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of the R/S Statistic*
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Abstract: This paper gives an account of the R/S statistic and its known properties. It assesses
the adequacy of the asymptotic distribution of the statistic in the case of samples of small and
moderate size, and suggests an improved approximation based on the beta distribution. The
results indicate that the proposed beta approximation is superior to the asymptotic distribution
for practical purposes. Hence a new table of critical values is presented as an alternative to that
of Lo (1991).

I INTRODUCTION

his paper is concerned with the re-scaled adjusted range (R/S) statistic

as a means of investigating long-term statistical dependence or persis-
tence in time series data. Introduced by Hurst (1951), R/S analysis was
developed by Mandelbrot and Wallis (1969a, 1969b, 1969¢) and first used by
hydrologists to study persistence in geophysical time series. Although it was
also used by Mandelbrot (1971) to examine persistence-‘lin asset returns, the
R/S statistic has only recently been utilised by economists. However, there
are already a few notable applications to financial time series (e.g., Peters
(1989, 1991, 1992, 1994); Lo (1991); Moody and Wu (1995)) and at least one to
political opinion poll series (Byers et al. (1996)).1
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*An earlier version of the paper appeared as Technical Paper No. 6 (June 1997) in the Trinity
Economic Papers series. The authors are grateful to an anonymous referee for helpful comments
on the present version. )

1. The financial time series used tend to be very long. For example, although Peters used
some moderate sample sizes of the order of 300 or 400, Lo used daily price series with between
1,500 and 6,000 observations, while Moody and Wu used tick-by-tick data and had samples of
hundreds of thousands of observations.
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The case for persistence to be placed among the practical concerns of
economists has been stated strongly by Haubrich and Lo (1989), Haubrich
(1990) and Lo (1991). Indeed, as Lo (1991) points out, long-range dependence
was an implicit hypothesis in several early theories of trade and business
cycles, and it is consistent with the Granger (1966) discovery of the typical
spectral shape of an economic variable. Furthermore, it has important
implications for several theories in modern financial economics, such as those
concerned with optimal consumption and portfolio decisions and the pricing
of derivative securities, as well as for standard tests of the capital asset
pricing model and the arbitrage pricing theory.

R/S analysis offers a relatively straightforward means of investigating the
issue of long-term dependency. It is based on simple graphical plots and
Hurst exponents; it is claimed that it can detect long-range dependence in
highly non-normal time series with large skewness and kurtosis, and non-
periodic cycles; and the R/S statistic it uses is characterised by almost sure
convergence for stochastic processes with infinite variance.? However, it is
known to be adversely affected when there is short-term dependence in the
series (see McLeod and Hipel (1978), and Hipel and McLeod (1978)), and it
was this deficiency that led Lo (1991), and then Moody and Wu (1995), to
propose modifications of the R/S statistic.

Unfortunately, certain shortcomings remain in the calculation and plots of
the R/S statistic used in standard R/S analysis. Moreover, although the
asymptotic distribution of the statistic is known, there is very little infor-
mation available on its distribution for small samples and the adequacy

.of the asymptotic distribution as an approximation in the small sample
situation. Therefore we investigate the small sample behaviour of the R/S
statistic, having particular regard to the quality of the asymptotic approxi-
mation to its finite sample distribution and of an alternative approximation
based on a beta distribution. We conclude that our beta procedure gives a
better approximation to the finite sample distribution of the R/S statistic
than the known asymptotic distribution does. Hence we provide a new table
of critical values as an alternative to that given by Lo (1991).

The paper is organised as follows. Section II describes the standard and
modified R/S statistics and outlines their main properties. Section III focuses
on issues relating to the small sample distribution of the R/S statistic and its
approximation by means of a beta distribution. Section IV reports on our
experimental work and findings, and Section V presents our table of critical

2. An introduction to long-range dependence is given in the new textbook by Campbell et al.
(1997, Ch. 2). In particular, their footnote 21, pages 62-63, provides a straightforward account of
the behaviour of the R/S statistic and a simple example that shows why it takes on large values
in the presence of persistence.
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values for the R/S statistic. The paper ends with a short summary and
conclusion in Section VI

II THE R/S STATISTIC

Hurst was a civil engineer interested in reservoir storage and, in
particular, the ideal reservoir size. Thus he was concerned with inflows and
outflows of water. For economic applications, the idea of flows has immediate
relevance to many variables and problems, such as those involving stock
returns or flows in to and out of unemployment per period, and it may be
useful to bear such examples in mind. However, we proceed along more
general lines, denoting a series of one period changes in any variable by
{xt};r:l, and its sample mean and standard deviation over the period t=1,...,T
by m and s, respectively. The partial or cumulative sums of deviations of the
%, from their mean are defined as

k
pk)= Y (x,-m), k=1...,T.
t=1

Clearly, when x,(k>1) exceeds m, the kth partial sum will increase, and
when xy is less than m, the kth partial sum will decrease. The range of the
partial sums is

r= ml?x[p(k)] - mkin[p(k)],

and the re-scaled adjusted range, i.e. the R/S statistic, for the time period
t=1,...,T is just the ratio of r to s. Specifically, the R/S statistic is calculated as

,  max[p(k)]-min[p(k)]
R/S===—tmme—dt
S \f— 3 (x, —m)®
T

t=1

The adjustment of the range relates to subtraction of the mean, and the re-
scaling to division by the maximum likelihood estimate of the standard
deviation.

