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Determination of Linear Relations Between
Systematic Parts of Variables with Errors
of Observation the Variances of Which

are Unknown*

R.C. GEARY .
Department of Applied Economics, University of Cambridge

Abstract: Given a sufficient number of instrumental variables significantly correlated with the
investigational variables, consistent estimates of the coefficients of the linear relations can be
determined (if they exist), without knowledge of the disturbance variances. The estimates are
discussed from the viewpoint of probability convergence. In the case of two investigational and
one instrumental variable, all three variables distributed on the normal surface, the distribution
of the estimate of the coefficient is found exactly for all sample sizes, on certain hypotheses. The
distribution function is remarkably simple. The applicability of the theorem to economic time
series is discussed by (a) comparing the probability inferences derived from this Model A with
those for the simplest stationary time-series model, termed Model B, and (b) by comparing the
large-sample variances on several models. It is found that the theory can be used with confidence
when the series are not too short and the error variances not too large. The theory is applied to a
particular time series, showing that the accuracy of the estimate of the coefficient depends on the
correlation between the instrumental variable and the two investigational variables. The theory
to which reference is made in Sections II, IIl, and IV, relating to the two-investigational-variable
case, is extended to many variables and tests are given, applicable when samples are not small,
for determining the significance of coefficient estimates.

I INTRODUCTION

ince the appearance in 1934 of Ragnar Frisch’s well-known book
Statistical Confluence Analysis by Means of Complete Regression
Systems, statisticians have come to recognize that, whatever else they are,
the classical regression equations are not functional relations between the

*This paper was first published in Econometrica, Vol. 17, No. 1, 1949. It is reproduced here with
minor editorial amendments with the kind permission of The Econometrics Society.
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variables. Reiersgl (1941, 1945) and Geary (1942, 1943) have shown how
relations, consistent in the statistical sense, between variables can be derived.
- Reiersgl used what he termed the instrumental sets of variables in contra-
distinction to the investigational set, which are the variables the systematic
. parts of which enter into the relations; Reiersgl’s method is that used in this
communication. Geary showed how relations could be established from
knowledge of the investigational set alone by having recourse to semi-
invariants of power greater than two and of dimension greater than unity.

It is agsumed throughout the paper that the variances of the disturbances
are not known in advance or cannot be efficiently estimated from the obser-
vations. The disturbance variances occur explicitly in several formulae,
usually in order that means and variances of estimates a of the coefficient of
relationship, computed for different mathematical models, may be compared.
It will be shown elsewhere (Geary, 1948) that when the disturbance variance
is known or can be estimated and when certain other conditions are satisfied,
methods_of estimation of the coefficients, more efficient in the statistical
sense than those contemplated here, can be devised.

Most of the present paper is devoted to the frequency distribution and the
sampling errors of the coefficient in the simplest case, that in which a single
relation is assumed to subsist between the systematic parts of two variables.
In the final section, however, the errors in the coefficients of relations in more
than two variables are dealt with.

II THE PROBLEM

Measures of a random sample of n of (2p — 1) variables in two sets are
observed:

@ x,(i=12,-,p)

(ii) . (t = 1,25"'yn)7
xrt(r:p+]'7p+2s'“72p—1)

where the x;; represent the measures of the investigational set and the x,
the measures of the instrumental set. Each variable of the latter set is signifi-
cantly correlated with at least one variable of the former set. It will be shown
later that the higher the correlation (in a sense defined) between the two sets
the more efficient the estimates of the coefficients of the linear relation.

Each observation of the investigational set is made subject to error or
disturbance, i.e.,
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Xy = Xip +Xjp, @

where xj, is the systematic part and xj the error or disturbance. The
following linear relation holds exactly (i.e., for all t) between the systematic
parts: '

Y o.x, =C, @)
i=1

where C is a constant. It is assumed that the relation cannot be expressed in
fewer variables than p. Estimates that are consistent in the statistical sense
are derived for the coefficient ratios ¢;/¢y. The main object of the paper is to
discuss the frequency distribution of these estimates which are found as
follows. From (2) '

304(x), ~X) =0, L ®

where nX; =3, x}; . On multiplying by x,, and taking means of n, we have

p
Yong =0 (r=p+Lp+2,-,2p-1), 4)
i=1 .

where

1 4 -t
;= — % (X — X)Xy (5)

Assume that the disturbances xj; are independent of one another, of the
systematic parts of the investigational set, and of the instrumental set, that
their universal means are zero, and that the variances of the variables of the
instrumental set are finite, which assumptions rule out, for the moment, a
lagged investigational variable as an instrumental variable. The systematic
parts xj, can be any numbers whatever; and it is not necessary to assume
that the error variance is the same for each t. It follows that the Reiersgl
method is applicable when the variables are stationary time series, under
unrestrictive conditions. Let

1
I LEE NI S WS DU O

which, different from n;,, may be computed from the observations. Then
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1 -
my —ng, = Hzt(xit - X{)Xrt, (7
so that _
and
var(m, -n,)=E(m,_ -n;)*=0/n). )

It follows that (m;, — n;;) tends in probability towards zero with increasing n.
We write

Yimya; =0 (r=p+1, p+2, ---,2p-1). (10)

The ratios a; /a,(i=2,3,-:-,p), solutions of the simultaneous equations (10),
are continuous functions of the m;, and hence tend in probability towards the
same functions of the n;, — which, by hypothesis, are determinate — i.e., the
o;/a,. ‘

The method can, of course, be used to estimate the coefficients of more
than one linear relation between the systematic parts of the variables,
provided that these relations are in the fewest variables, which implies,
incidentally, that no two relations are such that all the variables in one
appear in the other. The method is accordingly not well adapted to the
discovery of structural relations unless the form of these relations (i.e., the
variables that they contain) is given in advance and satisfies the condition
just specified.

The difficulty of obtaining a number of instrumental variables highly
correlated with the investigational variables is, of course, a circumstance that
limits the usefulness of the method described in this section. When the
variables are economic time series Reiersgl has made the ingenious sugges-
tion that lagged or forwarded investigational variables can be used as instru-
mental variables. This method usefully exploits the property characteristic of
economic time series, namely serial correlation. In applying this method we
would take x;(t=1,2,--,n) for one of the x,,. This introduces a slight
complication into the convergence in probability theorem, in the proof that
(n; — m;;) converges in probability to zero when r = i. We can easily show that
in this case E(m;, — n;;) = 0(1/n) and (as before) E(m;; — n;;)? = 0(1/n). It is
necessary to assume in addition the existence of the fourth moments of the
errors.



