
The Economic and Social Review, Vol. 24, No. 3, April, 1993, pp. 275-295 

Geary on Inference in Multiple Regression and 
on Closeness and the Taxi Problem 

JOHN E . SPENCER 
The Queen's University, Belfast 

ANN LARGEY 
The Queen's University, Belfast 

Abstract: This paper deals with some minor aspects of Roy Geary's work. Two areas are selected 
for discussion — (a) his work with Leser on "paradoxical" situations in multiple regression and 
(b) his work on estimation of the unknown upper bound, N, of a uniform distribution, based on a 
sample of n values from that distribution. This work is explained, expanded and evaluated. The 
concept of "paradoxes" in multiple regression is slightly extended and applied to the case of 
estimating means in a multinomial situation with a known covariance matrix. Geary's estimator 
of N is compared with several other estimators, on the basis, inter alia, of mean squared errors, 
in both the cases of a continuous distribution and a discrete distribution sampling without 
replacement. In the latter case, a "large N minimum mean squared error" estimator is derived 
and assessed. 

I INTRODUCTION 

R oy Geary's achievements in the field of mathematical statistics have 
been described in Spencer (1983 a,b,c) as, in the main, falling under 

three broad headings — (a) sampling problems involving ratios, (b) testing for 
normality and issues concerning robustness and (c) the estimation of relation­
ships where the variables are subject to errors of measurement. These are all 
areas involving difficult theoretical problems and, crucially, all involving 
issues of great practical importance. 

The object of this paper is not to give another account of his contributions 
in these areas nor to discuss his work as a whole, but to focus on some minor 



aspects of his work, especially on analysing and extending two papers which 
lay outside the three main threads of his theoretical work. In a letter to one of 
the authors in 1976, Geary spoke of having the impression of his technical 
papers being "all over the place" and an inability to remember the content of 
any of them. He did, however, note that they were often motivated by 
something in Fisher and that he had no difficulty recalling points in many of 
them. In fact, of course, his papers can be seen with hindsight to form a 
superbly focused body of work — though with attractive asides, many of 
which were of considerable importance. Several of these are described in 
Spencer (1976, and 1983b) and include, as two examples, the propositions 
that maximum likelihood minimises the generalised variance and that 
independence of sample mean and variance implies underlying normality 
under quite general conditions. 

In this article we concentrate on two papers, Geary (1944) and Geary and 
Leser (1968). The former involves an estimation problem known to have 
intrigued him and is discussed in Section III , while the Geary and Leser 
paper, discussed in Section II , deals with the possibilities for seemingly para­
doxical inference in multiple regression. Geary never believed that individual 
coefficients in multiple regression had much importance (e.g. Geary, 1963) 
and in the paper written with Leser, he analysed the relationship between 
the individual t-ratios and the overall F test in a relationship involving the 
constant term. 

II "PARADOXICAL" SITUATIONS IN INFERENCE 

The paradoxical situations studied in Geary and Leser (1968) are in 
particular: 

PS.l All individual coefficients insignificant and the regression as a 
whole significant. 

PS.2 All individual coefficients significant and the regression as a whole 
insignificant. 

Taking the general model for multiple normal regression, in standard 
notation, where b° is the (k+l)xl vector of coefficients including a constant 
term, (bo), and X is non stochastic. 

Y = Xb° + e Model 1 

the relevant hypotheses to be tested for PS. l and PS.2 above are: 



TV 
b 2 

(i) H 0 
= 0 ( i i )H 0 : bi=0, i = l . . . k 

i.e. b = 0.1 

PS. l arises when each hypothesis in (ii) is accepted while (i) is rejected, and 
PS.2 when (i) is accepted while each hypothesis in (ii) is rejected. 

Note b 0 = 0 does not form part of the joint hypothesis in (i) nor is it tested as a 
single hypothesis in (ii). 

In order to be able to write the tests for these hypotheses as expressions 
involving correlations between the independent variables two transform­
ations of model 1 are performed. 

