
Seventh Irish Workshop on Computer Graphics (2006)
Eurographics Irish Chapter

Isosurface Extraction on the Cell Processor

Keith O’Conor and Carol O’Sullivan and Steven Collins

Interaction, Simulation & Graphics Lab
Trinity College Dublin

Abstract

In this paper we describe a parallel method of extracting isosurfaces from large volumetric datasets, adapted for
implementation on the Cell Broadband Engine (CBE). The CBE is a new multicore microprocessor architecture
designed to improve upon conventional processors in terms of memory latency, bandwidth and power. However, a
different approach to algorithm design is needed in order totake full advantage of the CBE’s potential.
Our method consists of dividing the volume into groups of slices and submitting each group to a different core in
the CBE for parallel processing with a marching tetrahedra algorithm. We describe the algorithm’s adaptation
for implementation on a Cell-based Blade server and demonstrate overall isosurface extraction speeds that are a
significant improvement when compared to conventional CPUsand Graphics Processor Units (GPUs).

Categories and Subject Descriptors(according to ACM
CCS): I.3.7 [Computer Graphics]: Visible line/surface algo-
rithms; I.3.1 [Computer Graphics]: Parallel Processing;

1. Introduction

Visualizing scalar volumetric fields interactively in real-time
is a desirable goal for many applications. In many medi-
cal fields, the application of isosurface extraction for rapid
and meaningful visual representation of datasets such as CT,
MRI and PET scans can make an important difference in the
speed of surgical planning, diagnosis and treatment. It is also
a useful tool in surgical simulation and medical education.

When dealing with large datasets such as those used in
medical visualization, a significant amount of data must be
processed in order to extract a desired isosurface. In this pa-
per we focus on accelerating the computation of isosurface
extraction through the parallelization of a marching tetrahe-
dra algorithm on the new Cell processor. Cell is a recently
developed multicore processor architecture which diverges
from conventional microprocessor design, providing signifi-
cant increases in memory bandwidth and processing speeds
while still being available at prices comparable to desktop
processors. This allows algorithms that were previously the
domain of supercomputers and workstation clusters to be ex-
ecuted on desktop machines.

Section 2 reviews related work. Section3 gives an

overview of the Cell processor, and describes its applica-
bility to the marching tetrahedra algorithm. Sections4 and
5 give specific implementation details and performance re-
sults, and section6 discusses the results and future work.

2. Related Work

Methods for calculating isosurfaces from a given scalar volu-
metric dataset have been available since Lorensen and Cline
introduced Marching Cubes (MC) [LC87] in 1987. MC con-
structs a cube or ‘8-cell’ for every voxel (i.e., an individual
scalar value in the dataset), computing a desired isosurface
inside the 8-cell according to the values of the voxels at each
corner. Marching tetrahedra (MT) [GH95] improved upon
this by decomposing each 8-cell into a number of tetrahe-
dra, eliminating potential ambiguities and producing a finer
tesselated surface. It is MT that we adapt in order to produce
our isosurfaces.

Given the desire to interactively explore volumetric
datasets (i.e., being able to generate new surfaces for a given
isovalue parameter at responsive frame-rates), many tech-
niques have been developed in order to accelerate isosurface
extraction. Some do this by pre-processing the data in order
to allow rapid identification of subsections of the volume
known to include a desired isovalue [CMM∗97] [WG92].
This dramatically improves processing speeds at the expense
of additional memory usage for the required data structures,

c© The Eurographics Association 2006.

K. O’Conor, C. O’Sullivan & S. Collins / Isosurface Extraction on the Cell Processor

thus reducing the memory available for the dataset. Oth-
ers provide acceleration by amortizing the computational
cost through parallelization [ZBBF01] [HH92] [GS01]. Sim-
ilarly, the recent trend of exploiting programmable graphics
hardware for general computation [gpg] has led to isosur-
face extraction being performed on the GPU itself by tak-
ing advantage of the graphics pipeline’s inherent parallelna-
ture [Pas04] [KW05] [RDG∗04]. This provides impressive
acceleration on the condition that the dataset completely fits
in video memory.

Being a relatively new architecture, the full potential of
the Cell processor is still being explored. Some prelimi-
nary results have been published by IBM on Cell imple-
mentations of medical imaging [SNS∗05], FFT computa-
tion [CFB05] and terrain rendering [ibm05], all indicating
substantial speedups compared to conventional processors.
We expect many more papers on exploiting Cell for vari-
ous compute- and bandwidth-intensive problem domains to
appear as availability and popularity of the architecture in-
creases.