DETERMINATION OF LINEAR RELATIONS 91

III THE EXACT-FREQUENCY DISTRIBUTION OF THE COEFFICIENT a

The problem dealt with in this section is the simplest one that can arise in
the order of ideas of this paper, namely that in which the observed sample is
(X14,Xg¢,X3) (£ =12,---,n), of which x,;, and x,, are investigational and xg,
is instrumental. The following assumptions are made:

(i) (Xy4,%q¢,Xg;) is distributed on the normal surface with known variance-
covariance matrix ”uijl (i,j=1,2,3) the same for each t; in practice this
matrix will usually have to be estimated from the sample;

(ii) the sets of observations are statistically independent for different t;

(iii) the investigational variables x;, (i = 1, 2) are the sum of a systematic
part x; and a disturbance in error xj; as the latter are independent of one
another, of the systematic parts, and of the instrumental variables, both sys-
tematic parts and disturbances must, by the Cramér-Lévy theorem, be each
normally distributed.

It is recognized that this theory is not formally apphcable to any plausible
model of economic time series since, on account of the phenomenon of serial
correlation, we cannot reasonably assume that the frequency distributions
are the same for different t: at least the means should be deemed to alter. The
application of the theorem to time series is discussed in detail in the following
section. »

(iv) The relation xj, =ox, +C holds exactly between the systematic
parts. The problem is to determine the frequency distribution of the estimate
a of the coefficient o given by

a=—, (11)
where

nX, = i(xn -X)(xg —X3),
t=1

(12)
nX, =2 (X9, = X)Xy —X3).
Let the joint frequency of (x;,,x%,,,X3,) be

3 :

20?2 {exp (= _Qt }dxlt dx,, dxg,, 13)
where
3 3

Qt =2 Zaijxitxjt ’ (14)

i=1 j=1
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with

aij = aji =u-, (15)
the latter being the element of the reciprocal matrix HAll (of which the
determinant is A) of the variance-covariance matrix llp;ll The universal

means of x; may be assumed to be zero, without loss of generality.
The characteristic function f(s,t) of (x,,x,) is

n/2
(2m) (16)
I;Idxn dx,, dxg,
which is known to equall
(n-1)/2
O
where
is
Oy %y %3 Y
A*=lo,, Oy Oy -% . (18)
is it
A3y o YT 33
Hence

2i 1 —(n-1)/2
f(s,t) = {1— = (ks + Koyt + —5 (kgos” ~ 2k st + koztz)} ,  (19)
n . n
where, on using (15) and well-known determinantal properties, we have

Koo =Wqjhgs — H?s,
Ko =Hy3,

K1y =Hoghliz —KigMsas, (20)
koy =Has,

2
koo = Hogllaz — Hos-

1 See, for example, H. Cramér (1946), Mathematical Methods of Statistics, p. 405.
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Geary (1944), generalizing a result of H. Cramér (1937),2 has shown that the
frequency distribution of a given by (11) can, under very general conditions,
be expressed in the form

o) =—[", ds[af(s’t) ] , @1)
2m ot Ji-
which, applied to (19), gives
d(a)= gl—l)f ds {lkm +(kyy +k02a)}

9 2 ~(n+1)/2
1S
{1-—(1(10 - k01a)+ —(kgo +2k 2 +kgga )} . @

Suppose n is an odd number. It is easy to show that (k, kg, ‘k§1) is always
positive, hence that

kyy +2k a2+ k(,2a2

is always positive. Accordingly set the last expression in the brackets { } in
(22) equal to
[1__151_Sj(1_§_1§) (23)
n n

so that

24)
KK’ = —(ky, + 2k ,a +kgpa’),

from which we infer that
2,12
K- K’ =2{(0;g ~kgpa)’ + (g0 + 2k pya+ Kga®)} (25)

Hence K and K’ are real quantities, positive and negative respectively.

In the integral on the right-hand side of (22) regard s as a complex
variable. The function to be integrated has then two poles each of order
(n+1)/2 at —ni/K and -ni/K’, the former accordingly on the negative and the

2. The result is also given in Cramér, op. cit., p. 317.
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latter on the positive side of the imaginary axis. If the function be integrated
around a closed contour consisting of the real axis and the great semicircle
below the real axis, by Cauchy’s theorem the integral must equal the residue
at the pole -ni/K, which is found to be

( - 1)' - 1 7N~ n—D
-2 o 2) ( 3)/2(K -K’) {(kzok(n + k11k1o)
{(———n — 1)'} (26)
2 )|

+aky kg +kyokep)l

This must be the function ¢(a) required since the integral around the great
circle is obviously zero. Making the substitution

1
y=(kpa—kg)/ (kgq +2k ja + koya®)?
’ 2
= (Hgga = Hyg H(Mgghtas = ups)a” —2(kghes —Maghyg)a+ (Myhag —H3)E  (27)

-1
{”33(“223 2”123"' Bi) _ 1} i
(Mg —pgy)

and using (24), (25), and (27), we find

=)
2 (1+y ) n/2

———LE‘—%}«/" | (28)

so that yyn-1 is distributed as the Gosset-Fisher t with (n - 1) degrees of
freedom.

This result? is reminiscent of that of Geary (1930) that if X] and X} are
normally distributed with_ X5 unlikely to assume negative values and

o(a) da=

a’'=Xj/ X2 (29)
then

’ ’ ’ ’ 2 ’ ’ l
y'Vn-1=(uga’~ i)/ (esa” — 20758 +1g)’, (30)

3. The simplicity of the result as compared with the manner of derivation of this theorem
suggests that it might be possible to show directly that y is the quotient of a normal mean and
standard deviation for a sample of n.
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where pj, and pg, are the universal means of X] and Xj and pj, uj,, and
Moo the variances and covariances, is normally distributed with mean zero
and variance unity. What would this latter theorem show if X; and X, given
by (12) were normally distributed (as, of course, they tend to be when n tends
towards infinity)? We find

2 -3
y' = {“33(”223 - 2“,12‘; tHu 1} . (31)
(U23a —Hqs3 )

Comparing (31) with (27) (last expression) we see that they are identical
except for a change of sign before the unit. At first sight this might appear to
be a contradiction since both distributions must in the limit, as n tends
towards infinity, be the same. The anomaly is explained by the fact that the
identical first term in the brackets is of order n.