. Assuming that the X's have, where necessary, been multiplied by -1 in 
order to obtain positive values for all estimated coefficients, the first trans­
formation takes deviations, giving 

y = xP + u Model 2 

where P' = [Pi-.-Pk] is the coefficient matrix with the constant term omitted 
and with the property that lbjl = Pj, i=l...k. 

Secondly, using any k dimensional invertible matrix W, Model 2 can be 
expressed as: 

y = xWW_1P + u Model 3 

= Z y+ u 

where Z = xW, y = W% u-N(0,a 2I). 

1. Savin (1984) deals with the case of induced tests arising from a hypothesis such as (1) (5=0. 
In this framework he illustrates not only the possibility of conflict between tests of type (1) and 
the resulting induced tests, but also computes the probability of such occuring. 

For P a 2x1 vector he tabulates the probability of agreement between a chi square test of 
B=0 and the induced Bonferroni tests, showing that for any given a, as the correlation between 
the variables increases the probability of agreement between the two tests decreases, but not 
igreatly, e.g. for a =0.1 with r=0, prob (agreement) = 0.965 and r=0.9999, prob (agreement) = 
0.934. The discrepancy in probability of agreement for the cases r=0 and r=0.9999 falls as the 
value of a is reduced. 
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Hypotheses similar to (i) and (ii) are now based on Model 3 i.e. 

"SiPi" 

G') 7 = 0 i.e. W ^ - L 
Vn 

= 0 

is equivalent to testing P = 0 (recalling that X is non-stochastic). 

(ii') Yj=0 i.e. SiPi=0 
Vn 

is equivalent to testing Pi = 0, i = 1 ... k. 

Model 3 is estimated as y = Z y, y = {Z'ZY^Z'y. 

The F statistic for testing (i') is derived from the independent statistics 

Y ' [ Z ' Z ] Y / a 2 ~ x k 

and 

^T~Xn-k . where e = y - y . (2.1) 
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i-e. F = ^ „ ^ ^ F k > n . k . (2.2) 
I e f / ( n - k ) 
i=i 

Substituting for y = W - 1 p and Z = xW in Equation (2.1) the F statistic reduces 
to 

j h w ^ r c w x ,xw)w~ 1p / k 
e 'e / (n-k) 

p'(x'x)p/k 
" e ' e / ( n - k ) 

— the test statistic for hypothesis (i). 

The t statistic for testing (ii') is given by 

. Yi - 0 , 2 e'e . . tj =—, where s = — I = L . . k 
sVtZ'Z]^1 n " k 

Since PJ is ensured positive, Yi =- irS i p i i s also positive and so too then is 
each tj statistic. * n 

Using (a) IXMI =X n IMI 

IMH I — 
(b) [M]jj = ' (where I My I is the cofactor of element ji) 

for any invertible matrix M of dimension n x n, then the t statistic above can 
be rewritten as: 

t l Y , / l n kIRI s V'Gii' 

where I Cjj I is the cofactor of the i i t h element in the correlation matrix R. 

Rearranging we obtain, y{ = s j - ^ ^ t j and (y{)2 = S '^ ' t f , i = l . .k . 
VnlRI nIRI 



We can now obtain the Geary and Leser relationship between the F and t 
statistics, by substituting these results in Equation (2.2). 

From (2.3), Geary and Leser determine that PS. l could arise when all or most 
of the variables are highly positively correlated, in which case IRI is small 
and F becomes large relative to the tf. Strong positive correlation is not 
however a necessary condition for PS. l . If all variables are uncorrelated (2.3) 
reduces to F = Ztf/k. Given that the critical F value is lower than the critical 
t value for more than 3 degrees of freedom, it would still be possible for all 
t values to be approximately equal and all non-significant while F is signifi­
cant. 

PS.2 may arise when variables are predominantly negatively correlated, 
but not so strongly correlated that IRI will become small relative to the I I 
and F become large. In the case of k=2, for example, X! and X 2 could fluctuate 
in different directions so that their contribution to Y roughly cancels out 
leaving Y determined as if by a constant and a random term. 

