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Abstract: Parameter constancy is a fundamental requirement for empirical models to be useful 
for forecasting, analysing economic policy, or testing economic theories. However, there are 
surprises in defining a constant-parameter model, such that models with time-varying coeff
icients, and expansion of the parameterisation over time are both compatible with constancy, yet 
unbiased forecasts may not entail a sensible model choice. In-sample tests cannot determine 
likely post-sample predictive failure. A comparison of two models of U K money demand illus
trates the analysis empirically, as one suffers considerable predictive failure yet the other does 
not, despite being identical in-sample. 

I I N T R O D U C T I O N 

P arameter constancy is a fundamental requirement for empirical models 
to be useful for forecasting, analysing economic policy, or testing 

economic theories. Nevertheless, it remains unclear precisely what constancy 
entails, what aspects of models should be constant, and what features of 
models in-sample might help diagnose likely post-sample predictive failure. 
Consequently, this paper addresses the concept of parameter constancy in 
econometric models, its characterisation, and the implications of predictive 
failure. 
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We begin with the definition offered in Hendry (1995a): a parameter is 
constant i f it does not change over time. Further, a model is constant if none 
of its parameters changes. There are four surprises hidden in this definition 
of a constant-parameter model, several of which have apparently not been 
discussed previously. First , whether or not a given model is constant depends 
on how its parameter space is viewed: for example, models with time-varying 
coefficients may be constant, providing the underlying parameters are 
constant. Section 3.4 illustrates this issue. 

Second, the above formulation of constancy allows for what might be 
deemed considerable non-constancy, including the expansion of the par-
ameterisation — providing existing parameters stay the same. For example, 
the impact of changes in data definitions, or in the measurement system (e.g., 
the size of the banking sector; or a measure of opportunity cost) may neces
sitate adding variables and ostensibly new parameters to a model to capture 
the relevant changes, yet leave the model constant. Section I I I discusses this 
issue, and Section V I illustrates the analysis by an application to the demand 
for narrow money in the United Kingdom. 

Third , although predictive failure will manifest itself as apparent par
ameter change prior to an extension of the model under scrutiny, and 
constancy as defined above requires that the pre-existing parameters are 
recovered after the model extension, nevertheless, these together do not need 
orthogonality of the new variables to those already present. Rather, that 
state would ensure no change in existing parameters. I f adding new variables 
to re-establish full-sample constancy necessitates changing pre-existing par
ameters, then genuine parameter change occurs in the space under analysis. 

Fourth, in-sample tests cannot detect whether or not an empirical model 
will manifest predictive failure out of sample. The illustration in Section V I 
apparently fails badly when extended out of sample, yet the same in-sample 
model extended in an alternative way does not fail. Any test that anticipated 
failure (success) would be correct (wrong) for the first extension, and the 
reverse for the second. Yet, in general, one cannot know which is the valid 
extension i n an empirical setting. This outcome also helps explain why 
models may fit better than they predict in practice, since the relevant 
extension may be contingent on events that are not easily predictable a priori. 

Section I I reviews historical concerns about constancy and some earlier 
characterisations. Section I I I offers more formal definitions and develops 
some of their implications. The role of economic theory in determining 
empirical parameter constancy is discussed in Section IV . Then we turn to 
potential causes of predictive failure in Section V . The empirical example of 
U K M l demand in Section V I is a major focus of the paper as it illustrates the 
various concepts in a well-known setting. Section V I I concludes. 



n H I S T O R I C A L D E B A T E A B O U T C O N S T A N C Y 

The historical study of econometrics has produced a wealth of information 
about earlier views on constancy and invariance (see, inter alia, Epstein, 
1987; Morgan, 1990; Qin, 1993; and Hendry and Morgan, 1995) confirming 
that such concepts have long concerned econometricians. Since a detailed 
analysis of the foundations of econometrics is provided i n Hendry and 
Morgan (1995), the following comments merely serve to set the scene. 

The long-standing historical debate on the role of econometrics i n econ
omics alluded regularly to the potential — or otherwise — for permanence or 
constancy in empirical economic relationships (see e.g., Hendry, 1995b). A n 
early volley was fired by Henry Moore (1914) who believed that the dominant 
economic theory of his day (the comparative statics method of economic 
analysis) failed as a substitute for the experimental method of the exact 
sciences. Moore therefore tried to give a "concrete reality" to economic 
relationships, using multiple regression analyses to accord their proper roles 
to dynamics and the multivariate structure of economic behaviour. Such 
empirical relationships implicitly require at least within-sample constancy. 