In applying formula (27) it will, of course, be necessary in almost every
case to estimate the variance-covariance matrix ju; " from the observations.
The corresponding Studentized problem of finding the distribution of, e.g.,

m 4, (mypa” -2m,a+m;;)/ ma,(a—-o) (32)

where

a=m;/Mygand =43/ ys, (33)

the m’s being the sample values of the p’s, would appear to be of considerable
complexity which may render it the more attractive to statisticians with
greater ingenuity than the writer.

In practical applications of the theorem one will set in the usual way

2 -1 2 :
Was (Hopa ‘2“1232"'1111) —1b <2 (34)
(u23a_u13) n—l

where 7 is the probability point for the t-distribution corresponding to the
predetermined probability 0.1, 0.05, 0.01, etc., so that

2
Bog(lopd —2Mppa+py) o n-1_ (35)

(Hgza— F—Lm)2 T

The limits of a are found from
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022" (Kitg; — Hophas) ~ 28(KHghas = Ryghas) + (KiLjy — Hyjhag): (36)

As a measure of the possible range of variation of the estimate a correspond-

ing to a given probability level we may take the difference 3 of the roots of the
expression on the right of (36). We find

2 2 2 2 \|3
52 2{”33‘((“22”13 ~ 2iypH13ho3 + H1ilag) = Hag (R, = ”12)}
| (KM3g — Haghlgs)

(37

Bearing in mind that « is at the order of n, a large-sample approximation to &
is

2 1
A=—g—r {Usa(uzzuia ~ 2l 19l 1gHos + “11”33)}2- (38)
K pgs \

Perhaps fhe most suggestive transformation is that found by substituting
M+ Sy

for py, where the n’ and u” represent the variance-covariances of the
systematic and error parts respectively of the observations. We find
L

' J‘ ” ” l _L .
A =202 (W) +aul) /K . (39)

The precision of the estimate in the large-sample case accordingly depends
inversely on pg; and directly on i3 (when the variables x, and x,, are given)
which is tantamount to stating that we should select (if we have a choice) the
instrumental variable with the highest correlation with x;; and x4. This, of
course, is just what would have been anticipated. :

The question naturally arises here: if we had several instrumental
variables available, would an appreciable improvement in the estimate be .
effected by using a combination of them and, if so, in what way? It is clear
that if any instrumental variable is highly correlated with one of the investi-
gational variables, x;; or x4 then the improvement to be expected from any
combination of variables is slight. On the other hand if the correlation
between members of the investigational and instrumental sets is of the order
of, say, 0.7 it will be worth while to try to find an optimum combination. Let
the instrumental sets be x(3‘t) (i=12,--,k; t=12,---,n) and let
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-
Xgp = 2.C;Xg,. (40)
i=1

Required to find the coefficients c; so that the variance is unity and the
covariance |y maximum, i.e.,

.Z'vijci‘c i= 1 41)
i.j
Moy =S ¢;A; maximum (42)
i
where
Vi = Exgt)x(ajt) , A = Exgxy,. (43)

In the usual way the solution is given by
Z;vie; =B, (44)

where B is a Lagrange multiplier. Hence
¢, =B v, (45)

which substituted in (41) gives f: so the ¢; are known.

Consider the very simple case in which all the v;(i# j) are equal to v and
all the A; to A, both v and A being positive. Suppose, further, that the
variances of xo and x(3‘t) are all unity, so that A and v are correlation
coefficients. Then from (39) it will be seen to be advantageous in the large-
sample case to take for instrumental variable a weighted mean of the
individual variables x$, provided that

(Zi ZJ Vijcicj )i / zi ci)\'i
y (46)
=(Sicf +2vETeie;) /A <%

i<j

Obviously the c¢; should be all taken as equal to give the minimum value, so

that the inequality would become
k+vkk-1)
—_—

= 1, 7
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which is always true provided k > 1 since v < 1. As an example suppose k = 5
and v = 0.7. Then the improvement effected by taking as instrumental

variable an average of the five series, as compared with using any one of
them, will be

(5+0.7x 20)%/5 =0.87,

which is equivalent to an improvement in accuracy of 13 per cent as
compared with using any one of them. Even if we had available an infinity of
investigational sets the improvement would be only 1 to v%, i.e., whenv=0.7
by 16 per cent. No matter what approach is made to this problem improved
accuracy is difficult of attainment.

IV APPLICATION TO ECONOMIC TIME SERIES

The theory of relationship between statistics finds its most important
application in economic time series and it is accordingly necessary to consider
the suitability of the sampling model of Section III for dealing with these
kinds of statistics. Formally the model is inappropriate. While we might take
as the three-dimensional normal4 universe the three series indefinitely
extended in time, i.e., as consisting of observations x;, (i=1,2, 3;t=-N, -N
+1,---,N -1, N, where N is indefinitely large), for the theorem to apply the
sample of n would have to be xj; (j=12,---,n), where the t; are positive or
negative integers selected at random. In practice this will hardly ever be the
case since the sample will nearly always consist of a series of observations
consecutive in time. What is wanted is a sampling theory appropriate to
sequences of n, so that when we state that the probability is, say, 1/20 that a
differs from a given o (ﬁsually zero) by at least the amount found in the given
sample; we mean that we should expect to find approximately a proportion of
1/20 of such cases if the experiment were -repeated a large number of times
for sequences of n at different nonoverlapping parts of the indefinitely
extended time series.