Although referred to as "paradoxical" by Geary and Leser, Cramer (1972) 
stressed that these situations did not embody contradictory results. The 
existence of situations where tested singly coefficients are insignificantly 
different from their hypothesised values, while jointly tested they appear to 
be all significantly different, or vice versa does not imply a logical contra­
diction. A t test on Pi, say, is a test between two linear models, one including 
Xj with k-1 other variables, and the other with Xj excluded. 

Now, even if all t values for a regression are insignificant, we cannot 
conclude that all P values are simultaneously insignificantly different from 
zero. What this result implies is simply that focussing on any particular Pj, a 
model which excludes Xj but includes the other k-1 variables would explain 
the data as well as the model with all k variables included. On the basis of 
this result we could not omit more than one variable from our regression. 

On the other hand the F test considers whether all PJ values are simul­
taneously zero. It compares a model where one or more of the P's are non-zero 
to a model where they are all constrained to zero. 

Largey and Spencer (1992) show there is in fact much potential for occur­
rence of these so-called "paradoxical events". The paper addressed the mul­
tiple regression problem in an alternative way focusing in particular on 
analysing hypotheses of types (i) and (ii) as applied to two regression vari­
ables. It concluded that hypothesised values of the p's could be found such 

k k 

(2.3) 
IRIk 



that at least one of PS. l and PS.2 is always possible, and both could possibly 
occur for any sample size, depending on the correlation between the 
estimated coefficients of the variables in the regression. 

In fact, the existence of seemingly paradoxical situations and the tech­
niques for analysing when such may occur are not limited to the multiple 
regression problem. The same approach can be extended to a much wider 
range of hypothesis testing problems. 

Using the techniques of the Largey and Spencer paper, a simple example 
illustrating the point may be set up. Let X be a vector of normal random 
variables with known covariance matrix, and X the vector of sample means 
of n values from each population, such that: 

X~N(u,Z). 

Then.X - N(u,^£). 

Suppose we wish to test the hypotheses: 

(i) H 0 :u = u° (ii) H 0 : m = u° 

Paradoxical situations analogous to PS. l and PS.2 are 

PI: H 0 (i) rejected and each hypothesis in (ii) accepted. 
P2: H 0 (i) accepted and each hypothesis in (ii) rejected. 

Since I is assumed known we test hypothesis (i) using the result 
n(X - u°)'X _ 1 ( X - u°) - X 2 . . H 0 is accepted if n(X - u° ) ' I ~\X - u°) < %V, the 
relevant x 2 value representing a significance level a. Each hypothesis in (ii) is 
tested using X s ~ N^.-^af) where a 2 is the i i t h element of the matrix X. Thus 

HQ is accepted if u° lies within the confidence interval [Xj - Z ' s j , Xj + Z*Sj] 
where Sj = Oj / V n T Z* is the normal distribution critical value allowing a 
confidence level (1-a) for the test. 

Setting k=2 in the sets of hypotheses above, or singling out two means to 

i.e. 

^2 

F 



test, the confidence regions for both tests can be shown diagrammatically and 
the paradoxical situations labelled. The confidence region for (i) forms a two 
dimensional ellipse while that for both hypotheses in (ii) forms a rectangle. 

P I occurs when the hypothesised values for the means fall within the box 
(abed in Figure 1), but outside the ellipse in regions marked 1, while P2 
occurs when hypothesised |J. values fall within the ellipse but outside the box, 
in regions marked 2. 

Figure 1: PI and P2 Characterised Diagrammatically 

As in the multiple regression case analysed in Largey and Spencer (op. 
cit.), three classes of situation may arise. Class A occurs when of the two 
paradoxical situations only P2 is possible which implies in the two 
dimensional case that abed is completely enclosed by the ellipse. Class B, 
where only P I is possible, occurs when all the corners of the rectangle abed lie 
outside the ellipse. Class C which allows both P I and P2 as possible events 
occurs when only two opposite corners of abed are contained within the 
ellipse. (See Figure 2.) 

We can relate the existence of these 3 classes to the correlation between 
the means. 