The R/S statistic is of a rather complex form which makes the analysis of
its small sample behaviour difficult, even in the null situation in which the x;
are independently and identically distributed (i.i.d.). Indeed, its sampling
distribution for finite samples in this case remains unknown except for the
expectation. The asymptotic properties of R/S are easier to handle, though
they are by no means uncomplicated.

Using simple experimentation, Hurst (1951) derived an approximation for
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the expected value of R/S for large samples in the ii.d. case, namely
E[R/S]=%T. This result was central to Hurst’s early applications of R/S

analysis. Round about the same time, Feller (1951) derived the asymptotic
distribution of R/S under the i.i.d. null hypothesis, using a result due to Doob
(1949), and thereby confirmed the accuracy of Hurst’s approximation. Implicit

in the work of Feller is that (T_%)R/S—d—>V, where the distribution
function of V, as given explicitly by Lo (1991), is

F,(v)=1+2 $(1-4k2v?)e 20",
k=1

 The probability density, and hence the moments of V, may therefore be

derived; and (non-trivial) calculation shows that E[V] = \[g and E[V2] =
It follows that for large T,

E[R/S]= ‘ET ~1.2533VT and

2
VIR /S]= (——_E]T 0.0741T.

These results are well known. However, to our knowledge, higher moments
have not been reported in the literature. Our calculations show that the
standard skewness and kurtosis coefficients are, respectively,3

e

6 2
where ¢(.) denotes the Riemann Zeta function, and

4 3 2
1 rn _3n_ 3ng(3)] =3.4178.

2 jz [30 2 4
n° n

B,[R/S]=

3. The standard skewness coefficient is the ratio of the third moment about the:mean to the
cube of the standard deviation; the standard kurtosis coefficient is the ratio of the fourth moment
about the mean to the square of the variance. The symbols used here, ie., \Iﬁl and o, are the
conventional ones for the skewness and kurtosis coefficients. respectively!
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These features of slight positive skewness and leptokurtosis are evident in
plots of the density function of V; see Figure 1 which also includes a normal
distribution (dashed) with the same mean and variance as V (a similar
diagram, but also containing the distribution function, is given by Lo (1991,
p. 1292)).

1.60 7
1.40 -
1.20 A
1.00 +
0.80 +
0.60 +
0.40 +
0.20 +
0.00

Density

Figure 1: Density of V and Normal Distribution

When the x, are generated by an AR(1) process, Lo (1991) has shown that
(T—% R/ S—d—»ﬁV, where £ = H—dl'g and p is the first-order autocorrelation

coefficient. Thus for AR(1) data the mean of R/S may be seriously biased,
depending on the value of p, and inferences may be seriously misleading if
based on the use of critical values obtained from the standard asymptotic
distribution. In an attempt to account for this type of effect in detecting long-
range dependence using a statistic whose limiting distribution is invariant to
many forms of short-term dependence, Lo (1991) suggested modifying the
denominator of the R/S statistic as follows:

mlfIX[p(k)] - mkin[p(k))

R/S=

ol@ o(q)

where
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(@) =85> +2 5 0,(@)7; == 3.5, ~m)2 4 = S0, (@) 30x ~m)x, ;- m)
=1 T t=1 T j=1 t=j+1

and

wi(g)=1-—I—,q<T.
q+1

The intuition underlying this modlﬁcatmn is straightforward: if there is
short-term dependence in {xt}t ,» then the range r should not simply be
normalised by the standard deviation, but the non-zero autocovariances,
estimated by the usual sample estimator, should also be taken into account.
The weighting function, which is the same as that used by Newey and West
(1987), always produces a positive 6(q)2, but little is known about how best
to pick g, though some guidance is provided by the l\lgontLCarlo study of
Andrews (1991). Lo (1991, Theorem 3.1) proves that (T"2) R/S has the same
limiting distribution as (T ?)R/S.

However, Moody and Wu (1995) have recently argued that Lo’s re-scaling
factor, 6(q), has a significant downward bias for small T which distorts R/S.
To overcome this problem they propose an unbiased re-scaling factor, o(q),
that corrects for mean biases in r due to short-term dependencies without
inducing the distortions in small samples that R/S and R7S do. Specifically,

0(q)2=[ 2 %co (@)(n'~ J)]S +-rf 20) (q)[ > (xy ~m)(xyj - m):\

j=1 t=j+1
where

=2 1
s =—— Z(Xt ~m)?
T-1t=1

is the standard unbiased estimator of the variance. Although a formal proof
has not been given, one may speculate that, g‘wen the consistency of G(q)
under the conditions given by Lo (1991), T times the Moody and Wu
modified R/S statistic

—_— r

/S=

M

N

Q

(q

also has the same limiting distrii)ution as T°? times the previous two
variants of the statistic. Moody and Wu point out that Lo's R/S gives
different results depending on the choice of q, but their own variant of the
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statistic also depends on g and may well suffer from the same sensitivity to
the choice of its value.