3. An Overview of the Cell Processor

The Cell Broadband Architecture is the result of a collabo-
ration between 3 major media technology companies; Sony,
IBM and Toshiba (collectively referred to as STI). Talks of
joining together to create a new processor design began in
2000, with the STI Design center formally opening in 2001
at a cost of approximately $400m. Each company brought
with it a particular special interest - Sony as a content
provider, IBM as a microprocessor developer, and Toshiba
as a high-volume manufacturer. The most high-profile com-
mercial application of the Cell processor is the Playstation
3 games console, due for release at the end of 2006. IBM
is already producing Linux-based servers running on Cell,
and Toshiba has demonstrated Cell’s ability to decode many
MPEG-2 stream simultaneously, presumably as a precursor
to Cell-powered televisions and multimedia centers.

3.1. Design aims

General purpose processor speeds have been improving
steadily in recent years, largely due to increases in processor
frequencies. However memory access speeds have not been
increasing at the same rate, leading to many applications be-
ing limited by memory latency rather than processing speed
or bandwidth. This increased memory latency needs to be
hidden by the processor with complex chip logic, which
means more of the chip area has to be devoted to instruction
speculation and deeper pipelining, thus reducing available
bandwidth and the amount of actual work the chip is capa-
ble of performing. On the other hand power requirements
and heat output are not reduced, so overall power efficiency
is reduced. Similarly, deeper pipelines increase the perfor-
mance penalty of mispredicted branches, leading to dimin-
ishing returns as pipeline depth is increased.

The CBE design aims to alleviate these problems by in-
creasing power efficiency and reducing both memory latency
and pipeline depths.

3.2. Architecture

A single Cell chip consists of nine processors - one main
processor called the PowerPC Processor Element (PPE) and
eight coprocessors called Synergistic Processor Elements
(SPEs). They are all connected via the Element Interconnect
Bus (EIB), a high-bandwidth memory-coherent bus which is
used by the processors to communicate with each other, ex-
ternal memory and I/O devices (see Figure1). Compatible
devices such as another CBE can also be attached through
the CBE interface.

SPE SPE SPE SPE

SPE SPE SPE SPE

Element Interconnect BusPPE

Memory Interface
Controller

Broadband Engine
Interface

Figure 1: Cell processor overview

3.2.1. The PowerPC Processing Element

The PPE is the main processor that controls the CBE. It con-
sists of a dual-threaded SIMD 64-bit RISC PowerPC proces-
sor (the PowerPC Processor Unit or PPU) and a storage sub-
system that governs memory requests from the PPE and ex-
ternal requests to the PPE from other processors. The PPE is
a general-purpose processor optimized for running control-
intensive software such as an operating system, coordinating
all processes running on Cell.

3.2.2. The Synergistic Processing Elements

The SPEs are where the bulk of Cell’s computation work
gets done. Each SPE consists of a specialized 128-bit SIMD
RISC processor (the Synergistic Processor Unit or SPU)
and a Memory Flow Controller (MFC). The SPUs are op-
timized to run compute-intensive code at the expense of
branch-prediction and out-of-order-processing hardware, al-
lowing more of the chip to be dedicated to computational
work and reducing pipeline depth. Instead of dealing directly
with main memory, each SPU contains both 256KB of Local
Store SRAM and a 128-entry register file. The SPU uses this
Local Store to store both data and instructions for the SPU.

Each MFC is responsible for transferring data in and out
of the Local Store of its corresponding SPU. It does this
through a local Direct Memory Access (DMA) controller

c© The Eurographics Association 2006.

K. O’Conor, C. O’Sullivan & S. Collins / Isosurface Extraction on the Cell Processor

allowing the SPU, PPU, or another SPU to request a data
transfer to or from main memory. In this way the SPE’s
DMA controller can autonomously transfer data to the Lo-
cal Store while the SPU is processing other data, thus dou-
ble buffering and hiding the memory latency behind compu-
tation time. Each DMA transfer can be up to 16,384 bytes
in size, and an SPU can have up to 16 outstanding DMA
requests queued (or 2,048 if using a special DMA-list con-
struct, ideally suited for scatter-gather operations). Theoreti-
cal peak bandwidth between the MFC and EIB is 25.6GB/s,
with a total EIB peak bandwidth of 204.8GB/s. In prac-
tice, approximately 17-20GB/s SPU throughput it typically
achievable.