C l a s s A C l a s s B 

Figure 2: Three Possible Classes of Situation 

Let p 1 2 be the correlation between X t and X 2 . 

p a 1 2 / n = q 1 2 

1 2 ~ ^ ( a ? / n ) ( a ' / n ) " ^ 



where o 1 2/n is the covariance of X t withX 2 and -y6f In is the s.e. for X 4 . 
Note that p 1 2 reduces simply to the correlation between the two variables Xi 
and X 2 . 

Thus this example provides the interesting result that analysis of the 
paradoxical situations using the correlation of the estimated parameters (the 
means of the variables) relates back immediately to the correlation between 
the variables themselves. (This was not the case with regard to the same 
exercise in multiple regression where there the classes were described in 
terms of the correlation between the estimated regression coefficients, not the 
correlation between regression variables themselves.) 

The 3 classes can be characterised using identical formulae to those 
derived in the Largey and Spencer paper in the case of a multiple regression 

2* 
problem with a known error covariance matrix. Hence setting 0* = 2 we 

2Z* 

have occurrence of the various classes limited to the following situations: 

Class A: All corners of R in E 

i - e * < K e * - i 
— 7 — * p i2 < —r-

Class B: No corners of R in E 

e - i i - e* 
—Ti— < P l 2 < —7T-

Class C: Two opposite corners in E 

either (a) p 1 2 < . , p t 2 < 
e 9 

i - e * e * - i 
or (b) pi 2 > — p i 2 > — - r - • 

The value of 8* depends only on the value of a, not on the sample size, so 
the bounds on the correlation coefficient for each of these classes depend 
solely on the strictness of the hypothesis tests. Figure 3 illustrates the bounds 
for each class. 

For a > 0.2152 only Classes A and C could occur. Class B will not. This 
implies P I can only occur if P2 is also possible (through Class C), whereas it 
is possible for P2 to exist alone (through Class A). The lower bound on I p 1 2 l 
for which P I is possible increases as a rises. 
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Figure 3: Bounds on pj2 for Classes A, B and C as a Varies 

For more reasonable sized tests, a < 0.2152, the opposite is the case. Here 
Classes B and C can occur, but A cannot. P2 cannot occur without the possi­
bility of P I also, and the bounds on I p121 for which P2 is possible increase as 
the test becomes stricter, tending towards 1 in the limit as a tends to zero. 

It is clear therefore that of the two paradoxical situations analogous to 
those set out by Geary and Leser, at least one is always possible, in the sense 
that suitable hypothesised values of the parameters exist, and both could pos­
sibly result provided the value of p 1 2 is such as to allow the existence of Class 
C. With commonly used significance levels (a = 0.05, a = 0.025), P I is possible 
for any p 1 2 value, while I p121 must be larger for P2 to be also possible. 

These results reflect those of the 2 variable multiple regression case, where 
for commonly used a, the multicollinearity case (PS.l) is possible for any 
value of the coefficient of correlation between the estimated parameters, 
while PS.2 is possible also for higher absolute values of the correlation 
coefficient. 

Note that in the multiple regression problem with variance — covariance 



matrix a 2 I , a 2 unknown, the same formulae characterising each of the three 
. F* 

classes would still apply if we redefine 0* as 9 =—5-. This implies a second 

determining factor for the value of 9* in addition to the significance level of 
the test, the number of degrees of freedom for the test. The basic shape of 
Figure 3 will hold, for more than three degrees of freedom and Figure 3 
represents the limit of the changing graph as degrees of freedom tend to 
infinity. This more realistic case is dealt with in Largey and Spencer (op. cit.). 

I l l T H E TAXI OR SCHRODINGER 2 PROBLEM 

The second paper, Geary (1944), contains a problem which greatly intrigued 
him and which he called the Schrodinger problem, following its proposal by 
Schrodinger at a meeting in the early 1940s of the Dublin University Math­
ematical Society. It can be stated as follows: A spectator at a street corner is 
observing cars passing. The N cars in the town are numbered 1, 2, N, N 
unknown. The spectator wishes to estimate N after observing that n cars 
numbered x b x n have passed. Each of the N cars is assumed equally likely 
to pass.3 This problem is now extremely well known and has various names 
including the "taxi problem". It is mentioned in many books including Feller 
(1957, pp. 211-212), Whittle (1970, pp. 63, 87-88) and Edwards (1972, pp. 165-
167). 

