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Electrical control of spin dynamics in finite one-dimensional systems
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We investigate the possibility of the electrical control of spin transfer in monoatomic chains incorporating
spin impurities. Our theoretical framework is the mixed quantum-classical (Ehrenfest) description of the spin
dynamics, in the spirit of the s-d model, where the itinerant electrons are described by a tight-binding model
while localized spins are treated classically. Our main focus is on the dynamical exchange interaction between
two well-separated spins. This can be quantified by the transfer of excitations in the form of transverse spin
oscillations. We systematically study the effect of an electrostatic gate bias V, on the interconnecting channel
and we map out the long-range dynamical spin transfer as a function of V,. We identify regions of V, giving rise
to significant amplification of the spin transmission at low frequencies and relate this to the electronic structure

of the channel.
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I. INTRODUCTION

The rapid development of the field of spintronics' over the
past two decades has uncovered exciting and novel phenomena
related to the dynamics of the electronic spin in a wide
variety of systems, ranging from bulk materials to spatially
confined structures.> Fueled by the ever-growing needs for
speed, capacity, and energy efficiency in computing, the central
objective in understanding and ultimately controlling the spin
properties in the solid state has been constantly shifting toward
the nanoscale. At these lengths and times the conventional
methods for spin control, based on magnetic fields alone, are
limited by scalability issues. Alternative approaches are thus
sought and they typically involve electric fields of some form.3

One way to manipulate spins by purely electrical means
relies on the spin-transfer torque mechanism.* This approach
uses spin-polarized currents to control the direction of the
magnetization and has been realized in various nanostruc-
tured materials ranging from magnetic multilayers® to, more
recently, single atoms in STM-type geometries.® Alternative
to electric current control is the optical control, such as
in the laser-driven ultrafast magnetization switching.”® In
a somewhat different context, the optical manipulation of
single spins in bulk media’ is at the heart of the most
promising candidates for the quantum information processing
technology.'®!!

Another alternative is based on the idea of an electro-
static control of the spin density, i.e., of the construction
of spin-transistor type devices.'”> Recently, the concept of
gate-modulated spin-pumping'? transistors has been studied
theoretically in infinite graphene strips with patterned mag-
netic implantations.'* Importantly, such devices rely on the
efficient transport of spin information between two points
in space and time, and require the possibility to actively
tune the propagating spin signal during its transport. In this
work we explore this possibility for atomistic spin conductors.
We consider a finite monoatomic wire linking two localized
spin-carrying impurities. When one of the localized spins is set
into precession, it generates a perturbation in the spin density.
This perturbation is carried through the wire by conduction
electrons and can be detected in the dynamical response of the
second spin. We show that the propagation of the spin signal

1098-0121/2011/84(15)/155436(8)

155436-1

PACS number(s): 75.78.—n, 75.30.Hx, 73.63.—b, 85.75.—d

and consequently the dynamical communication between the
two spin centers can be tuned by means of an electrostatic gate
applied to the interconnecting wire. Our main finding is an
enhancement of the communication for a certain range of gate
voltages. This is linked to the modification of the electronic
structure of the wire induced by the applied electrostatic gate.

The theoretical framework of our method is the ab initio
spin dynamics (SD) model introduced by Antropov et al."
This rests on an adiabatic approximation which separates
the spin degrees of freedom in metallic materials containing
atoms with localized magnetic moments. Because of the
very different characteristic energies of the itinerant and the
localized spins, the two spin species can be modeled by
separate albeit coupled equations of motion. The directions
of the localized spins are the slow component compared to
the itinerant spins because the intersite exchange integrals
are typically much smaller than characteristic band energies.
It has been demonstrated in Ref. 15 that a set of vectors
representing the directions of the local spins can be introduced
as collective variables within the standard local spin density
approximation (LSDA). These vectors are treated as classical
degrees of freedom, analogously to the nuclear coordinates in
Born-Oppenheimer (BO) molecular dynamics.

Because of their considerable size (at least hundreds of
atoms) the systems of interest for spintronics applications
are still beyond the present numerical capabilities of the
first-principles spin dynamics.!>"'® They are often described
by model Hamiltonians and treated within the linear response
approximation.'# In this paper we adopt Antropov’s quantum-
classical SD model, but we treat it at the level of the Ehrenfest
approximation'® instead of the BO approximation. This allows
us to describe coherent effects in the motion of the local
moments that would be lost within the BO approximation as
they depend on finite coupling at frequencies characteristic of
the electronic scale (PHz).