Lionel Robbins (1932) strongly disagreed with Moore's approach, although 
he actually directed his criticisms at Henry Schultz (1928). I n particular, 
Robbins claimed that the formal categories of economic theory could not be 
given numerical representations, since neither individual values nor 
technical causes were uniform over time or space. Thus, statistical laws in 
economics failed Robbins' basic test: when the world changed, empirical laws 
changed. Robbins' parody of D r Blank seems to be the first of several 
attempts by economic theorists to deny a substantive role for econometrics in 
economics based on arguments about the non-constancy of the underlying 
economic reality. However, all forms of empirical evidence would be transient 
in Robbins' formulation, which may well be true in the long run, but is an 
extreme view over short periods. 

While there were no direct replies to Robbins, J a n Tinbergen (see 
Tinbergen, 1940) gave many practical demonstrations of his concern with 
parameter constancy in empirical models. For example, he tested his chosen 
equations on several sub-periods to check parameter constancy; he used 
forecasting tests to evaluate each equation's performance; and he tested the 
robustness of regression coefficients when adding other variables, as well as 
on the up-swing versus the down-swing of the cycle (see Morgan, 1990; and 
Hendry and Morgan, 1995). 

Nevertheless, Tinbergen's approach was criticised by both John Maynard 
Keynes and Ragnar Frisch (see Keynes, 1939, and Frisch, 1938 — printed in 
Hendry and Morgan, 1995). Keynes claimed a number of "pre-conditions" for 



the validity of inferences from data, including both "time homogeneity" (or 
parameter constancy) and a complete prior theoretical analysis, so he held 
to an extreme form of the "axiom of correct specification" (see Learner, 1978): 
statistical work in economics was deemed impossible without prior theoreti
cal knowledge. I n effect, Keynes' criticisms simply assumed the precedence of 
"theory" over "evidence". However, as argued i n Hendry (1995b), i f partial 
explanations are devoid of use (i.e., we cannot discover empirically anything 
that is not already known theoretically), Keynes must have believed no 
science ever progressed. 

The critique in Frisch (1938) was more directly focused on autonomy, and 
hence constancy (see Aldrich, 1989; Epstein, 1987; and Qin, 1989). Fr isch 
defined autonomous (structural) relations as those which were invariant to 
changes elsewhere in the economic system, whereas confluent relations were 
those which arose from similar time-series patterns producing correlations 
which might happen to be regular at a phenomenological level but were not 
based on underlying "substantive" relations: he cited the Harvard A - B - C 
curves as an example (see Persons, 1924). He then claimed that only descrip
tive equations could be discovered from passive observations, but such 
equations need not be autonomous and may not continue to hold if other 
equations i n the system altered. Frisch saw the need for a "super-structure" 
which should be given by economic theory, since invariance to hypothetical 
variations could not be learned from the available data. Consequently, he 
doubted whether Tinbergen could have found genuinely structural relations. 
His analysis is a clear statement of an argument later often attributed to 
Lucas (1976): see Favero and Hendry (1992) for an extensive discussion. 

I n his classic work, Haavelmo (1944) did not comment directly on these 
debates, but instead constructively formalised many of the essential concepts 
of econometrics, including autonomy. His treatment sets the scene for many 
later analyses and developments, but to appraise that literature, we now 
need some formal definitions and concepts, and will use those proposed in 
Hendry (1995a). 

I l l C H A R A C T E R I S I N G C O N S T A N C Y 

3.1 Parameter 
A parameter is a numerical entity which indexes a stochastic process (or a 

distribution function), and so does not alter across realisations of the relevant 
random variables. B y definition, therefore, a parameter must remain 
constant across realisations of the stochastic process, but it may or may not 
be constant over time, or dependent on other stochastic processes. As such, a 
parameter vector 9 of k elements is a point in a parameter space ©, which 



delineates its admissible values, usually 0 s 0 £ R k . Distribution functions 
are invariant to 1 - 1 reparameterisations (b = f (0) (e.g., variances to standard 
deviations, noting both are non-negative by definition), so 0 and <(> are equiva
lent parameterisations. A parameter 8 is identifiable if different distributions 
always result when G takes different values. 

3.2 Constancy 
The parameter 0 is constant over the time period T = {...,-2,-1,0,1,2,...} i f 

0 has the same value for all t e T . A model is constant over the time period T 
i f all of its parameters are constant. As the historical debate discussed in 
Section I I showed, constancy has long been regarded as a fundamental 
requirement for empirical modelling: in practice, models with no constancies 
cannot be used for forecasting, analysing economic policy, or testing economic 
theories. 

Despite the attempt to be precise and unambiguous, there remain non-
negligible problems with these definitions when the "correct" parameter-
isation of the data generation process is not known a priori. We now consider 
three inter-related issues: the composition of the parameter vector; the 
parameterisation itself; and the model formulation. 