Finally, with regard to small sample properties of the R/S statistic, Anis
and Lloyd (1976), using a theorem of Spitzer (1956), have derived the

expectation
F(E(T-D)T_l o
E[R/S]=—2 z,f _=,
\/EF[E] k=11 k
2

where I'(.) is the gamma function, for the case of i.i.d. normal variables. Of
course, the Feller result on the asymptotic expectation emerges as a special
case of this as T — . Anis and Lloyd also show that their result applies
to the case of symmetrically correlated normal variables, while Hipel and
McLeod (1978), on the basis of Monte Carlo simulations, claim that it
remains a good approximation for independently distributed variables of
various non-normal forms. This result has been used to supplement the
Hurst/Feller variant of E[R/S] for practical work with small samples.

IIT THE SMALL SAMPLE DISTRIBUTION OF R/S

Unfortunately, apart from the Anis and Lloyd (1976) result on the
expectation, very little is known about the small sample properties of R/S.
Therefore the main purpose of this paper is to provide some information
about them. In particular, one of our concerns is to assess how good an
approximation the asymptotic distribution of R/S is in the finite sample
situation. Using Monte Carlo simulation methods, we conclude that for the
cases examined, the asymptotic approximation is not good, even for samples
as large as 500, and therefore that the use of asymptotic critical values, such
as those provided by Lo (1991, Table II), may be misleading. Another concern
is to explore ways of improving the description of the sampling distribution of
R/S for small samples. Highly satisfactory results are obtained for the cases
examined using a beta approximation based on the first four moments. We
would suggest therefore that for practical purposes, our beta-approximate
critical values are preferable to those based on the asymptotic distribution.
Full details of the experiments and results are given in Section IV; and
details of the construction of the table of critical values are given in
Section V. The present section concludes with a brief description of the beta
approximation methodology.

Let X be described by a beta distribution of the first kind, i.e. x €(0, 1) and
x ~ B(p, q), where B(..) denotes the beta density function and p and q are its
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parameters. The first four moments of X are well known; and the first two of
them are given explicitly and used below.# The idea in fitting theoretical
forms to empirical distributions is to equate certain theoretical moments with
their sample counterparts so as to be able to solve for the unknown
parameters of the theoretical distribution. Although there are just two
unknown beta parameters to be estimated here, the exercise is complicated
by the need to re-scale R/S to the range (0, 1).

The minimum value of R/S can be shown to be unity (Mandelbrot, 1972),

_1

which means that the minimum of (T ?)R/S which for convenience we
choose to work with, is zero asymptotically, though referring to Figure 1, it
can be seen that 0.5 constitutes an effective minimum for the limiting

distribution of (T_% JR/S. Similarly, Mandelbrot gives the maximum value of

T -1 . AT . . .
R/S as ) and hence that of (T *)R/S is 5 but again from Figure 1 an

effective maximum for the limiting distribution is, say, 3. Re-scaling of R/S
could be done using its theoretical bounds, but use of “effective” or
approximate bounds yields superior results. For specified finite sample sizes
the “effective” maximum and minimum values for R/S might be determined
directly from experimentally generated approximations to the sampling
distribution, but we prefer to determine them as part of the beta fitting

procedure as follows. It should be noted that although the methodology is
explained in terms of R/S, it applies equally to (T—%)R /S. Let
R/S-L
X=—
U-L

b

where U is the approximate maximum of R/S and L is the approximate
minimum. Taking expectations of both sides of this equation, treating x as a
realisation from a beta distribution, and replacing E[R/S] by its sample
estimator m(R/S), we have

p _m(R/S)-L
P+q U-L

2(q —p)\’p+ 1+1
——————— and
(p+q+2)\/g

+ 3. For details of a beta fitting procedure using the

4. The third and fourth moments of B(p, q) are, respectively, \/[31 =

6l(p +q + 1)(q-p)2 —(p+q+2)pq)
pa(p+q+2)p+q+3)

9=

first four moments similar to the procedure used here, see, for example, Harrison (1972). A
referee has suggested an alternative means of solution for p, g, U and L and this will be explored
in any future research.
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By similar reasoning, we may write

Yra _ _s®R/S)
(p+q/praq+l U-L’

where s(R/S) denotes the standard deviation of the empirical sampling
distribution of R/S for a given sample size. These last two equations can be
solved for-U and L, given values of p and q. The p and ¢ values may be
obtained in the usual manner by equating the theoretical skewness and
kurtosis coefficients of the beta distribution to the computed skewness and
kurtosis measures for the empirical sampling distribution, which process is
independent of scale; see Harrison (1972) for further details. In this way we
may fit a beta distribution with the same skewness and kurtosis as the
experimentally determined finite sample sampling distribution, and scaled in
accordance with the observed mean and standard deviation. Critical values
for R/S corresponding to required significance levels may then be obtained
from the beta tables using the relation

R/S® =L+(U-L)x%,

where o is the significance level.