We perform a fully microscopic description based on the
time-dependent Schrodinger equation, which allows us to
model the effects of arbitrary excitations. In other words,
our simulations are not limited to small gate voltages,
spatially continuous electrostatic potentials, or small-angle
spin precession and long-wavelength spin waves. We use
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a single-band tight-binding (TB) Hamiltonian to model the
itinerant s electrons in our metallic wires and include local
Heisenberg interaction with a number of magnetic ions (one
or two in our model systems). The directions of the latter
are modeled as classical angular momenta coupled to the
instantaneous spin density at their site and they obey classical
Hamiltonian equations of motion.

Since the existence of the localized spins is an essential
requirement for the coupled quantum-classical SD, our model
is most suitable for systems containing magnetic impurities
embedded in nonmagnetic hosts. Building such magnetic
nanostructures atom-by-atom has now become possible and a
number of relevant experimental setups, including noble metal
surfaces with adsorbed transition metal atoms®” and individual
magnetic adatoms or atomic chains on insulating surfaces,?!
can be found in the literature. Note that an extension of the s-d
model to quantum local spins has been recently proved very
successful in describing inelastic spin excitations in scanning
tunnel spectroscopy experiments for magnetic adatoms on
surfaces.”?

Although our model can be easily extended to higher
dimensions, here we have focused on spin dynamics in a
one-dimensional structure. A possible realization of such
a model system are metallic carbon nanotubes doped with
single substitutional magnetic impurities, which have been
recently proposed as promising candidates for spintronics
applications.”> In a broader context, our model system is
as a schematic representation of two (or several) magnetic
devices (impurity atoms, adatoms, or magnetic molecules)
dynamically coupled through a low-dimensional atomic lat-
tice. Although a more accurate description®* is required to
investigate the spin dynamics of such systems in detail, our
computational model, which is transferable to first-principles
methods, is an important step in this direction.

This paper is organized as follows. In Sec. II we introduce
the model system and our theoretical framework. Section III
contains the results of our investigations. First we investigate
the electron response of an atomic wire, not including
magnetic impurities, to local spin excitations. Second, we
study the dynamical interplay between two spin impurities
electronically connected by the wire and show how such a
dynamics is affected by the gate voltage. Finally we draw
some conclusions.

II. THE MODEL

A cartoon of the device considered is presented in Fig. 1.
This consists of an N-sites long atomic wire interconnecting
two magnetic centers. The latter, represented in the figure by
the spin vectors, enter our model as substitutional magnetic
impurities positioned at the two ends of the wire. One of them,
say the left-hand side spin center S, is labeled as “driven,”
as its precession is induced and sustained by a local (at that
site) magnetic field. The other localized spin, S,, located at
the other end of the chain is the “probe” spin and it is not
directly coupled to any external magnetic field but only to the
electron gas. In this way S, probes the magnetic excitations
produced by the driven spin S, as these propagate through the
interconnecting wire.
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FIG. 1. (Color online) Model system investigated in this work:
Two localized spins are electronically connected by a monoatomic
wire, where electrons can flow. An electrostatic gate is applied to
some of the interconnecting sites.

We describe the electronic structure of our device in
the spirit of a two-spin-species model, e.g., the weakly
interacting single-particle limit of the s-d model,”> where
the magnetic moments of the impurities, originating from
the deeply localized d electrons, are exchange coupled to the
conduction s electrons. As outlined in the introduction, we
follow the adiabatic (quasiclassical) spin dynamics approx-
imation of Antropov,'> only at a more empirical level. The
time-dependent Hamiltonians of the two exchange-coupled
subsystems read

e](t) — Z HTB OfT O(

j=1N
=12

2
— I3 [S10cT e + Sy eh] 6% ()
o, =1
Hg(1) = =81(0) - [J51(1) + gus Bl — J $a2(t) - sn(0).  (2)
The top expression is for the quantum electrons. Here H;B =
&; 8;j + ¥ 8 i+1 is a single-orbital TB Hamiltonian with on-
site energies &; and hopping integral y (y sets the relevant
energy scale for the entire system); C?T(C?) is the creation
(annihilation) operator for an electron with spin-up (o = 1)
or spin-down (¢ = 2) at the atomic site i; 6 = %(Ux,ay,cfz)
is the electron spin operator, {07};—x, y . being the set of Pauli
matrices; J > 0 is the exchange coupling strength.