3.3 Composition of the Parameter Vector 
First , precisely what are the parameters in any given setting? Depending 

on how a model is formulated, "over-parameterisation" may occur inadver
tently simply by not imposing constraints that are valid in the population. 
For example, consider a linear model which involves (say) 0 ( x l t + x 2 t ) but is 
written as 0 i X l t + 0 2 x 2 t . Since the (non)-constancy of 0 uniquely entails the 
(non)-constancy of (01,02), the redundancy seems unproblematic. However, 
since 1 - 1 transformations are allowed, zero may appear as a "parameter'', as 
in the equivalent representation: 

e i ( x i , t + x 2 , t ) + ( e 2 " 6i)x 2 ,t = <t>i(xi,t + x 2 > t ) + <j>2x2>t. 

I n the present example, (fe = 0, so is certainly constant. Unfortunately, as will 
be seen shortly, we have just opened Pandora's box. 

3.4 Time Variation 
Second, constant models can have time-varying coefficients (i.e., initially-

conjectured parameters), providing such models have an underlying set of 
constant parameters which characterise the probability mechanism. For 
example, consider the model: 



y t = oc tz t + e t where e t ~ IN[o, <S\ ] (1) 

when, for simplicity: 

z t = X z t _ 1 + cot where o) t~IN|o,a^,j 

with I "KI < 1, so z t is stationary and strongly exogenous for ô . Then the 
parameterisation [<X,G\ j in (1) is not constant when any a t ^ a . However, let 
cto be a fixed parameter in the auxiliary process: 

a t - P a t - i + v t where v t ~ I N ^ 0 , O v j (2) 

where p = 1, and {v t} is independent of {e t}. When y t and z t are defined over a 
sample space £2, and {v t} does not depend on Q , then (1) is a random-coef
ficients model. Nevertheless, it has an underlying constant parameterisation, 
defined by the constant unit root p in (2), the constant linear functional form 
in (1), the constant means of zero and fixed variances of the constant normal 
distributions of {e t} and {v t} (as well as the constant absence of serial depen
dence in {£t} and {v t}). 

To see that the parameterisation of the conditional relation is constant, 
reformulate the model in (1) as: 

t-i 
y t = a t z t + e t = ( a t _ ! + v t )z t + e t = a 0 z t + I v t_j 

Vi=0 

z t + e t = a 0 z t + u t (3) 

where CLQ is constant. Also, u t is a mean-zero, normal process conditional on z t , 
although it is autocorrelated and highly heteroscedastic, so all parameters in 
(3) are not constant: 

V [ u t ] - E t " 1 2 

.i=0 
E [ z* ] + E[e*] = ^ t + c*. 

I n effect, the formulation in terms of {a t } in (1) involved latent variables 
rather than parameters. 

Thi s issue is perhaps clearer in the formulation of structured time-series 
models as in Harvey (1981) and Harvey and Shephard (1992), such as: 

x t = u t + w t 



where {w t} and {v t} are mutually independent, identically distributed pro
cesses. At first sight, these again seem not to be "constant-parameter" models 
since n t ?t | i V t , but as Harvey shows, differencing x t yields: 

Ax t = A, + Aw t + v t , 

so the generated series has a constant unit root, a constant growth rate A, and 
a constant negative moving-average error, being a special case of a constant-
parameter A R I M A process. 

3.5 Model Expansion 
As noted in the introduction, somewhat surprisingly, the definition of 

model constancy also does not even preclude model expansion, or adaptation, 
providing existing parameters stay the same. For example, over a sample up 
to a time T 1 ( consider the model: 

y t = 8 x t + £ t where e t ~ I N | o , O g j (4) 

which describes the available data congruently, with constant, and highly 
significant, 6 > 0. The same equation is then fitted to a sample T]+1,. . . ,T, but 
now describes the data extremely poorly, and delivers the very different 
parameter 8 < 0 (say) for the coefficient of x t . Apparently, the model is non-
constant. In fact, there was a change in the measurement process for x t such 
that the "correct measure" after T x becomes x£ = x t + D t z t where D t is an 
indicator variable which is unity after T x and zero otherwise, when z t is the 
correction for mis-measuring x t . Thus the whole-period model is 

y t = 9x£ + e t where e t ~ I N [ O , a* ]. (5) 

Written as in (5), the model is constant; however, written as: 

y t = e(x t + D t z t ) + e t = e 1 x t + e 2 D t z t + e t (6) 

we have model expansion, and return to the first issue of redundant 
parameters. Whether or not the model is constant appears to depend on how 
it is written, which potentially depends on the inclusion of irrelevant zeroes, 
despite the invariance of the distribution function to 1 - 1 reparameter-
isations. There is no requirement of orthogonality between the original and 
extended variables: rather, if excluded variables are, and remain, orthogonal 
to included, the initial parameters will be unaffected by their exclusion. 