3.3. Programming Cell

IBM released the Cell SDK at the beginning of November
2005. Included in the SDK is a GNU toolchain which in-
cludes everything needed to compile and link a native Cell
application. Also included is a full system simulator which
replicates the entire functionality of Cell and can be used
to emulate a PowerPC-based Linux kernel compatible with
Cell. Applications written in C/C++ and compiled in this
simulator using the provided toolchain can then be run on
real Cell hardware without alteration.

PPE

SPE SPE SPE

PPE

PPE

SPE

SPE

SPE

SPE

SPE

SPE

Pipelined Parallel Services

Figure 2: SPE Programming Models

There are three broad programming models for Cell -
pipelined, parallel, and service-oriented (see Figure2). The
pipelined model has each SPU chained to the next one, us-
ing the output of one as the input of another. This allows for
high throughput, but is difficult to load-balance. The parallel
model runs the same program on each SPU, partitioning and
distributing the data to be processed in parallel. The services
model is similar to the parallel mode, but each SPU instead
processes its data in a different way.

In our case, we are interested in the parallel model. Two
program modules are written - one for the PPU and a sepa-
rate one for the SPU. All necessary data for the application
is loaded and formatted by the PPU, which then distributes
the SPU module to each SPU for execution. The SPUs run,
retrieving data from main memory as necessary via DMA
requests. The PPU then waits for all SPUs to finish their

computation (performing further processing on the results
if required) before exiting.

3.4. Applicability to Marching Tetrahedra

Cell is particularly suitable for isosurface extraction by
Marching Tetrahedra in two areas; parallelization and data
transfer latency/bandwidth.

Parallelization. In MT, the processing of each tetrahedron
is independent from the next, requiring no knowledge of
its neighbors in order to determine the location of the in-
tersecting isosurface (if any). This means that any tetrahe-
dron can be distributed to any SPU for independent pro-
cessing.

Data transfer bandwidth & latency. Any algorithm deal-
ing with volumetric datasets must process large amounts
of data, which can quickly become a bottleneck if the sys-
tem executing the algorithm is incapable of keeping the
processor fed with data. The high bandwidth of the CBE,
combined with the SPU’s DMA mechanism for hiding
storage latency, eliminates any potential data transfer bot-
tlenecks.

4. Implementation

This sections details the adaptation of the Marching Tetra-
hedra algorithm for implementation on the Cell processor.
Broadly speaking, the process is as follows:

1. The volume is partitioned into slices.
2. The slices are partitioned into chunks.
3. The chunks are assigned to different SPUs.
4. Each SPU iterates over every pair of slices and processes

the assigned chunks of those slices.
5. Tetrahedra are constructed by iterating through every 8-

cell associated with each voxel in the chunk - four from
each adjacent slice.

6. Triangles are produced by evaluating each tetrahedron
according to MT.

This involves three steps; volume partitioning, data transfer,
and processing.

4.1. Volume partitioning

For each SPU to perform a comparable amount of work, the
dataset must be partitioned before it can be distributed. We
accomplish this via a two-level partitioning scheme, with the
additional aim of minimizing both data replication and trans-
fer costs.

First, the volume is logically divided into slices. A 3D vol-
ume of dimensions(x,y,z) can be considered as being a col-
lection ofz2D slices, with each slice consisting ofy number
of rows where every row containsx voxels. We determine
these slices according to contiguous areas of data in mem-
ory, as it is more efficient to access and transfer a few large

c© The Eurographics Association 2006.

K. O’Conor, C. O’Sullivan & S. Collins / Isosurface Extraction on the Cell Processor

contiguous blocks of memory than many small blocks. This
format is typically how the data is stored offline on disk.

Then every slice is split inton ‘chunks’ for distribution to
n available SPUs (see Figure3 for an example wheren= 4).
A chunk consists of several rows of data, each chunk over-
lapping adjacent chunks by one row. The reason for this is
that for each tetrahedron, the Marching Tetrahedra algorithm
requires data from 2 adjacent rows in order to build an iso-
surface. An SPU works with 2 chunks at a time for the same
reason, these chunks coming from two adjacent slices. For
each chunk except the last one, the number of rows is cal-
culated by the formularound((r + (s− 1))/s), wherer is
the number of rows not yet assigned to an SPU, ands is the
remaining number of SPUs including the current one. The
inclusion of(s−1) is to account for the overlapping rows.
The final chunk is then assigned all remaining rows.