IV EXPERIMENTS AND RESULTS

In order to investigate the finite-sample distribution and properties of the
R/S statistic under the null hypothesis of independence, the method of Monte
Carlo simulation was used. Three forms of probability density function were
used to generate sample data. First the standard normal distribution, an
obvious choice in view of the fact that the only available exact small sample
result relates to this case. Second, the uniform distribution on the interval
(0, 1), another symmetric, but bounded distribution by contrast to the normal;
and third, the asymmetric log-normal distribution which, although bounded
below, can produce extreme positive values. Specifically, the log-normal
variate was derived as ten raised to the power of a standard normal variable.
In each case, sample sizes of 5 to 100, inclusive, in steps of 5, and 110 to 200,
inclusive, in steps of 10, and also 225 to 500, inclusive, in steps of 25, i.e.,
42 different sample sizes, were taken. The observations were produced using
the random number generator of L’Ecuyer (1988) which combines two
different random number sequences with different periods so as to obtain a
new sequence whose period is the least common multiple of the two periods.
This generator has a period which is approximately 2.3 x10!8, more than
adequate for the simulation work that was carried out. It is strongly
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recommended by Press et al. (1992), who provide full details, and it is not
known to have failed any statistical tests of randomness. For each of the 126
combinations of population and sample size, the value of (T"HR/S was
calculated, and the process replicated 100,000 times to yield an empirical
approximation to the sampling distribution. Full details of the computer
programs and machine used are described in Treacy (1997).

Selected summary results from this experiment, namely, the mean,
standard deviation, skewness coefficient, kurtosis coefficient, minimum and
maximum of the empirical sampling distributions for twelve selected sample
sizes, are given in Tables 1, 2 and 3. In order to aid analysis of these

Table 1: Estimated Moments of Sampling Distributions: Normal Population

T Mean Std. Dev. Skewness Kurtosis Min. Mazx.
25 1.051 _ 0.234 0.423 2.921 0.426 2.063
50 1.105 0.252 0.510 3.107 0.434 2.379
75 1.128 0.258 0.559 3.248 0.434 2.427
100 1.146 0.262 0.565 3.275 0.450 2.558
150 1.164 0.264 0.572 3.311 0.487 2.671
200 1.176 0.266 0.585 3.349 0.446 2.618
225 1.180 0.268 0.599 3.395 0.486 2.879
250 1.183 0.267 0.598 3.395 0.463 2.605
275 1.187 0.268 0.595 3.363 0.484 2.655
300 1.189 0.268. 0.597 3.359 0.506 2.655
400 1.197 0.269 0.595 3.376 0.486 2.664
500 1.202- 0.270 . 0.598 3.363 0.493 2.759

Table 2: Estimated Moments of Sampling Distributions: Uniform Population

T Mean’ Std. Dev. Skewness Kurtosis Min. Max.
25 1.065 0.245 0.463 3.004 0.354 2.186
50 C1.115 0.258 0.548 3.215 0.412 2.674
75 1.140 0.262 0.579 3.321 0.420 2.789
100 1.157 0.265 0.591 3.348 0.443 2.637
150 1.173 0.268 0.605 3.343 0.474 2.621
200 1.183 0.268 0.598 3.384 0.477 2.697
225 1.188 0.269 0.591 3.366 0.474 2.699
250 1.189 . 0.268 0.601 3.393 0.486 2.916
275 1.192 0.270 0.611 3.413 0.447 2.746
300 1.194 0.270 0.598 3.368 - 0481 2.727
400 1.204 0.270 0.593 3.372 0.507 2.658

500 1.208 0.271 0.618 . 3.406 0.491 2.748
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Table 3: Estimated Moments of Sampling Distributions:
Log-normal Population

T Mean Std. Dev. Skewness Kurtosts Min. Max.
25 1.016 0.157 0.836 4.239 0.507 2.044
50 1.044 0.172 0.808 4.009 0.511 2.173
75 1.057 0.180 0.806 3.960 0.533 2.089
100 1.066 0.184 0.792 3.910 0.526 2.236
150 1.076 0.191 0.793 3.870 0.555 2.231
200 1.082 0.195 0.799 3.867 0.525 2.324
225 1.084 0.196 0.787 3.842 0.501 2.364
250 1.087 . 0.198 0.774 3.808 0.535 2.319
275 1.089 0.200 0.781 3.818 0.522 2.288
300 1.092 0.201 0.779 3.792 0.495 2.254
400 1.096 0.203 0.752 3.725 0.534 2.373
500 1.100 0.207 0.772 3.774 0.554 2.498

tabulated results, Figures 2, 3, 4 and 5 are provided to show g'raphical%y how
the estimated first four moments of the sampling distributions of (T"2)R/S
vary with sample size T. Figures 6, 7 and 8 show the actual form of the
approximate sampling distributions for a sample size of 200 taken from the
normal, uniform and log-normal distributions, respectively. The graphs
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Figure 2: Means of Empirical Sampling Distributions
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Figure 3: Standard Deviations of Empirical Sampling Distributions
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Figure 4: Skewness Coefficients of Empirical Sampling Distributions

plotted in all figures are based on the data for all 42 of the sample sizes
investigated; and in Figures 2 to 5, inclusive, the plots indicate the cor-
responding asymptotic value of the moment by a horizontal solid line.
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Figure 5: Kurtosis Coefficients of Empirical Sampling Distributions
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Figure 6: Empirical Sampling Distribution: Normal Population, T=200
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Figure 7: Empirical Sampling Distribution: Uniform Population, T=200

0 I % % % i
05 075 1 125 15 175 2
Statistic

i

Figure 8: Empirical Sampling Distribution: Log-normal Population, T=200
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Tables 1 to 3, and Figures 2 to 5 especially, reveal a very close agreement
between the behaviour of the two sets of descriptive statistics relating to the
samples drawn from the normal and uniform populations. The similarity of
the means for these two populations accords with the findings of Hipel and
McLeod (1978). The results also show that for the symmetric populations the
rate of convergence to the asymptotic value is noticeably slower in the case of
the mean than it is for the other three moments, whose asymptotic con-
vergence rates are similar, For example, the second, third and fourth
moments of the sampling distribution are certainly close to their asymptotic
values for a sample of size 200, and yet the mean is still not close to its
asymptote for a sample as big as 500. '