Despite these apparent drawbacks, our earlier definition of constancy has 



operational content. First , (4) is not constant over the whole sample period in 
the space of (y t , Xj); that issue is unambiguous. Using (4) to forecast over T x + 
1,...,T would be inadvisable. Second, in terms of (6), constancy requires ©i = 9, 
namely the original parameter of (4). Thus, i f in (6), 6 X * 8 , the expanded 
model would remain non-constant. I n turn, that would not preclude a 
parameterisation in which the model was constant. 

3.6 Predictive Failure Tests 
Final ly , it follows that there are no possible in-sample tests to detect 

whether or not an empirical model will manifest predictive failure out of 
sample. Any test that would have predicted the failure of (4) when extended 
out of sample using just x t as a regressor would do so correctly when the 
existence of D t z t was unknown. Unfortunately, the same test would deliver 
the wrong answer when the in-sample model was extended in the alternative 
way as in (6) which does not fail. Any test that anticipated failure (success) 
would be correct (wrong) for the first extension, and the reverse for the 
second. Yet, i n general in economics, it cannot be known for certain even after 
the event which is the valid extension. 

Of course, tests of the ex post non-constancy when using just x t as a 
regressor do deliver the correct result for that model, and so remain a useful 
tool for rejecting inappropriate specifications. The preceding paragraph refers 
to using a test based on information up to T x only, in order to anticipate how 
a given model will fare thereafter. 

Consequently, predictive failure is uniquely a post-sample problem, requir
ing change somewhere to "cause" change elsewhere. As argued in Hendry 
(1979), i n large samples from weakly stationary processes, models based on 
first and second moments of the data will fit as well to later samples as they 
did to the one they were selected from (subject to caveats from rare events, 
and perhaps "overfitting"). Thus, when they fail to do so, some form of non-
stationarity must be operating. 

I n many respects, the issue is analogous to discriminating a long cyclical 
upswing from secular growth. I n a sufficiently long sample, the former will 
eventually turn down and reveal itself — but for most practical purposes, a 
trend would suffice. Similarly, an apparent structural break may be just 
another drawing from a rare-event distribution, such that the composite 
distribution is stationary: for example, the collapse of Bretton Woods might 
just be one more instance in the historical sequence of joining and leaving the 
gold standard, the E R M etc. As each occurs, temporary predictive failure 
results; after enough exemplars, their effects can be modelled in a constant 
unconditional distribution. 



3.7 Forecast Accuracy 
A final issue is that of selecting or rejecting models on the basis of then-

forecast performance. When the purpose is forecasting, then clearly forecast 
performance is all that matters (although that may not be easy to judge: see 
Clements and Hendry, 1993, and the related discussion). However, econ
ometric models often have many purposes including testing theories and 
advising on alternative economic policies. Both because of the reasons 
enunciated in the previous subsection, and because forecasting devices can be 
"robustified" against some forms of predictive failure as we will now show, it 
is inadvisable to select models for policy using forecast performance alone. 

Consider a closed, linear dynamic system after transformation to 1(0) space 
i n n variables x t , written as a first-order vector autoregression: 

x t = Y + r x t _ ! + v t where v t ~ I N n [ 0 , Q v ] . (7) 

By assumption, x t has the unconditional mean: 

E [ x t ] = ( I n - r ) - 1 Y = ¥ . (8) 

The 1-step ahead forecasts at time T from (7) are: 

X T + i = Y + f x T O ) 

where < A 's on parameters denote estimates, and on random variables, 
forecasts. The forecast errors are: 

VT+1 = X T + 1 - X T + 1 -

Between the estimation and forecast periods, (y:T) changes to ("y* :!"*). 
The data are now generated by: 

x T + l = Y * + r * x T + v T + l - (10) 

From (9) and (10), assuming correctly measured initial conditions X T , the 1-
step ahead forecast error is in fact: 

VT+l = Y * - Y + r * x T - f x T + v T + l > (11) 

or, for consistently-estimated parameter values: 



v T + i = ( Y * - Y ) - ( Y - Y ) 

+ ( r - n ( x T - v ) - ( f - r ) ( x T - V ) . 

+ ( r - r ) v - ( f - r ) v + v T + 1 

Then, from (8), letting y* = ( I n - T* )\|/*, and assuming approximately un
biased estimates (which is surprisingly reasonable here, given the symmetric 
error distribution assumption, using the antithetic-variate argument in 
Hendry and Trivedi, 1972): 

Thus, forecasts are biased only to the extent that the long-run mean shifts. 
Importantly, the bias is zero for mean-zero processes (y = y* = v = vy* = 0), or 
when shifts in y* offset those in T* to leave vj/unaffected (\)/* =\|/). Alter
natively expressed, shifts in the deterministic factors, either directly or as a 
consequence of changes in other parameters, are the main determinants of 
serious forecast errors. There are variance effects as well, and the ex ante 
forecast-error variance estimate will mis-estimate that ruling ex post, but 
these seem to be dominated by the mean shift at times of structural breaks 
(see Clements and Hendry, 1996). 