It will be shown, hdwever, that for time series of moderate length the
theorem in Section III can be applied with confidence and, as the practical
application considered in Section V will make abundantly clear, the theorem,
while applicable to samples of all sizes, will, in practice, yield useful results
only when the samples are fairly large. It will be noted, in the first place, that
a, given by (11), is symmetrical in the t, so that the order in which the sets of
three (Xq,, Xy, X5,) are taken is immaterial — the sample sequence need
not be envisaged as sezi‘ially correlated. We are accordingly quite at liberty

4. The validity of the assumption of normality is discussed later.
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to regard the particular sample as a random sample from some three-
dimensional time universe, i.e., sequences indefinitely extended in time. The
trouble is that the variance-covariance matrix "p.ij |Lhas to be estimated from
the particular sample and we know that unless the sample series are very
long (for example covering several periods if the series are periodic) the
estimates of the matrix cannot be regarded as statistically consistent: the
estimates of the variances in particular would usually be too low, if, for
instance, the sample series covered only part of a period. In other words,
different short sample sequences would yield estimates of the variance that
for the given sample number would vary more widely than they should if
computed from completely random samples all from the same universe.

Now it will have been seen, from (27), that the frequency distribution of a
depends on that of

uas(uzza 2“12a + “11)

7= (48)
(g2 —Hy)”
Set

Hip = m Pi2>

M = m P13

23 = m Pas>

where the p;; are coefficients of correlétion. Then
z=(a’ —21'129123""52172)/(%33—913’512)2, ' (49)

where tfz =l;,/1ee. The population parameters are accordingly reduced to
four, consisting of 17, and the three correlation coefficients. While the
estimates of py; and p,, from the sample sequence will be biased it is
plausible to assume that the estimate of their ratio 'cfz might be unbiased,
particularly having regard to the fact that the system to be workable must be
a highly correlated one. Nor does there appear to be any good reason why the
three correlation-coefficient estimates should be biased. If it does no more,
this aspect suggests that the theorem of Section III might be adapted to time
series even if these are serially correlated.

Comparison of Simplest Time-Series Frequency with Frequency of Section II1
The frequency distribution of the estimate a of the coefficient o on the
assumptions of the previous section will now be compared with the frequency
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distribution of the estimate from a time-series model, of the simplest
stationary type. This will be termed Model B (in contra-distinction to Model A
of Section III) and is as follows:

Three series of observations x,(i=12,3; t=12,---,n) are made at equal
time intervals of which the investigational sets x;, and x,, are given by

X, = X5, +X7
1t = Xy + Xy
’ ” (50)
Koy = Xgy + Xy,

where the systematic parts x}, and x5, are connected by the exact relation
X3y = 0Xgy,
the same for all t. We also assume that
Lix) =0=1X,Xp.

The actual sample investigational series are then assumed to consist in
systematic parts x}, and x,, fixed once for all not only in magnitude but in
order, disturbed by x7, and x;, assumed to be normally distributed with
means zero and variances pj; and g, independent of one another of the
systematic parts, and with instrumental series x3; (with ¥;x;, =0) also
regarded as fixed from sample to sample: this implies, of course, that the
series xg is not a lagged investigational variable, a case considered later. The
estimate a of o on Model B is then

a=21, _ 51
X,
where
Xy =i XyXats
Xy =Tt XorXay-
Clearly
EX, =3, %X}, Xq, =0 X0 Xa,,
1= Lt X X3¢ t XotX3t (52)

A ’,
EX, =2 Xo X,

so that a is a consistent estimate of a.. The variances of X; and X, are
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2 2
Oy, =H112¢X5:s
2 2 (53)
”
xp =Moo Xt X3

c
and X; and X, are stochastically independent. Now a is the quotient of two
normal variates X; and X, of which it may be assumed that the denominator
X, is unlikely to assume negative values. Hence by Geary (1930)

u =-————aEf22'EX21 (54)
(6% e +a? )

is normally distributed with mean zero and variance unity for all sample
sizes. This sampling model is so much more simple than Model A that it is
natural to inquire the reason why it should not be used in preference to
Model A in connection with the theory of linear relationship in time or
otherwise. The answer is, of course, that the essential feature of the theory
developed in this communication is that the error variances uj; and pj, are
not known or cannot be efficiently estimated from the observations. We can,
however, assume the error variances known for the purpose of assessing the
reliability of Model A as applied to time series. In order to apply Model A
formally the values of the variances and covariances required are given by:

” /2 ’
Dy =0+ XXy, Dy = DX Xy,
s ’ ’ N
LITEPIEDIS S76 ST Nlgs = 2y XoiXg; (55)

»” ’2 2
Dlgy =Nlgg + XyXgy, Dilgg = X X3.

We proceed as follows: Given sample size n, the variances and covariances,
and a given probability (say 0.05), we find the confidence limits a; and a, of
the estimate a using the Model A theorem, i.e., derived from (36). The values
a; (or a,) are substituted for a in (54) and the (normal) probability of this
unit-variance deviation read off for comparison with the given probability
(say 0.05). The results for five examples, with three sample sizes (n = 10, 25,
120) for each, are given in Table 1. The variances, covariances, and coefficient
o for each example are shown at the head of the table. The examples are
designed to illustrate the different kind of cases that can occur, in particular
(i) different magnitudes of error variances, (ii) different correlations between
instrumental variable and investigational variables, (iii) different values of o
(which without loss of generality may be assumed not to exceed unity).
Actually the units in which the investigational variables are measured are
deemed to be such that the error variances, i.e., u7; and ug,, are each unity.
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Table 1
Example Hag Hip M Hiz. M Hg
I 6 10 21 8 16 15 12
i 3 2 3 5 10 1 .
m 3 2 3 5 5 20 1 o
v 2 4 17 4 16 20 14 Hop =
v 4 5 283 3 5 3 35
Lower 0.05 Model B
Sample size prob. point
Example (n) {ag)on Normal deviate Probabili
Model A u(a ) robaoulity

10 0.3488 1.865 0.031

I { 25 4097 1.726 042
120 4596 1.661 048

10 5920 1.755 040

It { 25 7350 1.688 046
120 8732 1.654 049

10 .3868 2.022 022

m { 25 6262 1771 038
120 8234 1.670 047

10 0823 1.891 029

v { 25 1520 1.733 042
120 2067 1.663 048

' 10 .3872 1.812 035

\% { 25 4693 1.708 044
120 05405 1658 0.049

Since, as shown later on, the variances on Model A and Model B tend to
the same value when n tends towards infinity, it is to be expected that the
two models would yield fairly similar results (i.e., would give much the same
limits for the range of values of the estimate a of o corresponding to a given
probability) for samples of moderate size. Table 1 shows that this is actually
the case. Even for samples as small as 25 the probability of the lower limit a,
(shown in the final column) is not very different from the probability 0.05.
Since in all cases the Model B probability is below that of Model A (0.05) it is
clear that the limits derived from the latter are on the “safe side”. This also is
to be expected since in applying Model B we assume more information than
in applying the other model, namely that the error variances are known. In
the table iattention has been confined to the lower limit a,: the upper limit a,
would not give signiﬁcanﬂy different probabilities in the last column.