The problem arose in the context of Geary's analysis of Pitman's notion of 
"closeness" (Pitman, 1937). If X and Y are estimators of 0, X is closer than Y 
if: 

Pr [ ix - e i< iY-eu > { . 

2. Erwin Schrodinger (1887-1961), the Austrian theoretical physicist, received the Nobel Prize 
in 1933 for his work on wave mechanics. After difficulties with the Nazis in 1938 he left Austria 
and was enticed by de Valera to Dublin where he arrived in October 1939. He was to remain 
there, working in the newly established Institute for Advanced Studies, until 1956. In 1943/1944 
he was working on statistics, one of his earliest loves (Moore, 1989, pp. 415). 

3. In fact, the problem is a good deal older than the early 1940s. John Aldrich has pointed out 
to us that it appears in Jeffreys (1939) and in an essay of C.S. Peirce written in 1911, reprinted 
inEisele (1976), pp. 157-210. Jeffreys writes that the problem, with a "tramcar" setting, was sug­
gested to him by M.H.A. Newman "several years ago", i.e., in the early to middle 1930s. He pro­
vides rough analysis for n=l and says this is easily extendable. Earlier still, Peirce (1839-1914), 
the American founder of pragmatism and a pioneer in the development of formal logic, discusses 
the problem in a long letter of June 22, 1911 to a Mr Kehler (see Eisele, ibid, especially p. 188). 
In a section critical of Laplace (1749-1827) Peirce ascribes to Laplace an attempt to estimate N 
from a random drawing from an urn containing balls numbered 1,2,3,...,N but asserts that "no 
deductive conclusion on the subject can be drawn from those premisses correctly". Thus, the 
problem goes back at least to Laplace's famous 1812-1814 writings on probability. 



X is a closest statistic if it is closer than any other. Pitman analysed closeness 
mainly in situations where sufficient statistics exist and he found the closest 
estimates of parameters of certain distributions including the rectangular 
distribution, a-^-c < X < a+^c. The mid-point is a and the closest estimate of 
this, whether or not c is known, is shown to be (v+w)/2 where v is the mini­
mum value in the sample and w the maximum. 

Geary (1944) compared efficiency (relative variances) and closeness and 
showed, for example, that if X and Y are unbiased estimators of 8 with a joint 
normal distribution and arbitrary correlation, X will be closer than Y if and 
only if var X < var Y. The ordering of estimators by closeness will not in 
general follow the ordering by efficiency, of course. Indeed, the former order­
ing is not necessarily transitive in that X could be closer than Y, Y than Z and 
Z closer than X, a fact noted by Pitman himself. Geary, however, calculated 
that closeness and efficiency would rank unbiased estimators similarly at 
least in large samples. 

As an illustration he applied Pitman's theory to the Schrodinger problem. 
Formally the situation is that of estimating N in a rectangular (or uniform 
distribution) where N is the unknown upper bound and the lower bound is 
known. Geary assumed N large in order to justify treating the distribution as 
that of a continuous random variable X, with f(x) = 1/N, all x, 0<x<N. 

His argument was as follows: Let W be the largest value in a random 
sample of n independent drawings. 

Pr (W<w) = Pr (X1<w,X2<w,...,Xn<w) 
= (w/N)n 

since Pr (X<w) = w/N. 

Thus, the median of W is the value of w such that (w/N)n= -i i.e., w=(-£) 1 / nN. 
Consequently, w2 1 / n is the value of N for which w is the median and this, from 
a theorem of Pitman, is the closest estimate. 

We refer to 2 1 / n W as the Geary estimator, an estimator which he showed to 
be sufficient. 