By contrast, in the case of samples drawn from the highly skewed log-
normal distribution, all four moments of the sampling distribution are
different from both their asymptotic values and the corresponding values of
the moments in the normal and uniform cases. The mean converges to its
asymptotic value at an even slower rate for the log-normal population than it
does for the symmetric populations; and unlike in the latter cases, the
behaviour of the mean does not conform well to the exact expectation
provided by the Anis and Lloyd (1976) result given above. We would suggest,
therefore, that the claim that the mean of the R/S statistic is robust, as put
forward by Mandelbrot and Wallis (1969¢) and Hipel and McLeod (1978), for
example, may be overstated. The standard deviation also converges to its
asymptotic value at a markedly slower rate than it does in the cases of the
symmetric populations. The skewness and kurtosis coefficients behave
similarly which indicates that the sampling distribution remains more
positively skewed and leptokurtic than it does in the symmetric population
cases, and than what it is asymptotically, even for the largest of our sample
sizes. Moreover, the decreasing mode of convergence of the third and fourth
moments is in stark contrast to the tendency for the other moments to
increase towards their asymptotic value as sample size increases.

The general features of slight positive skewness and leptokurtosis of the
approximate sampling distributions associated with the normal and uniform
populations, for nearly all of the sample sizes considered, echo the properties
of the asymptotic distribution discussed in Section II. However, this simi-
larity is not so apparent in the case of the empirical sampling distributions
associated with the log-normal population. This may be seen by comparing
Figures 6 to 8 with Figure 1. Although the results presented in Figures 6 to 8
are in each case representative of those for most other sample sizes, for small
samples in which T< 15, the empirical distributions are quite irregular. The
most striking feature of the distributions arising from the log-normal popu-
lation compared with those from the symmetric populations, as illustrated in
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Figure 8, is the heavy concentration of probability mass — i.e., the spike — at
about the value unity. This phenomenon is the subject of on-going research,
but an explanation is suggested by Treacy (1997).

V APPROXIMATIONS AND TABLES

Critical values for the R/S statistic are available to practitioners in the
table provided by Lo (1991, p. 1288). These critical values were derived by Lo
from the asymptotic distribution. The first task in this section is to use our
experimentally derived finite-sample results to assess the quality of the
asymptotic distribution as a small sample approximation. Thus, using the
eleven asymptotic critical values from Lo’s table reproduced in Table 4 to
define twelve intervals, the asymptotic probability associated with each
interval was compared to the relative frequency of occurrence of (T ?)R/S
values in the corresponding interval on the empirical sampling distribution.

Table 4: Lo’s Critical Values for V

Pr(V<y) 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

v 0.861 0.927 1018 1.090 1.157 1.223 1294 1374 1473 1620 1747

This was done for the distributions arising from all three populations and all
sample sizes. From these data, standard chi-squared goodness-of-fit statistics
were computed, and these are given in Table 5 for selected sample sizes
between 25 and 500. As can be seen from this table, the 42 values are

Table 5: ¥2 Values of Goodness of Fit of V to the Empirical Sampling

Distributions

T : Normal Uniform Log-normal

25 8.2x105 7.3%10° 1.3x10°

50 4.0x10° 3.6x10° 8.7x10*

75 2.8x10° 2.3x10° 7.2x10%
100 2.0x10° 1.6x10° 6.3x10%
150 1.3x10° 1.1x10° 5.3x10%
200 9.8x104 8.2x10% 4.9%10%
225 9.0x10? 6.8x10% 4.7x10%
250 7.7x10% 6.5x10% : 4.4510%
275 7.0x104 6.1x10* 4.3x10%
300 6.7x104 5.7x10% 4.1x104
400 4.8x104 39x10¢ . 3.8x10%

500 4.2%104 3.3x104 3.5x10%
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extremely large and all are highly significant statistically. This may not be
surprising given, especially, the disparity between the asymptotic mean and
the behaviour of the mean of the empirical sampling distributions. This poor
fit of the asymptotic distribution is illustrated in Figures 9 and 10.

1.8 +
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1.4 |+
12 4
1 A1
0.8 +
0.6 +
0.4 +
0.2 4
0 } f } t !
0.25 0.75 1.25 1.75 2.25 275
Statistic

Density

Figure 9: Empirical Sampling Distribution, Asymptotic and Beta
Approximations: Normal Population, T=200

With a view to improving the approximation to the small-sample distri-
butions, a beta distribution, which encompasses a wide variety of forms, was
investigated as an alternative using the fitting methodology based on the first
four moments outlined in Section III. However, as the unusual empirical
distribution for the log-normal case, illustrated in Figure 8, can not be
adequately captured by a beta distribution, the investigation focused solely
on the symmetric distributions. From this point on, then, the paper confines
itself to the case of R/S statistics calculated from observations drawn from
symmetric distributions.