The table shows that not only does the use of an instrumental variable
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highly correlated with the investigational variables yield more accurate
estimates of the coefficient (as shown in the paper) but it results in more
similar inferences from Models A and B. This is clearly seen by comparing
examples II and ITI which are identical except for |z which is twice as large
in ITI as in II. Relatively large error variances (as indicated by relatively
small values of i;; and Uy») do not appear to render the results more dis--
cordant, i.e., in giving Model A probabilities very different from 0.05; this will
be seen from example II in which the error variances are relatively large and
yet the probabilities are nearest to 0.05 for all sample sizes.

It is emphasized that the two frequency distributions utilized in Models A
and B are exact, assuming of course, that the conditions of the theorems are
satisfied. The examples strongly suggest that the Model A approach yields
sampling limits for estimates of a (corresponding to a given probability)
which do not differ widely from those of the “time series” Model B, for
samples of moderate size.

It is interesting to compare the quadratic inequalities yielding the limits
from the two models. The Model A equation, which is derived from (36) by
substituting-(p}; + H7p) and (u5, + Hgy) for py and o respectively, may be
rewritten as follows:- :

(KR 3s — Hpgbtga )@~ 00 ~Hg(@’hiy +11)) <O, (56)

whereas the Model B quadratic inequ'é.lity, derived from (54) is
s 2 2 2 » ” ,
K'hyg(a—a)” —pga(a’pyy +py;) <0 (54")

In (56)% x = 1 + n/22 where 1 is the probability point from the t-distribution
corresponding to a given probability and x’ = n/v? where 7 is the normal
probability point corresponding to the same probability. Since x and x’ tend
towards the same limit of order n when n tends towards infinity it is clear
that the limits derived from the two equations must tend to be the same.

Comparison of Variances of Consistent Estimates of the Coefficient o

In the four following subsections large-sample approximations are placed
on record of means and variances of estimates of the coefficient o using four
different models or methods, including Models A and B already discussed.
The general objective is to show that where the samples are moderately large,
and the error or disturbance variances relatively small, the approximations to

5. Note n instead of (n—1) in (35), since in this application the data are measured from the
supposed known universal means, whereas in Section III the data are measured from sample
means.
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means and variances of a on the different assumptions do not differ much.
Somewhat heuristically the inference is made that the frequency distribution
appropriate to one is approximately applicable to all; in simple terms that the
theory of Section III may be used with confidence in time series, unless the
sequence is short. The approximations to the means and variances when the
instrumental variable is a lagged observational variable will probably be
found useful. '

To translate the variance-covariance matrix uuij “ into time-series terms we
take

i 1 ? ” ’ ”
Ry = B3 (X + X (X5, +X5)
” 1 r , . .
=8 My +Hztxitxjt _(1’.1 =1,2,3),

where observational variables are x;; and %, and the instrumental variable is
x3 — the latter may be a lagged observational variable — the uj; are the
error or :disturbance‘variancés, and the systematic parts of the variables
x};(j=1,2,3) are regarded as fixed once for all.

Case when Instrumental Variable is a Lagged (or Advanced) Investigational
Variable: Model C '

It will presently be shown that, while the sampling theory in this case is
much m{)re complicated than when the instrumental variable is not an
investigational variable, the error will be slight if the simple theory
appropriate to the latter case be assumed to apply formally to the former
case, for samples of moderate size. We will, in fact, proceed to compute the
approm'm‘;ate mean and variances of the estimate a of « for the two cases. Let

‘1 L ’ ” ’ ”
72X + X3 )Xo+ X )
b= it=l

1 n ’ 7 ? ”

= X Xg + X5 )X 1+ Xg0)
n . I

(57)

Xl =BX3e (58)

exactly, where the systematic parts X (i=12) are fixed once for all and
stochastic variation is introduced only through the errors or disturbances X,
assumed normally distributed with means zero and variance finite, the same
for all t.

Here and throughout the remainder of the section we assume that
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ti,n =0= ti'zv

i.e., that while the systematic parts, deemed fixed from sample to sample, are
unknown, their sums are zero, effected in practice by measuring the obser-
vations from their means. By the transformations

’ s
X5 =Xt /Oy
” ” .
xj =X} /0y, (=1,2) (59)
b= ac,, / Oy s B= 00, [ Ggy,
we find
1 ’ ” ’ ”
Y PINCSTE D S0 0 STUNE.D SHNRY)

a= 1 = 2 ba (60)
V4 ” ’ ” c ”
o TRy +Xg )Xoy 1 +Xoy1) i

with

X}, = 0y, : (61)
and now with the error variances (of x3; and x7,) equal to unity. The
numbers x}, (and x,, from (61)) are fixed from sample to sample and can
assume any finite values whatever. From (60) it will be seen that the
coefficient of variation (the ratio of the mean to the standard deviation) of a

will be equal to that of b for different samples of n. To estimate large-sample
approximations of mean and variance of a, set

4 XpiXge1 = Vn u, XXy g = Vnx,
T4Xpe-1¥1t = Vnv, YiXgXge 1 = Vny, (62)
YXg1Xor = Vo w,
whence
2 ,
nEu2 = thzt = nu22 - n(u22 — 1)’
2 2 2 ,

nEv® =nEw” = Zt x2-t—1 = np’33 = n(u33 - 1), (63)

EX2 = Ey2 = 1’

nEuw =¥, X5,X5, ., =NV, say.