This method ensures that each SPU receives an approxi-
mately equal section of the overall volume. For example if
n = 8 andy = 128, a chunk size of 16 rows will be assigned
to the first SPU, with the other seven SPUs being assigned
chunks of 17 rows. Thus a total of 135 rows have been as-
signed - 128 rows plus the 7 overlapping rows which have
been assigned to two SPUs.

X

Y

Z

Figure 3: Volume slices divided into chunks for distribution
to 4 SPUs. Each color represents a separate SPU.

4.2. Data transfer

As described above, the SPU has 256KB of storage imme-
diately available to it, which puts a limit on its ability to
process locally stored data. Additionally, the only way to
transfer data to and from the SPUs local store is via DMA
transfers which have a size limit of 16KB. However, the high
bandwidth of the EIB and the ability to buffer transfers while
still performing computation means that streaming the data
becomes an efficient method of processing. Thus the size of
the volume being processed is not limited by SPU storage
space.

As a result of this, a third level of data partitioning is
needed in order to enable the SPU to process chunks of any
size. If the size of a chunk is bigger than 16KB, it needs to
be broken into sub-chunks of below 16KB for transferring.

The SPU therefore decides how many complete rows can fit
into a single DMA transfer, and iterates through the slices
processing adjacent sub-chunks to create the isosurface.

This has a direct influence on the amount of data replica-
tion necessary. Normally if a chunk fits entirely in one DMA
transfer, a volume distributed overn SPUs would needz×
x× (n−1) pieces of replicated data. But for chunks of over
16KB, the amount of replication needed isz× x× (s− 1),
wheres is the number of sub-chunks required.

Whether processing full chunks or sub-chunks, the trans-
fer and processing procedure is the same. See Algorithm1
for an overview. Each chunk is used twice by the march-
ing tetrahedra algorithm - once as the 8-cell front voxels and
once as the 8-cell back voxels. By looping through the slices
like this, only one chunk needs to be transferred during any
iteration. This keeps data transfer to a minimum, and the
buffering can still happen during processing due to the au-
tonomous DMA controller. Processing any reasonably-sized
chunk takes longer than transferring it, so usually no time is
spent waiting for the buffering to complete.

Algorithm 1 Data transfer
1: Transfer chunks from slices 1 and 2
2: for i = 1 tonumSPUsdo
3: if i ≤ (numSPUs−2) then
4: Start buffering chunk from slicei +2
5: end if
6: Wait for chunks from slicesi andi+1 to finish buffer-

ing
7: Process chunks (see Algorithm2)
8: end for

4.3. Processing

For every voxel in a chunk, an 8-cell is created consist-
ing of four voxels each from the two adjacent chunks -
two voxels from each of two adjacent rows. Five tetrahe-
dra are constructed from this 8-cell as described in Koide et
al. [KDK86]. Each tetrahedron is then processed by March-
ing Tetrahedra in order to produce zero, one or two triangles.

Algorithm 2 Processing
1: Given two chunksf ront andback
2: for all rowsr in chunk f ront do
3: for all voxel v in row r do
4: Create 8-cell from voxelsv andv+ 1 from rowsr

andr +1 in chunksf ront andback
5: Decompose 8-cell into five tetrahedra
6: Process tetrahedra
7: end for
8: end for

Once the tetrahedra have been constructed, they are pro-
cessed by a regular Marching Tetrahedra algorithm such as
the one proposed by Gueziec et al. [GH95].

c© The Eurographics Association 2006.

K. O’Conor, C. O’Sullivan & S. Collins / Isosurface Extraction on the Cell Processor

Taking into account the specialized nature of the SPU
hardware, certain optimizations can make a difference in
execution speed. The lack of branch prediction means that
infrequently used branches should be eliminated wherever
possible. We build an interpolation table based upon the
16 potential outcomes of tetrahedral evaluation, and per-
form vertex interpolation and triangle construction accord-
ing to the results of a lookup in this table. This is similar
to the methods used by Pascucci et al. [Pas04] and Reck et
al. [RDG∗04], where isosurface extraction is performed on
graphics hardware that has no branching capabilities.

