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Abstract

We present the approach we took for our par-
ticipation to the WMT12 Quality Estimation
Shared Task: our main goal is to achieve rea-
sonably good results without appeal to super-
vised learning. We have used various simi-
larity measures and also an external resource
(Google N -grams). Details of results clarify
the interest of such an approach.

1 Introduction

Quality Estimation (or Confidence Estimation)
refers here to the task of evaluating the quality of
the output produced by a Machine Translation (MT)
system. More precisely it consists in evaluating the
quality of every individual sentence, in order (for in-
stance) to decide whether a given sentence can be
published as it is, should be post-edited, or is so bad
that it should be manually re-translated.

To our knowledge, most approaches so far (Spe-
cia et al., 2009; Soricut and Echihabi, 2010; He et
al., 2010; Specia et al., 2011) use several features
combined together using supervised learning in or-
der to predict quality scores. These features be-
long to two categories: black box features which
can be extracted given only the input sentence and
its translated version, and glass box features which
rely on various intermediate steps of the internal MT
engine (thus require access to this internal data).
For the features they studied, Specia et al. (2009)
have shown that black box features are informative
enough and glass box features do not significantly
contribute to the accuracy of the predicted scores.

In this study, we use only black box features, and
further, eschew supervised learning except in the
broadest sense. Our method requires some refer-
ence data, all taken to be equally good exemplars
of a positive reference category, against which the
experimental sentences are compared automatically.
This is the extent of broader-sense supervision. The
method does not require a training set of items each
annotated by human experts with quality scores (ex-
cept for the purpose of evaluation of course).

Successful unsupervised learning averts risks of
the alternative: supervised learning necessarily
makes the predicting system dependent on the an-
notated training data, i.e. less generic, and requires
a costly human evalution stage to obtain a reliable
model. Of course, our approach is likely not to per-
form as well as supervised approaches: here the goal
is to find a rather generic robust way to measure
quality, not to achieve the best accuracy. Neverthe-
less, in the context of this Quality Evaluation Shared
task (see (Callison-Burch et al., 2012) for a detailed
description) we have also used supervised learning
as a final stage, in order to submit results which can
be compared to other methods (see §4).

We investigate the use of various similarity mea-
sures for evaluating the quality of machine translated
sentences. These measures compare the sentence
to be evaluated against a reference text, providing
a similarity score result. The reference data is sup-
posed to represent standard (well-formed) language,
so that the score is expected to reflect how complex
(source side) or how fluent (target side) the given
sentence is.

After presenting the similarity measures in sec-



tion 2, we will show in section 3 how they perform
individually on the ranking task; finally we will ex-
plain in section 4 how the results that we submitted
were obtained using supervised learning.

2 Approach

Our method consists in trying to find the best mea-
sure(s) to estimate the quality of machine translated
sentences, i.e. the ones which show the highest cor-
relation with the human annotators scores. The mea-
sures we have tested work always as follows.

Given a sentence to evaluate (source or target),
a score is computed by comparing the sentence
against a reference dataset (usually a big set of sen-
tences). This dataset is assumed to represent stan-
dard and/or well-formed language.1 This score rep-
resents either the quality (similarity measure) or the
faultiness (distance measure) of the sentence. It is
not necessarily normalized, and in general cannot be
interpreted straightforwardly (for example like the 1
to 5 scale used for this Shared Task, in which every
value 1, 2, 3, 4, 5 has a precise meaning). In the con-
text of the Shared task, this means that we focus on
the “ranking” evaluation measures provided rather
than the “scoring” measures. These scores are rather
intended to compare sentences relatively to one an-
other: for instance, they can be used to discard the
N% lowest quality sentences from post-editing.

The main interest in such an approach is in
avoiding dependence on costly-to-annotate training
data—correspondingly costly to obtain and which
risk over-tuning the predicting system to the articu-
lated features of the training items. Our method still
depends on the dataset used as reference, but this
kind of dependency is much less constraining, be-
cause the reference dataset can be any text data. To
obtain the best possible results, the reference data
has to be representative enough of what the eval-
uated sentences should be (if they were of perfect
quality), which implies that:

• a high coverage (common words or n-grams) is
preferable; this also means that the size of this
dataset is important;

1We use this definition of “reference” in this article. Please
notice that this differs from the sense “human translation of a
source sentence”, which is more common in the MT literature.