When the parameter change occurs, forecasts will be incorrect from almost 
any statistical procedure. However, consider the following period. Persisting 
with forecasts from (9) will generate the same bias at T + 2 as in (13). 
However, robustness to regime shifts which bias forecasts can be obtained 
either by intercept corrections that carry forward the shift at time T + 1; or by 
suitable differencing to eliminate the changed intercept in later periods. Such 
devices can greatly improve forecast accuracy on bias measures, yet entail 
nothing about the usefulness for other purposes of the forecasting model. For 
example, at time T + 1 to forecast time T + 2, adding in the previous forecast 
error in (12) wil l on average produce unbiased forecasts (at a cost in forecast-
error variance). Alternatively, simply first differencing produces the naive 
forecast A x T + 2 = 0,or x x + 2 = x T + 1 with mean forecast error: 

E [ v T + 1 ] = ( Y * - y ) + ( r * - r ) v 

= d B - r ) ( v * - v ) . 
(13) 

E [ V T + 2 ] - E [ x T + 2 - x T + 2 ] 

= y * + ( r - I n ) E [ x T + 1 ] 

= ( i n - r ) V ' + ( r - i n ) v ' = o . 



Although the resulting forecast is less biased than that from (9), such an 
outcome hardly sustains the choice of that model for policy, or as a baseline 
for future modelling exercises. This issue is discussed i n more detail i n 
Clements and Hendry (1996) and Hendry and Mizon (1996), and is i l lus
trated below. 

I V E C O N O M I C T H E O R Y AND P A R A M E T E R C O N S T A N C Y 

There are major difficulties in determining a priori what aspects of a model 
will manifest constancy: i.e., what parameterisation will be constant. Poten
tial contenders include: "tastes and technology", but there are important 
caveats about fads and fashions on the one hand, and innovation, discovery, 
R&D, technical progress and learning on the other (compare the attitude of, 
say, Robbins, 1932); behavioural patterns such as propensities (as Keynes, 
1936), but here again there are similar caveats; sind we may even consider a 
biological basis, but this too is subject to changes in the relative delivery costs 
of alternative sources of satisfaction from the same caveats as before. 

At a more practical level, Koopmans (1937) argued against correlations 
being constants in economics, and in favour of partial derivatives, thereby 
setting the agenda for regression analysis. I believe this remains good advice, 
but in what transformations of the variables does one seek these constant 
derivatives? Levels; log levels; differences of logs (growth rates); or other non
linear functions; should one seek for propensities or elasticities, etc.? Are 
short-run or long-run effects more likely to be constant? C a n clever (ortho
gonal) parameterisations help isolate the constancies and allow marginal-
isation with respect to non-constancies? Or are indirect constancies, as in 
(l)-(3), more likely than direct as in (4)? 

Further, it can be nearly impossible to deduce an appropriate functional 
form that delivers al l the theoretical and empirical requirements. F o r 
example, long-term nominal interest rates appear to be an integrated process, 
yet are non-negative with a standard deviation that seems roughly propor
tional to the level, and inversely related to the price of long-term bonds: this 
suggests working with logs, except that the cost of borrowing (or gain from 
lending) manifestly depends on the (non-logged) level. 

Since non-linearities do not appear to be extreme in economics, I suspect 
that the precise transformation of the variables to deliver the correct 
functional form of derivatives is less important in practice than working with 
the correct partial: non-constancies induced by changing omitted variables 
seem more pernicious empirically than locally approximating a curve by a 
straight line. At first sight, countering the "omitted-variables" problem 
appears to require omniscience (to get the complete set of determining 
variables), but does so only i f one is unwilling to contemplate a progressive 



research strategy (see the Keynes debate in Section I I above). I n any case, on 
this issue economic theory is at best on a par with empirical econometrics: if 
either theory or evidence suggests the required extension of the information 
set, then it is useful to follow it up; i f either omits key variables, then its 
results wil l be tainted thereby. 

V P O S S I B L E C A U S E S O F P R E D I C T I V E F A I L U R E 

In-sample parameter constancy can offer no guarantee of out-of-sample 
constancy, but it is not ruled out either. Conversely, one cannot prove that 
the former is necessary for the latter. Possible causes of predictive failure of 
previously-constant models include the so-called Lucas (1976) critique: shifts 
i n underlying equilibria (e.g., taste changes); major financial innovations; 
non-modelled variables changing; alterations to measurement systems; policy 
regime changes; and major catastrophes; as well as technical change and 
learning. 