106 THE ECONOMIC AND SOCIAL REVIEW

From (60) and (61)

-1
|,L23\/;(a—a)={v+x—oc(w+y)}-{1+ (u+w+y)} , (64)

1
Has v

where
Digy = %y XiXp 1 (65)
Whence [noting that pg; =H,, +0(1/n)]
nugsE(a —0) = oo + VIO

1
npdE(a-o)’ = u33(1+a2)+-1m—2{2(3u§2 - 4p5)(1+20%) = Buyy(1+0)]  (66)
23

6
+——-\;—{u22(1+ 30%)+ vozz}.
Dilog

These formulae give E(a — o) correct to 0(n—1) and E(a — )2 to 0(n~2). Hence
var (a) is derivable to 0(n-2). Using (59) there will be no difficulty about
finding means (b) and var (b) in terms of the covariances and variances of the
original variables X, =X} +X[ (i=1,2) and of the error variances var (Xj;).

Instrumental Variable not a Displaced Investigational Variable: Model D

In this case in (57) we have X}, and Xj, instead of X}, ; and Xj, ,
respectively, where the observed instrumental variable X,, = X3, +X7,. The
disturbances X7,, X3,, X3, are completely independent of one another. By
analogous transformations we find instead of (60)

. , ” ’ n
;Zt(xn +xX7,)(Xg +X3) 5,
a=3 , =% b, (67)
- ’ ” ’ ” G ”
;Zt(xzt + X (X3 +Xg¢) Xy

with x, =oxj,, and where, as before, the error variances, i.e., of x7;, X3, and
X3, are now unity and their means zero. We readily find

np5.E(a - o) = Ly, (68)

DM33E(a—a)2-‘—(1+a2){u33_4+3H33(H22 )}4_ Rgs(1+3a”)

—_ . (69
n nugs n}l§3
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Displacement Effects

Suppose that we substitute formally in (68) and (69) the variances and
covariances that would be found if x,,_, were used as instrumental variable
instead of x3. Denote by X; and X, the resulting pseudo-values of E(a - o)
and E(a — a. Then

npgsX ) = Haplt, (70)

4) 3
nu§3X2:(1+a2)[u33—;]+;2—{2p.§2(1+2a2)—u22(1+oc2_)}. D
23

Then from (65), (66), (70), and (71),

np.§3{E(a —a)-X,}=vo, (72)

n?‘ug3 {E(a o)’ - Xz} =2(1+ 30’ Y(BVigy ~ 2u§3) +6via®. (73)

Formulae (72) and (73) indicate the approximate effect of using a lagged
investigational variable as an instrumental variable: the expressions on the
right may be regarded as the “displacement effects”. To form a more precise
idea of their magnitude, set

Loz =PiHog,

V=Poloo,
where p, and p, are serial correlations lagged 1 and 2 respectively. Then
npii, {E(a -0 - X, } = pya, . (72')
n’ping,{Ea-0)® =X, | =2(1+30%)(3p, - 207) + 6p50”. 73)

Usually p, is about 0.9 and p, about 0.7. Substituting these values tentatively
we find

nps, {E(a-o)-X, } ~0.90, 72")
nzugz{E(a —o)? - XZ} ~15+8.9 o’ (73")

The value of @ may be assumed to be at most unity and the value of uy will,
of course, depend on the error variance since it is expressed in units of the
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error standard deviation: in fact the smaller the error the larger will be po. It
is clear that for samples of moderate size no great distortion is introduced
into the probabilistic inferences by using a displaced investigational variable
as the instrumental variable and treating it exactly as if its error constituent
were independent of those of the investigational variables.

Model B Approximation

It will be necessary also to consider the large-sample approximations to the
mean and variables for Model B, the exact sampling distribution of which was
discussed above, and which, in particular, was shown to be very close to that
for Model A except for very small samples (or short sequences). These will
clearly be a special case of Model D: that in which the variance of x3, is zero.
The formulae are as follows, when pj, =pg, =1:

np 2 E(a - 0) = 1550, | (74)
npd,B(a - o) = (1+ o)y + 32 (1+80”). (75)
Dilgg

Model A Approximation

Finally we require Model A approximations of mean and variance. These
are derivable from

4 3u 2 6a2u2
nuzaE(a —o)® =(1+0?) Hgg ——Hgzz + —:;’3(”22”33 +Hg3) et ——2—33, (77)
: n Dilgg Doy

where the error variances u7, and pg, are taken as unity. The expressions on
the right-hand side simplify somewhat on taking

2 2
Koz =P Haollzss

where p is the population coefficient of correlation between the observations
xy; and xg;. We then find

np’pg,Ela-o)=a, (78)

(79)

2 2
6
np2”22E(a-0¢)2=(1+a2){1‘%+3(1+p )}+ a

np’ np’Hy,
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The Assumption of Normality in Time Series

An additional formidable objection to the application to time series of the
theory of Section III would appear to lie in the assumption of population
normality in the case of such series. In fact the linear trend must have a
rectangular distribution and a sinusoidal approximation of the systematic
part

k.
Xy = LA;sin (o;t+B;) (t=12,--,n), (80)
i=1

where the A; and the o; may be assumed all different, has the following
moments when n is large:

Ho=1 My =0=ug,
P~2=%21A?’ My =%ZiA?+%ZZAi2A?. 81)

i> j

To the extent to which this system represents time series there is no reason
why B = 1 4/u§ should tend to its normal value 3: in fact, if one of the A; is
much greater than all the others, B, will not be very different from 3/2. The
inclusion of disturbances would, of course, tend generally to give the sample
more of a “normal look”. In the actual case of USA economic data during the
17 years 1922-1938 (used in an application later), Kuznets’ and Barger’s®
data for employees’ compensation yield a value of 0.8156 for the test of
normality a (Geary, 1936), which is not to be confused with the coefficient a.
This is practically identical with the normal value. Since most of the series of
USA economic data are highly correlated, no doubt much the same result
would be found from other data during this period of years.

Conclusion as to Application of the Theory in Section II to Time Series

We have shown that for time sequences of moderate length (e.g., 50):

(1) The Model A distribution yields a frequency distribution similar to the
simplest time-series model, termed Model B;

(1) all models yield consistent estimates a of a;

(iii) to O(n1) all “time models” give the same expression for the variance of
a as does Model A; and study of terms in n2 in E(A — o will show that the
contributions of these terms is small relatively to the term in n-! unless the
error variances are substantial, in which case no theory will yield efficient
estimates of a; in algebraic form, however, the terms in n-2 are very dis-
similar.