• the quality (grammaticality, language register,
etc.) must be very good: errors in the reference
data will infect the predicted scores.

It is rather easy to use different reference datasets
with our approach (as opposed to obtain new human
scores and training a new model on this data), since
nowadays numerous textual resources are available
(at least for the most common languages).

2.1 Similarity measures

All the measures we have used compare (in different
ways) the n-grams of the tested sentence against the
reference data (represented as a big bag of n-grams).
There is a variety of parameters for each measure;
here are the parameters which are common to all:

Length of n-grams: from unigrams to 6-grams;

Punctuation: with or without punctuation marks;

Case sensitivity: binary;

Sentence boundaries: binary signal of whether
special tokens should be added to mark the start
and the end of sentences.2 This permits:

• that there is the same number of n-grams
containing a token w, for every w in the
sentence;
• to match n-grams starting/ending a

sentence only against n-grams which
start/end a sentence.

Most configurations of parameters presented in this
paper are empirical (i.e. only the parameter set-
tings which performed better during our tests were
retained). Below are the main measures explored.3

2.1.1 Okapi BM25 similarity (TF-IDF)
Term Frequency-Inverse Document Frequency

(TF-IDF) is a widely used similarity measure in
Information Retrieval(IR). It has also been shown
to perform significantly better than only term fre-
quency in tasks like matching coreferent named
entities (see e.g. Cohen et al. (2003)), which is

2With trigrams, “Hello World !” (1 trigram) becomes
“# # Hello World ! # #” (5 trigrams).

3One of the measures is not addressed in this paper for IP
reasons (this measure obtained good results but was not best).



technically not very different from comparing sen-
tences. The general idea is to compare two docu-
ments4 using their bags of n-grams representations,
but weighting the frequency of every n-gram with
the IDF weight, which represents “how meaning-
ful” the n-gram is over all documents based on its
inverse frequency (because the n-grams which are
very common are not very meaningful in general).

There are several variants of TF-IDF compari-
son measures. The most recent “Okapi BM25” ver-
sion was shown to perform better in general than the
original (more basic) definition (Jones et al., 2000).
Moreover, there are different ways to actually com-
bine the vectors together (e.g. L1 or L2 distance). In
these experiments we have only used the Cosine dis-
tance, with Okapi BM25 weights. The weights are
computed as usual (using the number of sentences
containing X for any n-gram X), but are based only
on the reference data.

2.1.2 Multi-level matching
For a given length N, “simple matching” is de-

fined as follows: for every N -gram in the sentence,
the score is incremented if this N -gram appears at
least once in the reference data. The score is then
relativized to the sentence N -gram length.

“Multi-level matching” (MLM) is similar but with
different lengths of n-grams. For (maximum) length
N , the algorithm is as follows (for every n-gram):
if the n-gram appears in the reference data the score
is incremented; otherwise, for all n-grams of length
N − 1 in this n-gram, apply recursively the same
method, but apply a penalty factor p (p < 1) to
the result.5 This is intended to overcome the bi-
nary behaviour of the “simple matching”. This way
short sentences can always be assigned a score, and
more importantly the score is smoothed according
to the similarity of shorter n-grams (which is the be-
haviour one wants to obtain intuitively).

4In this case every sentence is compared against the refer-
ence data; from an IR viewpoint, one can see the reference data
as the request and each sentence as one of the possible docu-
ments.

5This method is equivalent to computing the “simple match-
ing” for different lengths N of N -grams, and then combine the
scores sN in the following way: if sN < sN−1, then add
p × (sN−1 − sN ) to the score, and so on. However this “ex-
ternal” combination of scores can not take into account some of
the extensions (e.g. weights).

