and Cubic Symmetries

Most introductions to symmetry ideas treat these classes
completely separately, though the somewhat gnomic statement
that the symmetries of the tetrahedron, octahedron, and icosa-
hedron “are all closely related to that of a cube” appears in early
editions of Inorganic Chemistry, by Shriver, Atkins, and Lang-
ford (2). There is a relationship between cubic and icosahedral
symmetry, but it is not one that is immediately obvious.3 Formal
group theory can of course be used to analyze this problem (3),
but a pictorial approach may be more useful. Figure 1 shows an
icosahedron inscribed within a cube4; in this combination, the
symmetries of both bodies are reduced. Versions of this diagram
can be found in Shriver, Atkins, and Langford (2), accompanying
the comment mentioned above, and in Caspar and Klug (4). Six
of the icosahedron edges lie within cube faces; four are visible in
Figure 1 and have been emphasized with heavy lines. Four of the
original ten 3-fold axes of the icosahedron are preserved in the
combination. These four C3 axes coincide with the cube body

diagonals and with the C3 axes of the cube; one of these is picked
out as a dash-dot line. Because of the existence of this set of four
C3 axes, an icosahedron can form the repeat unit of a cubic crystal
structure (4).

All six of the icosahedron edges in the cube faces are shown
in Figure 2, where the other edges have been removed for clarity.
The symmetry elements that are common to both the cube and
the icosahedron interchange all components of both bodies, but
their effects are most easily seen using these six edges.5 These
common elements are the fourC3 axes, the threeC2 axes through
cube faces coincident with the dotted lines in Figure 2, the
inversion center, four S6 axes collinear with theC3 axes, and three
planes of symmetry defined by opposite pairs of these six edges.6

These elements are those of the group Th, which is thus a
subgroup of bothOh and Ih. The correlation of all the elements of
the three groups is shown in Table 1. Although Th is not often
encountered in chemistry courses, a number of important
examples are known.7

There is a similar relationship between the rotation groups I,O,
and T (5); the appropriate table can be generated from Table 1 by
removing the column showing the inversion center, and all the other
columns to the right of this one.8 Although for chemists the centro-
symmetric Ih, Oh, and Th are the useful groups, the rotation groups
are the significant ones for a discussion of virus structures.

The Symmetry Language of Virology

In 1956, shortly after their famous DNA work, Crick and
Watson published a letter to Nature that revolutionized struc-
tural work in virology (6). There had been earlier suggestions that
viruses might be built up from multiples of smaller units, and for
spherical viruses, Crowfoot-Hodgkin (7) had pointed out that
where these crystallize with cubic lattices, the smaller units must
occur in multiples of 12. This number arises from the effect of
the four three-fold axes of the cubic lattice, or in the language of
point groups, this is the order of the simplest cubic group, that of
the tetrahedral rotation group T. Before the Crick and Watson
letter appeared, such multiple units would have been expected to
have either octahedral or tetrahedral symmetry, that is, one of the
five types, Oh, O, Td, Th, and T, that chemists call cubic.

The paradigm shift introduced by Crick and Watson was
the idea that a lattice with cubic symmetry can also be generated
by packing units that have icosahedral symmetry. Reasons for this
have been explained above: the icosahedral groups I or Ih include
the cubic groupsT orTh as subgroups. Molecules of livingmatter
are homochiral, and a symmetry plane or inversion center would
convert a left-handed unit into a (nonexistent) right-handed
example, so the only possible symmetry elements here are rotation
axes. Consequently, the icosahedra concerned have I symmetry,
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not the more familiar Ih symmetry. I includes five-fold axes, so the
multiples of smaller units that make up the virus structure9 are
now of 60, the order of I, the icosahedral rotation group.

Unfortunately, perhaps to shorten their text, Crick and
Watson did not present an argument of the type given above10 in
their letter. Instead they stated that icosahedral symmetry can be
classed as cubic and defined a cubic class of symmetry as one that
“must contain at least four three-fold axes and three two-fold
axes, arranged as for a tetrahedron.” In this citation, the words
“at least” are critical. If accepted, they allow the inclusion of
icosahedral symmetry within the classification “cubic”, and they
seem to be original to the authors. No reference is given for this
definition, and it contrasts with one that had been given earlier,
in the standard work by Landau and Lifschitz (8). This classifies
only the five octahedral and tetrahedral symmetries as cubic;
icosahedral symmetry is handled separately. Landau had worked
with most of the major figures in theoretical physics of the
period, so his opinion should be representative of the standard
usage at this time. There can be no doubt that Crick andWatson
intended to classify icosahedral as cubic; this occurs several times
in the letter, and in their discussion of the Platonic solids as
potential models for virus structures, all five of these are classed as
having “cubic” symmetry.