6. From H. Barger, 1942, Qutlay and Income in the United States 1921-38.
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We accordingly feel justified, if on somewhat empirical grounds, in sub-
mitting that the theory in Section III can be used with confidence in
connection with time series. The great advantages in using Model A are:

(i) given the variance-covariance matrix the frequency distribution is exact,
and the variance-covariance matrix can be estimated consistently from the
observations; :

(i1) knowledge of the érror variances is not required, as is the case with all
the other models discussed in this section.

It is assumed throughout this communication that the error or disturbance
variances cannot be efficiently estimated from the observations. The
emphasis is on the word “efficiently”. It is easy to show that, given the
coefficient o and o, both of which parameters can be consistently estimated
from the observations, the error variances pj; and pj, can formally be
estimated. In fact

n” ’ ’
Hip =Hqy —Hyy SHyp — Oy =y — Oy,

and similarly for pj,. The trouble is that, as the application in Section V will
make abundantly clear, the sampling range of estimates of «a is very wide
even in a highly correlated system, when the sample is not large; further-
more, the error variances in such a highly correlated system must be small
and the estimates of |1y; and 1, are themselves substantially subject to error.
The estimates of the error variances must, in consequence, be deemed
worthless — it can obviously happen, for instance, that the “estimates” yield
negative values for the variances! — unless the samples are very large (or the
time sequences are very long). When confidence can be reposed in the
estimates of the error variances, the appropriate formulae for mean and
variance of the estimate a-of «, given in this section, can be used.

V AN APPLICATION CONSIDERED

In Richard Stone’s paper (1947) on “The Interdependence of Blocks of
Transactions” is presented a series of calculations of variances and co-
variances of 17 sets of USA economic data for the years 1922-1938, prepared
by H. B@rger and S. Kuznets (1942). Suppose that we are trying to determine
whether a linear relation subsists between the systematic parts of variable 1
“employees’ compensation” and variable 2 “consumers’ perishable goods plus
producers’ durable goods”. Admittedly variable 2 is somewhat artificial in
content but (unfortunately) the purpose of the calculation presented here
must be regarded as primarily arithmetical and of little economic signifi-
cance, for the present theory requires observations more numerous and of a
different character to be effective.
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Table 2: Estimated Value of the Coefficient in the Relation x;, = ax,, Using as
Estimates a =3 x4,%;,/ 3. %9,%;,, (i =3,4,---,17), All Variables Measured
from Means

Instrumental Correlation Coefficient

. Estimate of «

Variable With 1 With 2
3 1.2539 ‘ 0.59 0.66
4 1.4946 ’ 92 87
5 1.5910 93 82
6 1.6466 .78 66
7 1.7296 \ . -063 =51
8 1.2731 .62 .68
9 2.1415 40 26

10 1.7372 .64 52
11 1.5896 91 80
12 1.4492 91 88
13 1.5510 -.94 -85
14 - 16.1919 .13 .01
15 1.2669 -.48 -.53
16 1.4289 . =78 =77
17 5.0503 0.17 0.05

Variables 1 and 2 constitute the investigational set. For the instrumental
set we have no fewer than 15 series which Stone (op. cit., p. 11) numbers 3 to
17: they need not be particularized here. In his Table II Stone gives the
complete variance-covariance matrix for the 17 variables, as well as the
correlation coefficients (Table III). From these tables Table 2 has been
compiled without difficulty.

The correlation between variables 1 and 2 is very high, namely 0.97. Since
instrumental variable 4 is (practically) the variable most highly correlated
with variables 1 and 2 we use it to determine the estimate of 2. We find a =
1.4946. To a probability of 1/10 (not to adopt too high a standard) the
sampling limits (using 2.26) are found to be

1.3337<a < 1.7378,
Which are far wider than the regression limits given by
@) x; = 1.3543 x5 (%; on xy),

(1) x; = 1.4491 x4 (X9 0N X7).

Logically we must in this case adopt the regression lines as absolute limits,
since for the derivation of the sampling limits of a, we had to assume known
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the variance-covariance matrix of Xy, X, X3 as determined by the sample: if,
in particular, uy, plyp, and py are known, then from Frisch’s theorem (1934)
we must take the regression limits as the absolute limits of a. At the same
time we must recognize the arbitrary nature of the assumption that for so
small a sample as 17 the variance-covariance matrix should be regarded as
given by the data. Using M.S. Bartlett’s theorem (1933) as to the distribution
of the Studentized regression coefficient, we find that the regression
coefficient (ii) given as 1.4491 might (on probability 1/10) have come from a
population with this coefficient ranging from 1.294 to 1.646, so that a high
correlation is no guarantee of regression-coefficient stability when the sample
is small. '

Figure 1 based on Table 2 shows clearly that the higher the instrumental
correlation, the more the estimates tend to cluster around the “true” figure
which is probably in the neighbourhood of 1.4-1.5. When the correlations are
insignificant the estimates are fantastic. When two instrumental variables
are close together on the diagram, or even when they tend to give much the
same estimate of a, usually we find them highly correlated (from Stone’s
table). Thus between 7 and 10 the correlation is —0.90, and 0.96 between 6
and 10, 0.98 between 5 and 11, —0.97 between 5 and 13. This phenomenon is
a reminder that, while close similarity in two or more estimates of a based on
different instrumental variables may normally be regarded as good evidence
that the relation is complete (in a sense to be defined in the next section) we
should be chary about accepting it if the instrumental variables are highly
correlated.

As far as the test goes, it does not contradict the hypothesis that the
relation X}, =ox,, between the systematic parts of the variables is complete.
The test is, however, insensitive for so small a sample.

VI DETERMINATION AND ASSESSMENT OF ACCURACY OF
COEFFICIENTS IN EQUATIONS IN THE SYSTEMATIC PARTS
OF MORE THAN TWO VARIABLES

In appi;lying the method described in Section II, as well diversified a system
of instrumental variables x,; as possible should be used, because if one uses
two very highly correlated variables in the instrumental set, two equations in
the a; will be produced with covariant coefficients nearly proportional, so
that, in effect, the rank of the px(p — 1) matrix of covariances is less than
(p — 1). This circumstance will often preclude the use of both a time series and

the same series lagged one interval, especially when the series is fairly
smooth.
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Figure 1: Estimates of Coefficient a of o Graphed against Average Correlation
of Instrumental Variable with the Two Investigational Variables.