The classical Hamiltonian Hg(¢) describes the interaction of
the local spins with the mean-field local electron spin density
s; = (0); taken as the instantaneous expectation value of the
conduction-electron spin at site i (see further in text for the
exact definition). The magnetic-field-like object B = (0,0, B;)
in the first term does not imply any true physical meaning of
an extremely localized external magnetic field. This is only an
instrumental variable that we use to drive the precession of S
which gives rise to spin pumping in the system. We assume
g = 2 for the localized spins and uz = 5.788 x 107 eV/T is
the Bohr magneton.

We then investigate in the time domain what is essentially
the spin analog of the Ehrenfest molecular dynamics!® by
integrating the set of coupled quantum and classical equations
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of motion (EOM) of the two spin subsystems,®® as they
result from the Hamiltonian dynamics
dp i n
- = 7 AaH )
dt h [:0 el] (3)
das, S, Jsi +gugB forn=1,
={S,.Hs} = — x
dt S Jsy for n = 2.

Here {,} represents the classical Poisson bracket, [,] stands
for the quantum-mechanical commutator, and S =7 is the
magnitude of the two classical spins. The first EOM is for
the electron density matrix p. At the initial time, o, p
is constructed from the eigenstates {|p,)}; N =, of the spin-
polarized electron Hamiltonian I:Iel(to) [see Eq. (1)], with
the composite index v = {i,o'} labeling the set of 2N spin-
polarized eigenstates. We define p(t)) = >, fuloy)(¢,| with
fv = nr(e, — EF) being the occupation numbers distributed
according to Fermi-Dirac statistics. The instantaneous on-site
spin density is thus generated as

5:(1) = (0)i(1) = Telp(t)o ) Zp,/"maf‘“ @)

The coupled EOMs are integrated numerically by using the
fourth-order Runge-Kutta (RK4) algorithm.” As a result the
set of trajectories for the local electronic spin densities §;(¢) are
obtained as well as those of the driven and the probe classical
spins S 2(¢). The typical length of the chain that we consider
is N = 100.

The effect of an electrostatic gate is incorporated in our
model as a rigid shift of the on-site energies ¢; — & + V,,
where i € [ij,i»] is a certain range of sites in the middle of the
chain and V, is the gate voltage.**

III. DYNAMICS OF THE ITINERANT SPINS
WITH FROZEN IMPURITIES

A. No external gate

As a preliminary step toward the combined quantum-
classical dynamics we first address the dynamics of the spin
density of the itinerant electrons in the presence of the two
local spins, whose directions are fixed, e.g., S12]|Z. A spin
excitation is produced by a small but finite spatially localized
perturbation in the spin density. As initial density matrix at #,
we use the one that corresponds to a perturbed Hamiltonian
H. (1o — 8t) in which one of the localized spins is slightly tilted
in the x-z plane, such that S;(fo — §7) x 2/|S;| =~ dO6 < 5°.
However at fy we bring S; back to its original direction (||Z)
where it stays throughout the simulation. In other words we
study the time evolution of the system with the two local spins
parallel to each other starting from the ground-state electronic
charge density of the system where one of the two spins is
tilted by a small angle.

The evolution of the density matrix for ¢ > #; is then
given by p(t) = e~ Heit/h p(1,)ei Hat /i which translates into the
following expression for the matrix elements of the density
matrix written over the basis of the eigenvectors |¢,) of the
Hamiltonian I:Iel(to):

Pun(t) = €7@ | pto)@n) = €7 Prn(to).  (5)
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FIG. 2. (Color online) Spin excitation of one-dimensional wire.
(a) Time dependence of the spin polarization on the first site (Asy)
as obtained from the numerical integration of the EOMs and directly
from Eq. (6). (b) Initial spin polarization s*(#) as a function of site
index. (c) Time and space evolution of AsS with the color shade
representing the magnitude of absolute value of As; (). Note that 2t
is the wave-packet round-trip time as also seen in the bottom panel.