If classifications of symmetry were concerned only with
crystal structures, there might be some logic to this reclassifica-
tion of icosahedral symmetries. However, spectroscopists and
chemists need to deal with more or less isolated units, and there
are good reasons to reject this amalgamation of different
symmetry types. Mathematically, the group I belongs to the
important class of simple groups (6, 9); the cubic groups do not.

Icosahedral symmetry has five sets of four 3-fold axes that can be
chosen, in Crick and Watson's words, to be “arranged as for a
tetrahedron” (i.e., the circumscribing cube in Figure 1 is only one
of five that can be drawn11); cubic symmetries have only one
such set.

A more obviously chemical objection is that the maximum
degeneracy in any of the cubic groups is three, whereas in
icosahedral symmetry it is five; correspondingly, any cubic field
splits the 5-fold degenerate set of d orbitals into doubly and triply
degenerate sets, but an icosahedral field, such as that at the center
of a C60 molecule, does not split this set. Finally, the use by Crick
and Watson of the words “at least” requires that spherical atoms
and ions, with an infinite number of axes, be classified as cubic.
Of course in a lattice such as NaCl, the ions are in a cubic field, so
their symmetry is reduced to cubic, but as free ions, they have a
much higher symmetry than cubic.

Nevertheless, the term “cubic virus”, meaning an approxi-
mately spherical or icosahedral virus, has become widespread in
textbooks and works of reference in virology. This is almost
certainly the result of following the lead of the Crick andWatson
letter, and most of these works cite this. The letter had a
transforming influence on the field, and it would be unreason-
able to blame virologists for accepting a statement, which is
almost an aside, and adopting a convention that appeared to have
considerable authority behind it. However, this mistaken con-
vention is likely to present difficulties for chemists who venture
into the area, and it is also appearing in chemistry.

Problems for Chemistry and Suggestions for Teaching

There are two examples where widely used chemistry text-
books, which have gone through several editions, have conflated
icosahedral and cubic symmetries. In one textbook (10), a
decision tree for assigning point groups showed all three poly-
hedral groups as cubic, but this has been corrected in a more
recent edition (11). In the other textbook (12), the next edi-
tion will be corrected (13). A warning about the confusion is
given in a Web site about symmetry operations and character
tables (14).

There is a different example that may have more serious
consequences for chemistry. Viruses are clear examples of self-
assembly and of encapsulation, and both of these topics are of
considerable interest in contemporary chemistry, so it is not
surprising that chemists should be looking to virology for ideas.
However, this leaves open the possibility of transmitting this
incorrect symmetry language from virology into the chemical
research literature, and this is beginning to happen. In major
reference volumes, statements can be found such as “The
Platonic solids comprise a family of five convex uniform poly-
hedra which possess cubic symmetry” (15), and “Three types
of cubic symmetry exist; namely tetrahedral, octahedral and

Figure 1. A regular icosahedron inscribed in a cube. The dash-dot line
shows one of the four 3-fold axes that coincide with the four cube body
diagonals. These axes are common to both units; the heavy lines are
icosahedron edges that lie within cube faces (see Figure 2).

Table 1. A Correlation of Elements in the Groups Ih, Th, and Oh

Group Element

Ih 6C5 10C3 - - 15C2 i 6S10 - 10S6 15σ -

Th - 4C3 - - 3C2 i - - 4S6 3σd -

Oh - 4C3 6C2
a 3C4 3C2 i - 3S4 4S6 3σh 6σd

a These 6C2 lie along {110} directions of the cube, and as can be seen in
Figure 1, they have no counterpart in the other two groups. The other 3C2 are
indicated in Figure 2.