The fit of a beta distribution to the empirical distributions arising from the
normal and uniform populations was assessed in the same manner as was the
asymptotic distribution. The resulting y? values that were obtained are
presented in Tables 6 and 7. An impressive improvement in the quality of the
fit is indicated. The extent of this is emphasised graphically in Figures 9 and
10, in each of which the beta distribution fits the sample data so well that it
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Figure 10: Empirical Sampling Distribution, Asymptotic and Beta
Approximations: Uniform Population, T=200

Table 6: ¥2 Goodness of Fit of Beta Distributions: Normal Population

T x? p q L U
25 15.7 443 10.60 0.46 2.50
50 35.1 4.72 14.88 0.46 3.14
75 97.6 524 21.23 0.46 3.85
100 143 542 23.33 0.46 4.11
150 19.6 5.78 27.46 0.46 4.53
200 434 5.89 30.54 0.46 4.88
225 47.2 6.15 36.44 0.45 549
250 65.8 6.20 36.95 0.46 5.52
275 ) 5.0 5.74 30.14 0.48 491
300 44.5 5.57 28.43 0.49 4.78
400 43.1 5.96 32.98 0.48 520
500 22.7 5.60 28.97 049 4.87

is obscured by the plot of the data, while the asymptotic distribution lies well
to the right. The implication of this, of course, is that the actual size of a one-
tailed (right-sided) test, which is the natural procedure to employ to detect
positive persistence, would be smaller, the probability of error type two larger
and the power smaller, if the asymptotic distribution is used for inference.
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Table 7: Goodness of Fit of Beta Distributions: Uniform Population

T x? p q L U
25 8.8 456 12.32 0.43 2.77
50 31.9 5.10 19.36 0.45 3.66
75 61.7 5.67 27.18 0.44 448
100 985 5.65 28.50 0.46 4.69
150 39.7 5.06 . 23776 0.50 435
200 225 5.97 33.74 0.46 5.25
225 21.8 5.96 32.40 0.46 5.11
250 19.8 6.04 35.05 0.47 5.38
275 15.3 5.94 35.60 0.47 5.50
300 28.9 5.71 30.17 0.48 4.96
400 84.2 5.99 32.98 0.48 5.21
500 12.4 5.53 30.93 0.51 5.13

Given the superiority of the beta approximation, it would seem worthwhile to
derive an associated table of critical values for use in practical applications.

The first four moments of the statistic are very similar in terms of their
behaviour over different sample sizes in the case of the normal and uniform
populations (see Figures 2 to 5). Therefore the normal case was chosen as
representative, and a mathematical function was used to describe the
observed behaviour as a first step in the construction of a table of critical
values. Of course, for the mean, the exact result of Anis and Lloyd (1976) is
available which, as mentioned above, applies to the normal population, but
which also conforms well to our empirical results for the uniform population.
The function used for the second and higher moments may be referred to as
the estimated moment function, and this was chosen to be an inverse tangent
function of the form:

y; = A, arctan(f;T), i=2,3,4,

where y;is the ith estimated moment of (T_%)R/S, and A; and f; are
parameters to be determined. Since the inverse tangent has an asymptotic
value of —’25, the A, parameters were determined by dividing the relevant
asymptotic moment of the statistic by 7. Thus, for example, A = 0.6132(%)'1.
The f; values were determined by ordinary least squares regression of
tan(%) on T. Summary results from these regressions are given in Table 8.
It can'be seen from the R2? and t statistics that excellent fits and highly
significant results are obtained for the standard deviation and skewness
coefficient. In the case of the kurtosis coefficient the fit is somewhat lower but
the significance of the estimate of f; remains very high.
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Table 8: Estimated Parameters of Moment Functions and Regression

Statistics
Moment A; fi R? t
Std. Dev. 0.173 0.1680 0.98 86.3
Skewness 0.390 0.0838 0.92 34.9
Kurtosis 2.176 0.1700 0.74 174

Using the exact mean and the estimated moments corresponding to the
sample sizes required, values of p, q, U and L were obtained as described
earlier, and critical values from the associated beta approximate sampling
distributions derived. The values used for the moments are given for a few
selected sample sizes in Table 9, along with the parameters used in the final
beta fitting. The beta approximate critical values for the statistic are
presented in Table 10, together with the corresponding asymptotic values
given in the last row for purposes of comparison. The first column of Table 10
refers to sample size, the first row, excluding the first entry, refers to the
significance level, and the numbers in the body of the table are the critical
values of the statistic for the associated sample size and probability level.
Again, only selected sample sizes, and only standard probability levels, are
included in Table 10; fuller information is available from the authors.

Table 9: Exact Mean, Estimated Moments and Final Beta Parameters

T Mean Std Dev Skewness  Kurtosis p q L U
25 1.052 0.232 0.439 2.916 4.07 9.76 0.475 2.434
50 1.105 0.252 0.522 3.163 515 ° 18.02 0.443 3.420
75 1.130 0.259 0.552 3.248 5.47 22.49 0.444 3.952
100 1.145 0.262 0.567 3.290 5.61 25.21 0.449 4.278
150 1.164 0.265 0.582 3.333 573 28.31 0.457 4.655
200 1.175 0.267 0.590 3.354 5.79 30.03 0.464 4.866
225 1.180 0.268 0.592 3.361 5.81 30.63 0.466 4,941
250 1.183 0.268 0.595 3.367 5.82 31.12 0.469 5.002
275 1.186 0.269 0.596 3.371 5.83 31.53 0.471 5.052
300 1.189 0.269 0.598 3.375 5.84 31.87 0.473 5.096
400 1.197 0.270 0.602 3.386 5.87 32.84 0.479 5.218
500 1.203 0.270 0.604 3.392 5.88 33.44 0.483 5.294