There have been many regime shifts historically: international examples 
include the formation and breakdown of the Bretton Woods agreement, and 
the two "oil crises" of the 1970s; i n Europe, the creation of major trading 
blocks and the various monetary systems; in the USA, the experiment with 
monetary control based on the New Operating Procedures; and in the U K , 
nationalisation then privatisation, Competition and Credit Control regula
tions, the introduction of interest-bearing retail sight deposits, and substan
tive switches in fiscal policy. Some specific markets, such as housing, have 
been subject to almost interminable changes affecting taxation (the extent of 
mortgage interest deductibility and the rate of deduction, the introduction 
and later abolition of Schedule A tax; effects from changes in capital gains 
taxes on other assets; alterations, sometimes retrospective, to tenants' rights; 
leasehold reform; the abolition of the mortgage cartel in favour of com
petition; financial deregulation; from rates, to the poll tax, to the council tax; 
and so on). Thus, it cannot be a surprise that predictive failure is common, 
and that models grow over time to adapt to such regime changes. 

This analysis also helps explain why models may fit better than they 
predict, since the relevant extension may be contingent on events that are not 
easy to predict a priori but are easy to incorporate later. While unhelpful for 
forecasting, an increasing complexity of empirical explanations over time is 
less problematic for modelling. Perhaps an attitude change is needed to pre
dictive failure that is later resolved to re-create constant parameters: instead 
of condemning it as yet another example of the emptiness of empirical work, 
it should be carefully evaluated to see if it is a positive development in 
progressive research — where we have learned from our mistakes. 



V I E M P I R I C A L C O N S T A N C Y I N U K M O N E Y D E M A N D 

To illustrate the preceding analysis empirically, we consider U K M l 
quarterly data (seasonally adjusted), and study the impact of a major 
financial innovation. The model postulated by Hendry and Mizon (1993) was 
estimated over the sample 1963(3) to 1983(2). The forecasts therefrom failed 
badly when the data period was extended to 1989(2). Rebuilding their model 
over the whole sample confirms a failure of cointegration and does not yield 
any improvement i n forecasting. However, the own interest rate (learning 
adjusted) was added by Hendry and Ericsson (1991) who thereby recovered 
the earlier model's parameter estimates, found cointegration again, and 
avoided predictive failure. Alternatively, adding a step-shift dummy to allow 
a separate intercept (autonomous growth) over the forecast period also 
essentially rescues the forecasts, similar to those from the "correct" model: 
this is a form of intercept correction (see Hendry and Clements, 1994). 

The M l demand model is from Hendry and Mizon (1993), fitted over T = 
1963(4)-1983(2). Let m denote nominal M l , i total final expenditure, p its 
deflator, and R the Local-Authority three-month bill interest rate: lower case 
denotes logs, and A the first difference. They find that the regressors (i, Ap, R) 
are weakly exogenous for the parameters of a conditional equation for m - p, 
which can therefore be modelled in isolation. Their initial unrestricted linear 
dynamic equation had the following long-run solution (cointegrating vector): 

E c m = m - i - p - 0 . 2 6 + 6.7Ap+7.1R 
(14) 

t u r = - 7 . 0 " 

where t u r strongly rejects a unit root in the dependent-variable lag 
polynomial (see Doornik and Hendry, 1994). Using (14) as the equihbrium-
correction mechanism (Ecm), reduction of the unrestricted dynamic equation 
led to the more parsimonious model: 

A(m-p) t = - 0.29 A ( m - i - p ) w - 0.76 A2Apt 
(0.06) (0.16) 

- 0.62 (ARt + ARt.!) - 0.094Eant_2 (15) 
(0.08) (0.009) 

R 2 = 0.70 6 = 1.30% V = 0.25 J = 0.77 
F a r (5 , 70) = 1.3 F a r e h (4,67) = 0.9 Xnd (2) = 2.1 F h e t (8 ,66) = 0.66 

I n (15), R 2 is the squared multiple correlation coefficient; 6 is the standard 
deviation of the residuals (as a percentage of (m - p)), adjusted for degrees of 
freedom; and O L S standard errors are shown in parentheses. The diagnostic 
tests are of the form Fj(k, T - N) which denotes an F-test against the alter-



native hypothesis j for: S^-order serial correlation ( F a r : see Godfrey, 1978), 
4 t h-order autoregressive conditional heteroscedasticity ( F a r c h : see Engle, 
1982), heteroscedasticity ( F h e t : see White, 1980); and a chi-square test for 
normality (Xad (2): see Doornik and Hansen, 1994): * and ** denote 
significance at the 5 per cent and 1 per cent levels respectively. V and J are 
the variance-change and joint parameter-constancy tests from Hansen (1992). 
Ax t = x t - x t _! and A 2 x t = x t - x t _ 2 . 