Two main variants have been tested. The first one
consists in using skip-grams.6 Different sizes and
configurations were tested (combining skip-grams
and standard sequential n-grams), but none gave
better results than using only sequential n-grams.
The second variant consists in assigning a more fine-
grained value, based on different parameters, instead
of always assigning 1 to the score when n-gram oc-
curs in the reference data. An optimal solution is not
obvious, so we tried different strategies, as follows.

Firstly, using the global frequency of the ngram
in the reference data: intuitively, this could be in-
terpreted as “the more an n-gram appears (in the
reference data), the more likely it is well-formed”.
However there are obviously n-grams which appear
a lot more than others (especially for short n-grams).
This is why we also tried using the logarithm of the
frequency, in order to smooth discrepancies.

Secondly, using the inverse frequency: this is
the opposite idea, thinking that the common n-
grams are easy to translate, whereas the rare n-
grams are harder. Consequently, the critical parts
of the sentence are the rare n-grams: assigning them
more weight focuses on these. This works in both
cases (if the n-gram is actually translated correctly
or not), because the weight assigned to the n-gram
is taken into account in the normalization factor.

Finally, using the Inverse Document Frequency
(IDF): this is a similar idea as the previous one, ex-
cept that instead of considering the global frequency
the number of sentences containing the n-gram is
taken into account. In most cases (and in all cases
for long n-grams), this is very similar to the previ-
ous option because the cases where an n-gram (at
least with n > 1) appears several times in the same
sentence are not common.

2.2 Resources used as reference data

The reference data against which the sentences
are compared is crucial to the success of our ap-
proach. As the simplest option, we have used the
Europarl data on which the MT model was trained
(source/target side for source/target sentences). Sep-
arately we tested a very different kind of data,
namely the Google Books N -grams (Michel et al.,

6The true-false-true skip-grams in “There is
no such thing”: There no, is such and no thing.



2011): it is no obstacle that the reference sentences
themselves are unavailable, since our measures only
need the set of n-grams and possibly their frequency
(Google Books N -gram data contains both).

3 Individual measures only

In this section we study how our similarity measures
and the baseline features (when used individually)
perform on the ranking task. This evaluation can
only be done by means of DeltaAvg and Spearman
correlation, since the values assigned to sentences
are not comparable to quality scores. We have tested
numerous combinations of parameters, but show be-
low only the best ones (for every case).

3.1 General observations

Method Ref. data DeltaAvg Spearman
MLM,1-4 Google, eng 0.26 0.22

Baseline feature 1 0.29 0.29
Baseline feature 2 0.29 0.29

MLM,1-3,lf Google, spa 0.32 0.28
Okapi,3,b EP, spa 0.33 0.27

Baseline feature 8 0.33 0.32
Okapi,2,b EP, eng 0.34 0.30

Baseline feature 12 0.34 0.32
Baseline feature 5 0.39 0.39

MLM,1-5,b EP, spa 0.39 0.39
MLM,1-5,b EP, eng 0.39 0.40

Baseline feature 4 0.40 0.40

Table 1: Best results by method and by resource on train-
ing data. b = sentence boundaries ; lf = log frequency
(Google) ; EP = Europarl.

Table 1 shows the best results that every method
achieved on the whole training data with different
resources, as well as the results of the best base-
line features.7 Firstly, one can observe that the lan-
guage model probability (baseline features 4 and 5)
performs as good or slightly better than our best
measure. Then the best measure is the one which
combines different lengths of n-grams (multi-level
matching, combining unigrams to 5-grams), fol-
lowed by baseline feature 12 (percentage of bigrams

7 Baseline 1,2: length of the source/target sentence;
Baseline features 4,5: LM probability of source/target sentence;
Baseline feature 8: average number of translations per source
word with threshold 0.01, weighted by inverse frequency;
Baseline feature 12: percentage of bigrams in quartile 4 of fre-
quency of source words in a corpus of the source language.

in quartile 4 of frequency), and then Okapi BM25
applied to bigrams. It is worth noticing that compar-
ing either the source sentence or the target sentence
(against the source/target training data) gives very
similar results. However, using Google Ngrams as
reference data shows a significantly lower correla-
tion. Also using skip-grams or any of our “fined-
grained” scoring techniques (see §2.1.2) did not im-
prove the correlation, even if in most cases these
were as good as the standard version.