As a final check, the quality of the beta distributions underlying the table
of critical values as approximations to the simulated sampling distributions
was examined, by means of goodness-of-fit statistics and plots. The numerical
results are given in Table 11, and a representative plot based on the uniform
population is given in Figure 11. The superiority of the final beta approxi-
mation compared to the asymptotic approximation is clear.
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Table 10: Beta Approximate Critical Valuesof T R/ S
T 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99
20 0.617 0.657 0.698 0.754 1.334 1.427 1.505 1.592
25 0.619 0.662 0.706 0.764 1.366 1.465 1.551 1.648
30 0.622 0.668 0.713 0.773 1.390 1.493 1.584 1.688
35 0.626 0.673 0.720 0.781 1.408 1.515 1.609 1.718
40 0.630 0.678 0.725 0.787 1.422 1.532 1.628 1.741
45 0.634 0.682 0.730 0.793 1.434 1.546 1.644 1.760
50 0.638 0.687 0.735 0.798 1.444 1.557 1.658 1.776
60 0.644 0.694 0.743 0.806 1.461 1.576 1.679 1.800
70 0.650 0.700 0.749 0.813 1.473 1.590 1.694 1.818
80 0.655 0.705 0.755 0.819 1.483 1.601 1.707 1.833"
90 0.659 0.710 0.759 0.824 1.491 1.610 1.717 1.845
100 0.663 0.714 0.764 0.828 1.498 1.618 1.726 1.854
120 0.669 0.720 0.770 0.835 1.509 1.630 1.739 1.870
140 0.674 0.726 0.776 0.841 1.517 1.640 1.749 1.881
160 0.679 0.730 0.781 0.846 1.524 1.647 1.758 1.890
180 0.682 0.734 0.784 0.850 1.530 1.653 1.764 1.898
200 0.686 0.737 0.788 0.853 1.534 1.658 1.770 1.904
225 0.689 0.741 0.791 0.857 1.539 1.664 1.776 1.910
250 0.692 0.744 0.794 0.860 1.544 1.668 1.780 1.915
275 0.695 0.747 0.797 0.863 1.547 1.672 1.785 1.920
300 0.697 0.749 0.800 0.865 1.550 1.675 1.788 1.924
350 0.701 0.753 0.804 0.869 1.555 1.681 1.794 1.930
400 0.704 0.756 0.807 0.873 1.560 1.685 1.799 1.935
450 0.707 0.759 0.810 0.876 1.563 1.689 1.803 1.940
500 0.709 0.761 0.812 0.878 1.566 1.692 1.806 1.943
oo 0.755 0.809 0.861 0.927 1.620 1.747 1.862 2.001

Table 11: Goodness of Fit Statistics for Final Beta Distributions:

Symmetric Populations

T Normal C Uniform
25 28.8 2136
50 364 97.8
75 92.9 109.0
100 10.6 160.7
150 24.6 121.3
200 484 82.1
225 43.3 137.2
250 70.7 76.7
275 10.6 64.2
300 46.2 85.1
400 44.1 142.1

500 23.9 473
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Figure 11: Empirical Sampling Distribution, Asymptotic and Final Beta
Approximations: Uniform Population, T=200

VI SUMMARY AND CONCLUSION

This paper has discussed the Hurst R/S statistic and its properties, and
has indicated some of its uses in economics. The adequacy of the asymptotic
“distribution as an approximation to the sampling distribution of the statistic
in small samples has been examined and an alternative beta approximation
suggested and assessed. A table of beta approximate critical values has also
been provided as an alternative to those of Lo (1991). The main conclusions
are as follows:

First, the asymptotic distribution is not a good approximation in the small
sample case, and even for samples as large as 500, whether observations
are taken from symmetric or asymmetric populations. In particular, the
asymptotic mean appears to differ markedly from the actual mean of the
small sample distribution, even in the case of samples from symmetric
populations where the other moments converge to their asymptotic values
reasonably quickly. The implication of this general finding is serious, namely,
that if asymptotic critical values are used for practical testing purposes, there
is a sizeable probability that inferences will be misleading.

Second, our results cast doubt on the widely held view that the R/S
statistic is robust to the form of population from which observations are
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taken. In particular, heavily skewed populations, such as the log-normal,
appear to give rise to very different behaviour of the moments of the sampling
distribution as sample size varies, as well as to the functional form of the
sampling distribution, which would not be as well approximated by a beta
distribution. This matter is the subject of continuing research.

Third, our suggested four-moment beta approximation is significantly
better than the asymptotic distribution as an approximation to the finite-
sample sampling distribution of the R/S statistic, at least for situations in
which the parent population is symmetric. This being the case, we would
suggest that our new table of critical values offers a rather more reliable’
basis for R/S inference in the case of symmetric populations than the table of
asymptotic critical values currently available in the literature.

REFERENCES

ANDREWS, D., 1991. “Heteroscedasticity and Autocorrelation Consistent Covariance
Matrix Estimation, Econometrica, Vol. 59, pp. 817-858.