Note: Numbers indicate instrumental variables as shown in Table 2.

In the equation the number of variables may be

() just enough, when the equation is said to be complete;
(ii) more than sufficient, when the equation is overdetermined,
(iii) too few, when the equation is said to be incomplete.

For case (i) the author in 1943 proposed as a test the determination of an
equation additional to the (p — 1) in (49) by means of another instrumental
variable, computing the pth-order determinant of the covariances and
attempting to assess whether it was significantly different from zero by
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reference to its sampling standard deviation, the formula for which for large
samples was given. It must be confessed in practice that the method has
proved awkward for calculation and insensitive for inference, though in
greater or lesser degree insensitivity bedevils most tests of significance of
economic time series.

An alternative method that seems more likely to yield satisfactory results
is the following. Having estimated the coefficients a, from (10), set

p
Vi = 20Xy, (82)
i=1

taking the calculated a; as estimates (proportionately) of the o;. The
systematic parts and the disturbances of y; are given by
Yi = XXy,
i .

27 ” (83)
Yi =2 oX;;,

though these are, of course, unknown separately. Let z; be an investigational
variable not included in the set x,(i=12,.--,p). Write

¥t =Bz (84)

and let w, be an instrumental variable not included in the original sets. We
are now in exactly the situation of previous sections for determining whether
the coefficient § is significantly different from zero. The disturbances of y,, zs,
w, may be deemed independent in the manner required and the necessary
variance-covariance matrix of (y, z;, w,) can be estimated just as was that of
(X3, Xg, X3) in the previous section. If the calculation (repeated if possible a
few timesi using new functions z, and w,, each time) persists in showing that
the estimate b of B is not significant, then the original relation (2) may be
deemed complete. This method could be used for testing the validity of’
structural equations of given form.

Case (ii_), that of overdetermination, will be indicated by small values of the
coefficients of one or more of the variables. Having purged the equation of
these doubtful variables, one proceeds exactly as in case (i) remembering,
however, always to use new variables, of which one must assume an adequate
supply of the right kind.

In case (iii), that of incdmpleteness, one will find the coefficient b of case (i)
significantly different from zero for one variable, the systematic part of which
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variable is then added to the relation with the coefficient as determined and
the process of testing the completeness of the new relation is repeated. Care
must be taken to use, when required, new variables for the instrumental set.

When the complete equation has been determined the sampling limits of
each coefficient estimate may be found as follows, e.g., for ay/a;. Write the
relation in the form

o_X
" .
—E ru;=0 (85)
4y
where
’ ’ Oy ap-l ’
L I e I R . T (86)
0,4 o,

and find the limits of a/a; using (36), again taking the computed aj/a; as the
values of o/, 1=2, 3,...,p—1

It should be remarked that the test of significance proposed in this section
for the several-variable case is exact only when the coefficient estimates are
(proportionately) exactly equal to the o;. Actually, as we have seen, the esti-
mates are subject to wide sampling deviations unless the samples are very
large; nevertheless they are consistent estimates which tend in probability
towards the population values, and, while inferences as to significance may
be wrong on account of sampling errors of estimate of the coefficients, they
will be right in the long run.

We have seen that in the case of two variables the accuracy of the estimate
of the coefficient depends largely on the correlation of the instrumental
variable x5, with the investigational variable xo. What is the corresponding
property when the number of investigational variables exceeds two? From
(10) it will be seen that the estimate a of the ratio of any two coefficients a;
may be expressed in the form

a=r"/r, 87

where the elements of the two determinants r’ and r” are the covariances m;;.
In the large-sample case and with some other wide assumptions it has been
shown (Geary, 1943) that the confidence limits of a corresponding to a
probability are given approximately by the roots of the quadratic equation (in
a) (cf. (566)):

22 (gya’ —2g,a+g) = (Ap— L +n)p'a—p”), (88)

where p’ and p” are the determinants r’ and r” when n is indefinitely large, A
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the normal probability point corresponding to probability n (e.g., when = =
0.05, A ‘= 1.96), g, 21, B2 homogeneous quadratic expressions in the first
minors of p” and p” of form specified in the original paper.

It is clear from (88) that generally the larger the value of p’ the closer the
values of the roots of the quadratic equation, and the smaller the value of ¢
the more dispersed these values are. Accordingly the instrumental set should
be so well diversified as to give p’ the greatest possible value. This is why, as
remarked above, the estimates found using as investigational sets a
particular series and the same series lagged or advanced say one term,
though these may generally be highly correlated with the investigational set,
may yield inefficient estimates of the coefficient a;, because they may give two
closely similar lines in the px(p-1) matrix m;,.

VII CONCLUSION

The method here outlined will certainly furnish consistent estimates of
the coefficients of relations between systematic parts and determine their
sampling limits, and provide the number of sets of observations, investi-
gational and instrumental, if the number of observations is large enough.
Classical regression theory on which confluence analysis so largely depends,
will only afford consistent estimates in the almost trivial case of no dis-
turbance or in which so many variables have been introduced into the
equation (in relation to the number of observations) that the fit of the plane
to the observations is very close (as indicated by the multiple-correlation
coefficient). This is emphatically not to say that confluence analysis has not a
value for determining just the set of variables constituting a complete set.
Some progress has been made recently towards constructing large charts for
omnibus: use in confluence analysis designed to reduce, if not largely to
eliminate, the tedium of making a “tilling” anew for each investigation.

Actually all the familiar difficulties of collinearity, etc., encountered in con-
fluence analysis arise in the technique here discussed, but they have an
entirely different character. They can all be resolved if the variables and
observations are numerous enough, whereas in classical regression analysis,
no matter how many observations there are, the estimates of the coefficient
are biased.

It only remains now to build up a set of applications of the theory to test its
practical efficacy! ‘

The author wishes particularly to thank Mr Olav Reiersgl for constructive
criticism which led to an extension in the paper as originally drafted.
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