Equation (15) satisfies all the reported diagnostic tests, with interpretable 
parameters in a parsimonious model, and as Figure 1 shows, the recursive 
estimates are constant. Reading from left to right, then top to bottom, the 
first four graphs show the parameter estimates recursively, with ±2 standard 
errors on either side; then the innovations and the recursive residuals with 
0 ± 2 a t ; and finally, 1-step, break-point, and forecast Chow (1960) statistics, 
scaled by their 1 per cent significance levels (shown as a straight line at 
unity). Despite using one-off significance levels, none of the tests exceeds its 
1 per cent critical value anywhere in the sample. 

Nevertheless, updating (15) to 1989(2) yields a Chow statistic of F c (24, 75) 
= 7.98**. This is massive predictive failure, as seen graphically in Figure 2 
which shows the forecast statistics (fitted or forecast values with the actual 
outcomes; a cross plot of those; the residuals; and the forecasts with 95 per 
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Figure 1: Short-sample Recursive Estimates 



Figure 2: Short-sample Estimation with Forecast Statistics 

cent confidence bars centred on the forecasts). The forecasts depart ever 
further from the outcomes as the horizon increases, the residuals are 
dramatically larger out of sample, and the 95 per cent confidence bars fail to 
include most of the realised values. 

Such predictive failure is not simply earlier overfitting, since re-estimation 
over the extended sample T = 1963(4) - 1989(2) does not help: 

A(m-p) t = - 0.08 A ( m - i - p ) n - 0.73 A2Apt 
(0.09) (0.23) 

- 0.41 (AR t + A R w ) - 0.060 E c m w (16) 
(0.12) (0.012) 

R 2 = 0.37 a = 2.13% V = 1.73** J = 4.00** 
FJi5, 94) = 14.20** F a n h (4 ,91) = 11.48** xld (2) = 4.0 F h e t (8,90) = 1.89 

The full-sample recursive estimates starkly confirm the predictive failure: 
the residual standard deviation has almost doubled, and all the instability 
tests reveal non-constancy. Figure 3 shows the changes over the full sample 
in the estimates, as well as the large increase in the standard deviation. As 
will be shown below, this predictive failure could not be predicted by any i n -
sample statistical test, and does not reveal a failure of methodology, nor a 



failure of rigorous testing. Rather, it highlights that equilibrium-correction 
mechanisms are precisely that, namely they correct to a specific equuibrium, 
here defined by (14). Should that equilibrium shift for any reason, the model 
wi l l still correct to (14), and hence wil l make increasingly large forecast 
errors after a permanent shift to try and "drag" the model back to the old 
equilibrium. Thus , between equilibria, they do not error correct, so the 
original name in Davidson, Hendry, Srba and Yeo (1978) was a misnomer. 

1990 

1990 

1970 1980 1990 1970 1980 1990 1970 

Figure 3: Long-sample Recursive Estimates 

1980 1990 

I n fact, returning to the unrestricted model highlights the disintegration of 
cointegration: the long-run outcome is badly determined with uninterpretable 
coefficient magnitudes, and the unit-root t-test does not reject the null of no 
cointegration. I n terms of the preceding analysis, there is a clear structural 
break. Such problems often seem to occur in empirical research, and may 
appear to cast doubt on the modelling strategy advocated in e.g., Hendry 
(1995a). The interesting issue is whether there are additional variables that 
re-create a constant-parameter money-demand equation in which the original 
parameters are closely reproduced. Given the full-sample estimates, that does 
not seem possible within the present information set of linear functions of m 
- p, i , R, and Ap. 

The solution proposed by Hendry and Ericsson (1991) is to add a measure 
of the own interest rate on M l , a variable that was zero until 1984 (other 



than implicit interest payments used to offset transactions costs, for which 
commercial banks did not charge), when a change in the law allowed interest 
on retail sight deposits (interest-bearing checking accounts). This induced a 
large change i n the opportunity cost of holding M l . Let R o t denote the 
(learning-adjusted) own rate on M l used in Hendry and Ericsson (1991), and 
shown in the first block of Figure 4 with the real money stock m - p. The 
sharp rise in m - p coincides with the jump from zero in R 0 , as is necessary 
for constancy to occur in the five-dimensional system m - p, i , R, R 0 and Ap. 
The opportunity cost of holding M l after 1984 is measured by the net rate, 
R^t = R t - R 0 i t . Figure 4 also shows the two interest rates R t and R^t , the 
corresponding disequilibrium measures, and the changes in the interest rates 
in the "competing" models. 