ANIS, A.A., and E.H. LLOYD, 1976. “The Expected Value of the Adjusted Rescaled
Hurst Range of Independent Normal Summands”, Biometrika, Vol. 63, pp. 111-116.

BYERS, D., J. DAVIDSON, and D. PEEL, 1996. “Modelling Political Popularity”,
Working Paper, Cardiff Business School.

CAMPBELL, J.Y., AW. LO, and A.C. MacKINLAY, 1997. The Econometrics of
Financial Markets, Princeton: Princeton University Press.

DOOB, J.L., 1949. “Heuristic Approach to the Kolmogorov-Smirnov Theorems”,
Annals of Mathematical Statistics, Vol. 22, pp. 427-432.

FELLER, W., 1951. “The Asymptotic Distribution of the Range of Independent

" Random Variables, Annals of Mathematical Statistics, Vol. 20, pp. 393-403.

GRANGER, C., 1966. “The Typical Spectral Shape of an Economic Variable”,
Econometrica, Vol. 34, pp. 150-161.

HARRISON, M.J., 1972, “On Testing for Serial Correlation in Regression when the
Bounds Test is Inconclusive”, The Economic and Social Review, Vol. 4, No. 1,
pp- 41-57.

HAUBRICH, J., 1990. “Consumption and Fractional-differencing: Old and New
Anomalies”, Federal Reserve Bank of Cleveland, Working Paper No. 9010.

HAUBRICH, J., and A.W. LO, 1989. “The Sources and Nature of Long-term
Dependence in the Business Cycle”, National Bureau of Economic Research,
Working Paper No. 2951.

HIPEL, K., and A. McLEOD, 1978. “Preservation of the Rescaled Adjusted Range 2.
Simulation Studies Using Box-Jenkins Model”, Water Resource Research, Vol. 14,
pp. 509-516.

HURST, H., 1951. “Long-term Storage of Reservoirs”, Transactions of the American
Society of Civil Engineers, Vol. 116, pp. 770-779.

L’ECUYER, P., 1988. “Efficient and Portable Combined Random Number Generators”,
Communications of the Association for Computing Machinery, Vol. 31, pp. 742-774.

LO, AW, 1991. “Long-term Memory in Stock Market Prices”, Econometrica, Vol. 59,
pp- 1279-1313.



380 THE ECONOMIC AND SOCIAL REVIEW

McLEOD, A., and K. HIPEL, 1978. “Preservation of the Rescaled Adjusted Range 1.
A Reassessment of the Hurst Phenomenon”, Water Resource Research, Vol. 14,
pp. 491-508.

MANDELBROT, B., 1971.”"When Can Price be Arbitraged Efficiently? A Limit to the
Validity of the Random Walk and Martingale Models”, Review of Economics and
Statistics, Vol. 53, pp. 225-236.

MANDELBROT, B., 1972. “Statistical Methodology for Non-periodic Cycles: from the
Covariance to R/S Analysis”, Annals of Economic and Social Measurement, Vol. 1,
pp. 259-290.

MANDELBROT, B., and J. WALLIS, 1968. “Noah, Joseph and Operational
Hydrology”, Water Resource Research, Vol. 4, pp. 909-918.

‘MANDELBROT, B., and J. WALLIS, 1969a. “Computer Experiments with Fractional
Gaussian Noises”, Parts 1, 2, 3, Water Resources Research, Vol. 5, pp. 228-267.

MANDELBROT, B., and J. WALLIS, 1969b. “Some Long Run Properties of
Geophysical Records”, Water Resources Research, Vol. 5, pp. 321-340.

MANDELBROT, B., and J. WALLIS, 1969c. “Robustness of the Rescaled Range R/S in
the Measurement of Noncyclical Long Run Statistical Dependence”, Water
Resources Research, Vol. 5, pp. 967-988.

NEWEY, W., and K. WEST, 1987. A Simple Positive Semi-definite Heteroscedasticity
and Autocorrelation Consistent Covariance Matrix”, Econometrica, Vol. 55, pp.
703-708.

MOODY, J. and L. WU, 1995. Improved Estimates for the Rescaled Range and Hurst
Exponents, Working Paper, Portland: Oregon Graduate Institute.

PETERS, E., 1989. “Fractal Structures in the Capital Markets”, Financial Analysts
Journal, July/August, pp. 32-37.

PETERS, E., 1991. Chaos and Order in the Capital Markets, London: Wiley and Sons.

PETERS E., 1992. “R/S Analysis Using Logarithmic Returns”, Financial Analysts
Journal, November/December, pp. 81-82.

PETERS, E., 1994. Fractal Market Analysis, New York: Wiley and Sons.

PRESS, W.H., S.A. TEUKOLSKY, W.T. VETTERLING, and B.P. FLANNERY, 1992.
Numerical Recipes in C: the Art of Scientific Computing, 2nd edn., Cambridge:
Cambridge University Press.

SPITZER, F., 1956. “A Combinatorial Lemma and its Applications to Probability
Theory”, Transactions of the American Mathematical Society, Vol. 82, pp. 323-339.

TREACY, G., 1997. Aspects of the Small Sample Properties of the R/S Statistic,
M.Litt. Thesis, University of Dublin.

WALLIS, J.R.,, and N.C. MATALAS, 1970. “Small Sample Properties of H and K,

Estimators of the Hurst Coefficient H”, Water Resource Research, Vol. 6, pp. 15683-
1594.