Since the likelihood function is (1/N)n, the maximum likelihood (ML) 
estimator is the smallest possible value of N consistent with the obvious 
consideration that N has to be at least as large as the maximum observed 
value. Thus W is the ML estimator. 4 

4. See Carlton (1946) for some discussions of ML and other matters regarding the estimation 
of the parameters of | a - - i c , a + - i c j . A survey of the rectangular distribution is provided by 
Johnson and Kotz (1970, Chapter 25). It is clear that Geary (1944) is one of the earliest 
references to the estimation problems of [O, N] and that W 2 1 / n is new. Note that the likelihood 
function is zero for N<max X j and so has a discontinuity at max X j . 



The density ofW is easy to derive. Since F(w) = (w/N)n, 

f(w) = n(w/N)n"VN 
= nw n l /N n . 

Hence EW is the integral of n w n / N n from O to N i.e. nN/(n+l). 

Similarly var W = N2n/(n+l)2(n+2). 
It follows at once that an unbiased estimator of N is given by W (n+l)/n 

(see, e.g., Davis (1951,p. 48)). 
This estimator is indeed the minimum variance unbiased (MVU) estimator 

as shown by Davis (ibid), Tate (1959) and Kendall and Stuart (1973, p. 36). 
There are, of course, many other unbiased estimators including 2X and 2 
(median sample value). The variances of these estimators are N2/3n and 
N2/(n+2) and hence they are totally inefficient relative to estimators of the 
form XW, X constant. Apparently, Schrodinger criticised Geary's estimator on 
the grounds that it, unlike X , did not use ji l l the data. Geary convinced his 
critic by pointing out that the variance of X was 0(l/n) while that of W was 
0(l/n2) i.e., of a different and superior order of magnitude. (See also Carlton, 
1946 Section 4 for the same point.) 

Johnson (1950) discussed the comparison of estimators and advocated 
mean square error (MSE) as a criterion forjudging them. For the Schrodinger 
problem, he computed the MSE (= variance + bias squared) of XW, X constant 
and showed this was minimised when X = (n+2)/(n+l), a value which is 
independent of the unknown N. 

We now have four estimators worth discussing. These are set out in 
Table 1. 

Table 1: Estimators of N and their Characteristics 

Estimator Expected Variance MSE 
Value 

Geary 2 , / n W 2 1 / n nN/(n + l) - J f ^ i f N J l J 2 ! ^ ^ ! / , , 2 ] j 
(n + l ) 2 (n + 2) (n + l ) 2 [ n + 2 I JJ 

n N 2 2N 2 

ML W nN/(n+l) 

MVU W(n+l)/n N 

(n + l ) 2 (n + 2) (n + lXn + 2) 

N 2 N 2 

n(n + 2) ' n(n + 2) 
(Davis) 

Min MSE W(n+2)/(n+l) n(n+2)N/(n+l)2 n ( n + ^ff 2 N 2 

(Johnson) < n + x> ( n + 1 } 



The next table compares MSE for the first three estimators relative to the 
min MSE estimator. Similar calculations appear in Johnson (ibid). 

Table 2: MSE Relative to Min MSE 

n=l 2 5 20 40 OO 

Geary 1.333 1.029 1.008 1.061 1.0765 1.094 
ML 1.333 1.50 1.714 1.909 1.952 2. 
MVU 1.333 1.125 1.029 1.022 1.001 1. 

The Geary estimator performs excellently, especially for moderate n and 
remembering that it is absolutely the closest. (Johnson makes some calcu­
lations on the closeness and also remarks on the poor performance of the ML 
estimator.) 

Regarding a confidence interval, Geary argues (in five lines) as follows. We 
look for an upper limit on N which should not be so great as to render too 
unlikely the occurrence of the largest number actually observed, say 50. Now 
if N was indefinitely large, this probability would be negligible and getting a 
sample maximum as low as 50 could effectively be ruled out. 

Write a = Pr (W < w) = (w/N)n. 

If N was 100 and n was 5, a would be (50/100)5 = .031 and in about 3 samples 
in 100 would as low a sample maximum as 50 be observed. 

a = .05 would be generated if N were to satisfy (50/N)5 = .05 

i.e. N = 50/(.05)1/5 

= 91.03 

yielding a 95 per cent confidence interval of 

50 < N < 91.03 

or, generally, a 1-ct confidence interval for N 

w < N < w/a 1 / n . 