Figure 2. A regular icosahedron inscribed in a cube (as in Figure 1), but
only those edges of the icosahedron that lie within cube faces are shown.
The dotted lines show the positions of the three C2 axes that are common
to both units (see also Table 1).

http://pubs.acs.org/action/showImage?doi=10.1021/ed1002288&iName=master.img-000.png&w=126&h=105
http://pubs.acs.org/action/showImage?doi=10.1021/ed1002288&iName=master.img-001.png&w=96&h=105
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icosahedral” (16). Both of these statements are clearly following
the lead of the Crick and Watson letter.

Chemists should be made aware of this potential stumbling
block, particularly because it can now be found in some
chemistry textbooks. Some discussions of point symmetries
suggest that there is no molecular example of I symmetry, but
if the concept “molecule” includes viruses, this is clearly incorrect,
and it might be appropriate to mention viruses here when
discussing point groups. The constraint imposed on the sym-
metry of virus structures by the handedness of the units of living
matter is a useful connection between chirality and symmetry,
which are often taught in very different courses. Finally, despite
the objection above, the Crick-Watson letter is a particularly
beautiful instance of the application of symmetry to solve an
important problem, and working through this could be a useful
and interesting exercise for advanced students.
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Notes
1. Standard Schoenflies symmetry labels of point groups are used

here, but in the virology literature, if symbols are used, the
Hermann-Mauguin system is employed. The same is true for
the chemistry textbooks that use the mistaken virology con-
vention, so that instead of the symbols T, O, and I for pure
rotation groups, the symbols 23, 432, and 532 appear.

2. A list of such textbooks has been provided for the reviewers, but
it is not my intention to criticize individual authors, nor is it
being suggested that the virology community is in any way to
blame for the mistake, because they have been relying on an
article that carries great authority (see below).

3. Even among professional mathematicians, the correlation of
cubic and icosahedral symmetries can cause problems. In the
classic text by Hilbert and Cohn-Vossen (17), it is claimed that
“the octahedral group is a subgroup of the icosahedral group”.
It will become clear in the following discussion that this is not
true; see particularly Table 1. The English translation of this
text appeared shortly before the letter being discussed here, and
the two mistakes have similarities. A very similar statement
to that in ref 17 occurs in a much more recent text on geo-
metry (18).

4. This diagram has been attributed to Euclid (4), but in fact was
first drawn by the great artist of the early Renaissance, Piero
della Francesca, who was also a mathematician of substantial
ability (19-22). Piero's drawing is available (23).

5. For example, the C3 axis shown in Figure 1 is now seen to
interchange all six of these edges; the three adjacent to the front
top left corner are rotated into each other, as are the other three.

6. These opposite pairs of edges also define three perpendicular
rectangles, which have the proportions of the “golden ratio” (24),
and the operations of the symmetry elements may equally
be considered as interchanging these “golden rectangles”. The
golden ratio also appears in the character tables for icosahedral
symmetry (25).

7. As expected from Figure 1, examples of Th can be found as
modifications of both Ih and Oh symmetries. Cs3C60 has a
structure (26) that can be described using Figure 1, where the
unit cell has C60 units at the cube corners and at the body-
center, and the Cs ions are at the corners of the icosahedron, so
that both the C60 units and the icosahedron have Th rather
than Ih symmetry. Cubic distortions from Ih to Th symmetry
have been predicted for the hypothetical molecules B80, Si60,
and Ge60 (27, 28), and Th symmetry can be found experimen-
tally in appropriately substituted fullerenes (29). In “octahe-
dral” symmetry,Th occurs in hexa-coordinated complexesML6,
where L has a local C2v symmetry, and the principal ligand
planes include the heavy lines of Figure 2. Examples include
complexes of nitrite, both monodentate (30, 31) and bidentate
(32); nitrate (33); and water (34, 35).

8. An alternative approach, which leads to the same conclusion,
can be developed by using the concept of the orbit of a group.
This concept is described byQuinn, Fowler, and Redmond (25,
Chapter 2); the illustrations of the regular orbit ofTh on p 51 of
this work can be correlated with appropriate ones for orbits of
Ih and Th symmetry.

9. More accurately, this is the number of particles that make up
the structure of the virus coat: the RNA of the virus is enclosed
within this icosahedral protein shell.

10. Caspar and Klug (4) presented an argument of this type later,
but their article did not address the error described here.

11. The set of five cubes, which together have icosahedral symme-
try, is illustrated in a rotatable image in(36).
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