3.2 Detailed analysis: how measures differ
Even when methods yield strongly correlated re-
sults, differences can be significant. For example,
the correlation between the rankings obtained with
the two best methods (baseline 4 and MLM Eng.) is
0.53. The methods do not make the same errors.8 A
method may tend to make a lot of small errors, or on
the contrary, very few but big errors.

0 20 40 60 80 100

0
20

40
60

80

% sentences within error range

re
la

tiv
e 

ra
nk

 e
rr

or
 (%

)

Baseline feature 4
MLM EP Spa
MLM Google Eng
Baseline ranking

Figure 1: Percentage of best segments within an error
range. For every measure, the X axis represents the sen-
tences sorted by the difference between the predicted rank
and the actual rank (“rank error”), in such a way that for
any (relative) number of sentences x, the y value repre-
sents the maximum (relative) rank error for all prior sen-
tences: for instance, 80% of the ranks predicted by these
three measures are at most 40% from the actual rank.

Let R and R′ be the actual and predicted ranks9

of sentence, respectively. Compute the difference
8This motivates use of supervised learning (but see §1).
9It is worth noticing that ties are taken into account here: two



D = |R−R′|; then relativize to the total number of
sentences (the upper bound for D): D′ = D/N .
D′ is the relative rank error. On ascending sort
by D′, the predicted ranks for the first sentences
are closest to their actual rank. Taking the relative
rank error D′

j for the sentence at position Mj , one
knows that all “lower” sentences (∀Mi, Mi ≤ Mj)
are more accurately assigned (D′

i ≤ D′
j). Thus, if

the position is also relativized to the total number
sentences: M ′

k = Mk/N , M ′
k is the proportion of

sentences for which the predicted rank is at worst
D′

k% from the real rank. Figure 1 shows the percent-
age of sentences withing a rank error range for three
good methods:10 the error distributions are surpris-
ingly similar. A baseline ranking is also represented,
which shows the same if all sentences are assigned
the same rank (i.e. all sentences are considered of
equal quality)11.

We have also studied effects of some parameters:

• Taking punctuation into account helps a little;

• Ignoring case gives slightly better results;

• Sentences boundaries significantly improve the
performance;

• Most of the refinements of the local score (fre-
quency, IDF, etc.) do not perform better than
the basic binary approach.

4 Individual measures as features

In this section we explain how we obtained the sub-
mitted results using supervised learning.

4.1 Approach
We have tested a wide range of regression algo-
rithms in order to predict the scores, using the
Weka12 toolkit (Hall et al., 2009). All tests were

sentences which are assigned the same score are given the same
rank. The ranking sum is preserved by assigning the average
rank; for instance if s1 > s2 = s3 > s4 the corresponding
ranks are 1, 2.5, 2.5, 4).

10Some are not shown, because the curves were too close.
11Remark: the plateaus are due to the ties in the actual ranks:

there is one plateau for each score level. This is not visible on
the predicted rankings because it is less likely that an impor-
tant number of sentences have both the same actual rank and
the same predicted rank (whereas they all have the same “pre-
dicted” rank in the baseline ranking, by definition).

12www.cs.waikato.ac.nz/ml/weka – l.v., 04/2012.

done using the whole training data in a 10 folds
cross-validation setting. The main methods were:

• Linear regression

• Pace regression (Wang and Witten, 2002)

• SVM for regression (Shevade et al., 2000)
(SMOreg in Weka)

• Decision Trees for regression (Quinlan, 1992)
(M5P in Weka)

We have tested several combinations of features
among the features provided as baseline and our
measures. The measures were primarily selected
on their individual performance (worst measures
were discarded). However we also had to take the
time constraint into account, because some measures
require a fair amount of computing power and/or
memory and some were not finished early enough.
Finally we have also tested several attributes selec-
tion methods before applying the learning method,
but they did not achieve a better performance.