Geary takes a = .05, w = 247 and n = 30 and writes that N "will be less than 
273 unless in taking the particular sample an event, the probability of which 
was 1/20, occurred". His point estimate, of course, is 253. 

This method of finding a probabilistic upper bound appears in Kendall and 



Stuart (op. cit, pp. 138-139) and in Patel, Kapadia and Owen (1976, p. 191). 
Returning to the discrete rectangular distribution case, i.e. that formally 

implied by the Schrodinger problem, there are two distinct situations — with 
and without replacement. It is not clear which situation Geary or Schrodinger 
had in mind but that without replacement may be easier to analyse and we 
consider it next. 

Several estimators have been proposed (see Noether, 1971 and Mosteller, 
1965). 

(a) The ML estimator W. 
(b) The estimator implied by adding the average gap between the observed 

numbers to the largest observed number. For example, if the observed 
numbers were 5, 12, 34, 48 the gaps would be 4, 6, 21, 13 with average 
gap 11 and estimate 48 + 11 = 59. This estimator is W [(n+l)/n] - 1. (As 
regards the minus one, note that the lower bound on X is 1 unlike the 
continuous case above, where it was zero). Analysing the Schrodinger 
problem by paying explicit attention to these gaps or spaces is 
advocated in an interesting paper by Rao (1981). Using regression 
analysis, treating the gaps as observations, yields this estimator as 

(c) Geary's 2 1 / n W. He regarded it as likely that his solution would hold in 
the discrete case for any N. 

(d) Since the median of the distribution lies halfway between 1 and N, i.e. 
(N+l)/2, N equals one less than twice the median of the distribution. 
Thus N might be estimated by one less than twice the median of the 
observed numbers — or, replacing the median by the sample mean, 
2 X - 1 . 

A useful account of the distribution is in Tenenbein (1971). 

B L U E . 

Pr(Xj < a, X 2 < a, . . . X n < a ) 

a a - 1 
N ~ N - 1 

a -n + 1 
N - n + 1 

Hence, with W = max X j , i=l.. . n 

Pr(W<w) = 



The density of W is: 

P (W<w)-P(W<w- l ) 

w - T 
/ | * | , w = n,...,N. 

Obviously w > n when there is no replacement. 
The mean and variance of W are easily calculated (see Tenenbein, ibid): 

E W = 
n + 1 

(N+l) 

, „ n(N + l ) (N-n) 
VarW = 5 

(n + l) 2 (n + 2) 

Tenenbein shows that W is sufficient for N and that the average gap 
estimator is the unique minimum variance unbiased estimator. 

Since it is of the form XW-1, it is natural to look for the minimum MSE 
estimator of this form, X. constant. 

XW-1 has MSE 
X2varW + ftEW-l-N]2. 

Writing this as F(X) and differentiating, we find 

(n + 2)(N+l) 
F ' a ) = 0ifX = 

n + N(n + 1) 

This will minimise F but is unusable as it depends on the unknown N. 

However, as N gets large, the solution for X tends to (n+2)/(n+l+n/N) so we 
have the large N min MSE estimator as 

'n + 2^ 
w n + l 

1, provided n is not too large relative to N. 

From the expressions for EW and var W, it is straightforward to calculate the 
mean and variance of all these estimators apart from that involving the mean 
and median. It can easily be shown that: 



E X = ( N + l ) / 2 

var X = ^ - y j (var X ) / n 

and less easily (see Wilks, 1962, p. 251) 

E Median = (N+l)/2 

var Median = (N-n)(N+l)/4(n+2). 

As in the continuous case, the estimators based on mean or median are 
hopelessly inefficient and are not discussed further. 

The authors have examined the cases N=10, N=100 and N=1000 in some 
detail for the four leading estimators. In the tables, an asterisk denotes the 
lowest MSE for the particular sample size, n. 

It is apparent from the theoretical results and from the tables that Geary's 
estimator stands up excellently in the discrete case without replacement. In 
the three cases considered, it does best in the N = 100 case where it 
dominates for small n in MSE terms and does well for moderate n. 