Similarly, the SIMD capabilities of the SPU must be ex-
ploited in order to make full use of the capabilities of Cell.
This class of acceleration has been the subject of previous
research by Hansen et al. [HH92] as applied to Marching
Cubes, and much of this work is still relevant to implement-
ing Marching Tetrahedra on Cell.

5. Results

While much of the development of our system was done us-
ing the Full System Simulator provided with the Cell SDK,
we optimized and tested the performance of our technique
on an IBM dual Cell Blade server. This server consists of
two 8-SPU Cell processors running at 2.1GHz, with 512MB
of XDR DRAM. An equivalent serial algorithm was tested
for comparison on a 2.0GHz Pentium 4 system with 1GB of
RAM.

Performance tests were carried out on a variety of 8-bit
datasets, ranging in size from 323 to 5123 (see Figures5 - 9).
The amount of free memory on the test machine precluded
volumes larger than these - however we did provisionally test
a 10243 volume by reusing the 5123 dataset 8 times. This
result (see Figure4) doesn’t take into account the different
DMA sizes, cache utilizations and memory access patterns
that would occur with a volume that size. Nonetheless, it is
included purely as a processing stress test.

The primary dataset used was a test “Spherical shell” vol-
ume (see Figure12) where each scalar value is the Euclidian
distance from that point to the center of the volume, mod-
ulated by 255 to fit inside a byte. This produces multiple
shell isosurfaces for any specified isovalue. Also tested was
a 2563 “Bonsai tree” dataset† (see Figure13), and a 5123

“Head aneurysm” dataset‡.

An immediately apparent trend is that as the volumes get
smaller, the advantages of adding more SPUs is reduced con-
siderably. This continues to the point that adding more SPUs
to the 643 and 323 datasets actually has a detrimental effect
on performance. This is because at these sizes, the DMAs

† Courtesy of S. Roettger, VIS, University of Stuttgart
‡ Courtesy of Michael Meißner, Viatronix Inc., USA.

are so small that the cost of setting up and transferring the
data is actually higher than the cost of processing it.

We can see that for the spherical shell dataset on one Cell
(8 SPUs), we are getting a peak of approximately 47 million
tetrahedra per second in both the 5123 and 10243 - a sig-
nificant improvement over the CPU’s speed of 5.1 million
tetrahedra per second. If we use both Cells we get a peak
of over 94 million tetrahedra. This number increases to over
100 million tetrahedra per second for the Bonsai and Head
Aneurysm datasets (see Figures10 and11). The reason for
this is that these volumes are composed of more empty space
than the spherical shell - if all 8 voxels of an 8-cell have an
isovalue of 0, the whole cell can be skipped safely without
being tested.

Furthermore, our results also compare extremely favor-
ably to quoted GPU speeds of 9 million tetrahedra per sec-
ond [RDG∗04]. However the comparison is only a superfi-
cial one, as current GPU implementations take advantage of
spatial acceleration structures which our method currently
does not. Additionally, GPU implementations are subject to
the condition that the dataset fits entirely into relativelylim-
ited video memory. However, GPU speeds also include ren-
dering time, whereas our results only measure processing
time; an entire processing and rendering pipeline would need
to be implemented on both architectures for a fair compari-
son to be made.

6. Conclusions and Future Work

In this paper we have introduced the Cell processor and de-
scribed the adaptation of Marching Tetrahedra for execution
on this new architecture. We have demonstrated peak pro-
cessing speeds of over 100 million tetrahedra per second on
a dual Cell server, or over 47 million tetrahedra per second
on a single Cell. For a single Cell this represents a speed in-
crease of over 9 times that of a general purpose CPU, or over
18 times the speed of a CPU in the case of a dual Cell ma-
chine. We have shown that these increases have come about
through the combination of a streaming and parallelization
scheme that takes advantage of Cell’s ability to effectively
eliminate memory latency by hiding it behind processing
time.

We have also given a general overview of the Cell pro-
cessor and described how to leverage its power in the adap-
tation of an existing algorithm. This same approach can be
used for other compute- and bandwidth-bound algorithms
suitable for parallelization, and similar improvements inpro-
cessing times can be expected. Moreover, the fact that these
improvements can be achieved using a commodity processor
means that it is a superior alternative for applications where
more processing power is needed, but the cost of expensive
dedicated hardware would be prohibitive.