4.2 Results
Table 2 shows the best results among the config-
urations we have tested (expressed using the offi-
cial evaluation measures, see (Callison-Burch et al.,
2012) for details). These results were obtained using
the default Weka parameters.In this table, the differ-
ent features sets are abbreviated as follows:

• B: Baseline (17 features);

• M1: All measures scores (45 features);

• M2: Only scores obtained using the provided
resources (33 features);

• L: Lengths (of source and target sentence, 2
features).

For every method, the best results were obtained
using all possible features (baseline and our mea-
sures). The following results can also be observed:

• our measures increase the performance over
use of baseline features only (B+M1 vs. B);

• using an external resource (here Google n-
grams) with some of our measures increases the
performance (B+M1 vs. B+M2);

www.cs.waikato.ac.nz/ml/weka


Features Method DeltaAvg Spearman MAE RMSE
B SVM 0.398 0.445 0.616 0.761
B Pace Reg. 0.399 0.458 0.615 0.757
L + M1 SVM 0.401 0.439 0.615 0.764
L + M1 Lin. Reg 0.408 0.441 0.610 0.757
B Lin. Reg. 0.408 0.461 0.614 0.754
L + M1 M5P 0.409 0.441 0.610 0.757
B + M2 SVM 0.409 0.447 0.605 0.753
B + M2 Pace Reg. 0.417 0.466 0.603 0.744
B + M2 M5P 0.419 0.472 0.601 0.746
L + M1 Pace Reg. 0.426 0.454 0.603 0.751
B + M2 Lin. Reg. 0.428 0.481 0.598 0.740
B M5P 0.434 0.487 0.586 0.729
B + M1 SVM 0.444 0.489 0.585 0.734
B + M1 Pace Reg. 0.453 0.505 0.584 0.724
B + M1 Lin. Reg. 0.456 0.507 0.583 0.724
B + M1 M5P 0.457 0.508 0.583 0.724

Table 2: Best results on 10-folds cross-validation on the
training data (sorted by DeltaAvg score).

• the baseline features contribute positively to the
performance (B+M1 vs. L+M1);

• The M5P (Decision trees) method works best
in almost all cases (3 out of 4).

Based on these training results, the two systems
that we used to submit the test data scores were:

• TCD-M5P-resources-only, where scores were
predicted from a model trained using M5P on
the whole training data, taking only the base-
line features (B) into account;

• TCD-M5P-all, where scores were predicted
from a model trained using M5P on the whole
training data, using all features (B+M1).

The TCD-M5P-resources-only submission
ranked 5th (among 17) in the ranking task, and
5th among 19 (tied with two other systems) in
the scoring task (Callison-Burch et al., 2012).
Unfortunately the TCD-M5P-all submission con-
tained an error.13 Below are the official results
for TCD-M5P-resources-only and the corrected
results for TCD-M5P-all :

13In four cases in which Google n-grams formed the refer-
ence data, the scores were computed using the wrong language
(Spanish instead of English) as the reference. Since this error
occured only for the test data (not the training data used to com-
pute the model), it made the predictions totally meaningless.

Submission DeltaAvg Spearman MAE RMSE
resources-only 0.56 0.58 0.68 0.82
all 0.54 0.54 0.70 0.84

Contrary to previous observations using the train-
ing data, these results show a better performance
without our measures. We think that this is mainly
due to the high variability of the results depending
on the data, and that the first experiments are more
significant because cross-validation was used.

5 Conclusion

In conclusion, we have shown that the robust ap-
proach that we have presented can achieve good re-
sults: the best DeltaAvg score reaches 0.40 on the
training data, when the best supervised approach is
at 0.45. We think that this robust approach com-
plements the more fine-grained approach with su-
pervised learning: the former is useful in the cases
where the cost to use the latter is prohibitive.

Additionally, it is interesting to see that using ex-
ternal data (here the Google N -grams) improves the
performance (when using supervised learning). As
future work, we plan to investigate this question
more precisely: when does the external data help?
What are the differences between using the training
data (used to produce the MT engine) and another
dataset? How to select such an external data in order
to maximize the performance? In our unsupervised
framework, is it possible to combine the score ob-
tained with the external data with the score obtained
from the training data? Similarly, can we combine
scores obtained by comparing the source side and
the target side?
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