Re-estimation on replacing Rt by R ^ t over T = 1963(4) - 1989(2) delivers: 

A(m-p) t = - 0.27 A d n - i - p ) ^ ! - 0.83 A2Apt 
(0.06) (0.14) 

- 0.59 ( A R ^ t + A R ^ ) - 0.093 E c n v 2 (17) 
(0.07) (0.006) 

R 2 = 0.77 a = 1.28% V = 0.22 J = 0.68 
F^tf, 94) = 1.81 F ^ W , 91) = 0.81 xld <2) = 1-2 F h et(8,90) = 0.87 

The final parameter estimates reported in Equation (17) impose the 
restriction that the outside and own rates have equal-magnitude, opposite-
sign effects, so only their net differential R^t affects money demand (Rn,t-2 is 
used in E c m ^ ) - The estimates and fit are very similar to those in (15), and no 
diagnostic test is significant. Figure 5 shows the forecast statistics for the 
extended model estimated on the short sample and forecasting the previously 
difficult period. As can be seen, the forecast failure has been removed, 
confirming constancy in the extended set of variables. The test of parameter 
constancy over 1983(3)-1989(2) yields F c (24 , 75) = 0.89 revealing no 
breakdown in the extended model. The close similarity of new and old 
parameter estimates suggests that the constancy is not spurious. 

Several morals follow from this illustration of the earlier analysis. First , 
it is an example of "extended constancy" in a relation among the variables m, 
i , p, R t , R o t : when R o t is used as an unrestricted regressor, the model is 
enlarged, but the crucial index of its constancy is that al l the previous 
parameters retain their original values. This is an essential attribute of a 
constant model. Second, updating models requires the use of sensible 
measurements which adapt to changing environments: retaining R t is a bad 
proxy for opportunity cost post 1984. Third, as noted, there is no possible 
within-sample test of later behaviour: whether or not predictive failure is 
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Figure 4: Time-series of Interest Rates, Real Money, and Disequiiibria 
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Figure 5: Estimation of Extended Model with Forecast Statistics 



manifested depends oh how the model is updated, not on the in-sample 
behaviour. Next, both evidence and economic theory played crucial roles in 
re-establishing constancy, the latter "predicting" the same magnitude, 
opposite sign effect that allowed the creation of the net interest rate. Further, 
the decision to alter the law concerning the payment of interest on checking 
accounts was not readily predictable in advance, so the empirical model 
sequence fits better than it forecasts. 

Finally, to illustrate the analysis of forecast robustness in Section 3.7, i f 
the crucial shift is that in the equilibrium mean of the original model, then a 
step-shift dummy should remove the predictive failure, akin to the intercept 
correction (see Hendry and Clements, 1994). There is a problem of how to 
date the break point at which the dummy commences (i.e., when predictive 
failure first becomes noticeable), but empirical experimentation suggests 
1985(1), leading to an indicator variable that is unity thereafter. The dummy 
mimics the effect of R 0 remarkably well, inducing almost the same residual 
variance, and long-run outcome. Indeed, despite using only three non-zero in -
sample values for estimation, respectable forecasts result: Figure 6 records 
the estimation and forecast statistics for the original model with a shift 
dummy, but without R o t , in terms of the level of m t . 
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Figure 6: Forecast Statistics for the Model with a Shift Dummy 



Similarly, the first-difference projection A ( m - p ) t + 1 = A ( m - p ) t yields a 
Chow test value of F c (24, 79) = 0.66, so differencing also removes the 
equilibrium mean shift, but does not thereby justify that model beyond its 
forecast-error robustness. 

V I I C O N C L U S I O N 

The constancy of a model is a more subtle concept than might have been 
expected, and was explored above. A number of implications of the definition 
seem surprising, particularly that model expansion need not be inconsistent 
with constancy. Constancy therefore depends on precisely how an empirical 
model is interpreted and updated. Ex ante constancy could be construed as 
the necessary ingredient for adequate forecasts, whereas ex post constancy of 
the same model indicates a progression in understanding. I n the empirical 
example, the interest rate regressor was interpreted as the measure of the 
opportunity cost of holding idle money for transactions purposes (see e.g., 
Hendry, 1985, p. 81), so the extension using R* rather than R^t was the in
appropriate one, albeit the first to suggest that misprediction was occurring. 

I t then followed that in-sample tests could not reveal the likely predictive 
failure of a model on a later sample. A n analogy might be a spacecraft to a 
distant planet being exactly on course and forecast to land successfully, just 
before being destroyed by a meteorite. Also note that the resulting predictive 
failure in such a case hardly refutes the underlying physical theories. 

Further, we showed that forecast accuracy is not the ultimate test of a 
model, so forecast dominance is not necessarily a reflection of usefulness for 
other purposes. This result was established theoretically for changes i n 
deterministic terms, and empirically for whatever caused the initial speci
fication of U K M l not to forecast. 

Thus , despite the existence of many empirically unsuccessful models, as 
argued in Hendry (1995b), the development of congruent, theory-consistent 
and constant models remains a viable route in econometrics, even with 
evolving data. Further, since progressive research can discover structure in 
part without prior knowledge of the whole, Keynes's worry about the need for 
knowledge of the complete specification in advance of empirical research is 
misplaced: we can learn from our mistakes. 
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