The approach to isosurface extraction described in this

c© The Eurographics Association 2006.

K. O’Conor, C. O’Sullivan & S. Collins / Isosurface Extraction on the Cell Processor

paper concentrates on eliminating memory latency and ef-
ficiently transferring data to the SPUs for processing, and
does not address the issues of further acceleration by using
spatially hierarchical data structures such as octrees [WG92]
or interval trees [CMM∗97]. There is little doubt that since
the current limit of our method is the processing time needed
by the SPUs, reducing the amount of data to be processed
would lead to further increases in speed.

Another issue to be investigated is that of mixing SPU ap-
plication models in order to improve overall system perfor-
mance. For example, dedicating some SPUs to isosurface ex-
traction while the others perform mesh simplification on the
polygons already produced. A broad range of load-balancing
implications are introduced by the two-tier PPE/SPE split
that need to be explored.

Although the streaming methods presented here allow for
the processing of very large datasets, the size of system
memory still limits the amount of data that can be held at
any time. This has implications for very large volume iso-
surface extraction, so out of core execution methods such as
those proposed by Chiang et al. [CSS98] will also have to be
investigated with respect to implementation on Cell.

There is much future work to be done in this area of iso-
surface extraction on Cell, and on Cell hardware in general.
Because it is a relatively new architecture, its usefulnessfor
compute-, latency- and bandwidth-bound problems is just
becoming apparent. A significant change in attitude towards
system design is needed in order to use it to its full potential,
but as the hardware becomes more widespread and support
tools improve, so too will programming paradigms specific
to this platform.

7. Acknowledgements

This work is supported by a research grant from Science
Foundation Ireland. We would also like to gratefully ac-
knowledge Bruce D’Amora at the IBM T.J. Watson Re-
search Center for organizing access to Cell hardware there,
allowing us to put our ideas into practice.

References

[CFB05] CHOW A. C., FOSSUM G. C., BROKENSHIRE

D. A.: A programming example: Large FFT on the cell
broadband engine.IBM White Paper(2005).

[CMM∗97] CIGNONI P., MARINO P., MONTANI C.,
PUPPO E., SCOPIGNO R.: Speeding up isosurface ex-
traction using interval trees.IEEE Transactions on Visu-
alization and Computer Graphics 3, 2 (1997), 158–170.

[CSS98] CHIANG Y.-J., SILVA C. T., SCHROEDERW. J.:
Interactive out-of-core isosurface extraction. InIEEE Vi-
sualization ’98(1998), Ebert D., Hagen H., Rushmeier H.,
(Eds.), pp. 167–174.

[GH95] GUÉZIEC A., HUMMEL R.: Exploiting trian-
gulated surface extraction using tetrahedral decomposi-
tion. IEEE Transactions on Visualization and Computer
Graphics 1, 4 (1995), 328–342.

[gpg] General-purpose computation using graphics hard-
ware. http://www.gpgpu.org.

[GS01] GAO J., SHEN H.-W.: Parallel view-dependent
isosurface extraction using multi-pass occlusion culling.
Proceedings. IEEE 2001 Symposium on Parallel and
Large-Data Visualization and Graphics(2001), 67 – 152.

[HH92] HANSEN C. D., HINKER P.: Massively parallel
isosurface extraction. InVIS ’92: Proceedings of the 3rd
conference on Visualization ’92(Los Alamitos, CA, USA,
1992), IEEE Computer Society Press, pp. 77–83.

[ibm05] Terrain rendering engine (TRE).IBM White Pa-
per (2005).

[KDK86] K OIDE A., DOI A., KAJIOKA K.: Polyhedral
approximation approach to molecular orbital graphics.J.
Mol. Graph. 4, 3 (1986), 149–155.

[KW05] K IPFER P., WESTERMANN R.: GPU construc-
tion and transparent rendering of iso-surfaces. InPro-
ceedings Vision, Modeling and Visualization 2005(2005),
Greiner G., Hornegger J., Niemann H., Stamminger M.,
(Eds.), IOS Press, infix, pp. 241–248.

[LC87] LORENSEN W. E., CLINE H. E.: Marching
cubes: a high resolution 3D surface construction algo-
rithm. Computer Graphics (SIGGRAPH ’87 Proceedings)
21, 4 (1987), 163–170.