It should be pointed out that informal information can be useful in estimat­
ing N (Mosteller, op. cit.). Rosenberg and Deely (1976) provide an analysis 
using a Bayesian approach. 

Table 3: Comparison of Estimators of N when N= 10 

n ; 2 4 6 8 

w E 5.50 7.33 8.80 9.43 9.78 
Var 8.25 4.89 1.76 0.67 0.22 
MSE 28.50 12.00 3.20 1.00 0.27* 

2 1 / n W E 11.00 10.37 10.47 10.58 10.66 
Var 33.00 9.78 2.49 0.85 0.26 
MSE 34.00 9.92* 2.71* 1.19 0.70 

w f n + 1 V i E 10.00 10.00 10.00 10.00 10.00 

I n ; Var 33.00 11.00 2.75 0.92 0.28 
MSE 33.00 11.00 2.75 0.92* 0.28 

w f n + 2 l - i E 7.25 8.78 9.56 9.78 9.86 
Var 18.56 8.69 2.53 0.88 0.27 
MSE 26.13* 10.19 2.73 0.93 0.29 



Table 4: Comparison of Estimators ofN when N = 100 

n 5 10 20 40 80 

w E 84.17 91.82 96.19 98.54 99.75 
Var 190.38 62.60 16.66 3.43 0.30 
MSE 441.07 129.55 31.17 5.57 0.36 

2 1 / n W E 96.68 98.41 99.58 100.26 100.62 
Var 251.20 71.91 17.85 3.55 0.31 
MSE 262.21* 74.45* 18.03* 3.62 0.69 

w f n + 1 l - 1 E 100.00 100.00 100.00 100.00 100.00 

I n i Var 274.14 75.75 18.36 3.61 0.31 
MSE 274.14 75.75 18.36 3.61 0.31* 

v / n + ? l I " 1 E 97.19 99.17 99.77 99.94 99.98 

U + i J 
1 Var 259.12 74.50 18.28 3.60 0.31 

MSE 267.00 75.20 18.33 3.61* 0.31 

*- Table 5: Comparison of Estimators ofN when N = 1,000 

n 5 20 80 200 500 

w E 834.17 953.33 988.64 996.02 999.00 
Var 19,761.81 2,022.22 136.94 19.63 1.99 
MSE 47,262.50 4,200.00 265.94 35.47 2.98 

2 1 / n W E 958.21 986.95 997.25 999.48 1,000.39 
Var 26,075.86 2,167.36 139.33 19.76 1.99 
MSE 27,822.61 2,337.60 146.92 20.03 2.14 

I " 1 E 1,000.00 1,000.00 1,000.00 1,000.00 1,000.00 
1 Var 28,457.00 2,229.50 140.38 19.82 1.99 

> MSE 28,457.00 2,229.50 140.38 19.82 1.99* 

I " 1 E 972.19 997.73 999.85 999.98 1,000.00 
/ Var 26,898.01 2,219.40 140.34 19.82 1.99 

MSE 27,671.16* 2,224.55* 140.36* 19.82* 1.99 

:We have a final footnote to this analysis of the Schrodinger problem. 
According to Noether (op. cit.), analysis of the Schrodinger problem was most 
useful during World War II , when German tanks took the place of "taxi 
cabs". He writes that statistical estimates of German tank production were 
much more accurate than estimates based on more orthodox intelligence 
sources. Since Geary's paper appeared in 1944 it would likely have been sent 
to; Biometrika by 1942 or 1943. The editor of Biometrika in that period was 



E.S. Pearson (1895-1980) who would therefore have known of Geary's work on 
the problem and who was head of a group of statisticians working on weapons 
assessment with the Ordnance Board (see the article on E.S . Pearson in 
Kotz and Johnson, 1985, p. 652). It seems therefore very likely that Geary's 
analysis played at least a major part in the success referred to by Noether 
and therefore in contributing to the war effort. One wonders if he knew this. 
Given that his great mathematical powers were always targeted at applica­
tion to real problems, how satisfying this would have been, had he known it. 
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