[Pas04] PASCUCCI V.: Isosurface computation made sim-
ple: Hardware acceleration, adaptive refinement and tetra-
hedral stripping.Joint Eurographics - IEEE TVCG Sym-
posium on Visualization (VisSym)(2004), 293–300.

[RDG∗04] RECK F., DACHSBACHER C., GROSSO R.,
GREINER G., STAMMINGER M.: Realtime isosurface
extraction with graphics hardware.Computer Graphics
Forum 22, 3 (2004), 595–603.

[SNS∗05] SAKAMOTO M., NISHIYAMA H., SATOH H.,
SHIMIZU S., SANUKI T., KAMIJOH K., WATANABE A.,
ASAHARA A.: An implementation of the feldkamp al-
gorithm for medical imaging on cell.IBM White Paper
(2005).

[WG92] WILHELMS J., GELDER A. V.: Octrees for faster
isosurface generation.ACM Trans. Graph. 11, 3 (1992),
201–227.

[ZBBF01] ZHANG X., BAJAJ C., BLANKE W., FUSSELL

D.: Scalable isosurface visualization of massive datasets
on COTS clusters.Proceedings of the IEEE Symposium
on Parallel and Large-Data Visualization and Graphics
(2001).

c© The Eurographics Association 2006.

K. O’Conor, C. O’Sullivan & S. Collins / Isosurface Extraction on the Cell Processor

Spherical Shell dataset (1024³)

0 10 20 30 40 50 60 70 80 90 100

1

2

4

8

12

16

N
u
m

b
e
r

o
f

p
ro

c
e
s
s
o
rs

Millions of tetrahedra per second

CPU SPUs

Figure 4: Test results for the10243 Spherical shell volume

Spherical Shell dataset (512³)

0 10 20 30 40 50 60 70 80 90 100

1

2

4

8

12

16

N
u
m

b
e
r

o
f

p
ro

c
e
s
s
o
rs

Millions of tetrahedra per second

CPU SPUs

Figure 5: Test results for the5123 Spherical shell volume

Spherical Shell dataset (256³)

0 10 20 30 40 50 60 70 80 90 100

1

2

4

8

12

16

N
u
m

b
e
r

o
f

p
ro

c
e
s
s
o
rs

Millions of tetrahedra per second

CPU SPUs

Figure 6: Test results for the2563 Spherical shell volume

Spherical Shell dataset (128³)

0 10 20 30 40 50 60

1

2

4

8

12

16

N
u
m

b
e
r

o
f

p
ro

c
e
s
s
o
rs

Millions of tetrahedra per second

CPU SPUs

Figure 7: Test results for the1283 Spherical shell volume

Spherical Shell dataset (64³)

0 2 4 6 8 10 12 14 16 18 20

1

2

4

8

12

16

N
u
m

b
e
r

o
f

p
ro

c
e
s
s
o
rs

Millions of tetrahedra per second

CPU SPUs

Figure 8: Test results for the643 Spherical shell volume

Spherical Shell dataset (32³)

0 1 2 3 4 5 6

1

2

4

8

12

16

N
u
m

b
e
r

o
f

p
ro

c
e
s
s
o
rs

Millions of tetrahedra per second

CPU SPUs

Figure 9: Test results for the323 Spherical shell volume

Bonsai Tree dataset (256³)

0 20 40 60 80 100 120

1

2

4

8

12

16

N
u
m

b
e
r

o
f

p
ro

c
e
s
s
o
rs

Millions of tetrahedra per second

CPU SPUs

Figure 10: Test results for the Bonsai Tree volume

Head Aneurysm dataset (512³)

0 20 40 60 80 100 120

1

2

4

8

12

16

N
u
m

b
e
r

o
f

p
ro

c
e
s
s
o
rs

Millions of tetrahedra per second

CPU SPUs

Figure 11: Test results for the Head Aneurysm volume

c© The Eurographics Association 2006.

K. O’Conor, C. O’Sullivan & S. Collins / Isosurface Extraction on the Cell Processor

Figure 12: The1283 spherical shell volume. Each colour represents the isosurface extracted by a different SPU.

Figure 13: The2563 Bonsai tree dataset. Again, the distribution of chunks is depicted by separate colors for each SPU.

c© The Eurographics Association 2006.