In Eq. (5) we have defined the frequencies w,,, = (e, — e,)/h
corresponding to differences between the eigenvalues e, of
H.\(fo). Note that the initial density matrix at ¢ = #o corre-
sponds to the perturbed Hamiltonian H.i(ty — 8t). In order to
investigate the transport of spins along the chain we use the
above expression projected onto the basis of the spin-polarized
local TB atomic orbitals |io'), where i represents the atomic
site and 0 =1, |, is the spin component:

p,‘ff”(t)—Ze omt o c;:;*ZZcf;:: e ol (). (6)

In Eq. (6) the coefficients ¢f, = (io|¢,) are the projections of
the eigenvectors |¢, ) on the spin-resolved atomic orbitals |io ).

The typical evolution of the spin density of the itinerant
electrons resulting from the excitation described above is
presented in Fig. 2. The trajectories of the individual on-
site spin polarizations As?(f) = s7(t) — 57 (tp) stemming from
Eq. (6) are perfectly identical (on the scale of the graph) to
those obtained by the numerical integration of the EOM [i.e.
from Eq. (3)], confirming the reliability of our time integrator
for the typical duration of the simulations.

The spatial distribution of the initial spin polarization,
57 (), is shown in Fig. 2(b) and its subsequent evolution,
presented in Fig. 2(c) can be qualitatively characterized as
the propagation of a spatially localized spin wave packet. This
travels along the wire with a practically uniform velocity very
close to the Fermi level group velocity, as expected in view
of the rather small overall local spin polarization of the chain.
The packet then gradually loses its sharpness as it disperses.
However, the backbone of the packet is detectable even after
a few tens of reflections at the ends of the wire. Such a
feature demonstrates that this finite 1D model atomic system
is a relatively efficient waveguide for spin wave packets (of
sub-femtosecond duration) at least over the investigated time
scales of a few picoseconds.

Equation (6) can also be used to calculate directly the
spectra of particular spin observables. These match perfectly
with those calculated by performing the discrete Fourier
transform® (dFT) of the time-dependent spin densities ob-
tained over the finite duration of the dynamic simulation.
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FIG. 3. (Color online) dFT[As{(#)](k,w) for different band
filling: (a), (d) po = 0.5; (b), (e) po = 0.6; and (c), (f) pp = 0.8.
The top panels show the exact analytical excitation spectrum for a
homogeneous TB chain without local spins. The bottom panels show
the results of our numerical simulations. The intersite distance a is
arbitrary. The color shade in the bottom panel represents the absolute
value of dFT[Asf(t)](k,w) and is logarithmically scaled for better
contrast.

Clearly, in the absence of the localized impurities (i.e., for
a finite homogeneous TB chain) w,,, can be calculated

exactly. The spectrum of As; has monotonously decreasing

3yl
(N+17h
to the maximum one wpy,x ~ % (expressed in the limit of
N — 00). This is also true for the case of interaction with
the two frozen local impurities (e.g., for J = y) as these
have a minor effect on the electron Hamiltonian. For the
parameters typically used in our simulations the corresponding
maximum period T, = % < 1 ps is within the total time
of the simulation while the corresponding minimum period
Twin = 2~ ~ 1 fs is much larger than the typical time
step At = 0.01 fs.

A more detailed spectral analysis is obtained by the two-
dimensional dFT power portraits*® of As? (see Fig. 3) denoted
as dFT[As}(#)](k,w). In Fig. 3 we compare such spectra for
the itinerant spin dynamics to its exact counterpart in the
case of a finite homogeneous TB chain. These portraits reveal
key features of the one-dimensional fermionic system?®' that
vary systematically with the band filling pp, namely (i) a
near continuum of allowed modes in a certain (k,w)-space
region, defined by a low- and a high-energy dispersion
functions, and (ii) a linear dispersion for small k (® o k
for k — 0). Analogous mode-occupation patterns have been
rigorously analyzed in relation to the dynamical properties
of one-dimensional quantum Heisenberg spin chains which
too have a TB type dispersion relation.’> The low-energy
mode-occupation limit is due to the fact that the energy of the
electron-hole excitation can approach zero only for Ak — 0
and Ak — 2kg, where kg is the Fermi vector (kg = ;—a for
po = 0.5, corresponding to one electron per site). The variation
of the band filling away from the half filling results in a folding
of the low-energy limit as shown in Figs. 3(b), 3(c), 3(e), and
3(f). Note that due to electron-hole symmetry we only show
the spectra for py > 0.5.

amplitudes from the lowest possible frequency wmin &
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B. Electrostatic gate applied

The dynamics of the itinerant spins, as described by Eq. (5),
in the case of an electrostatic gate applied to a section of the
wire (typically in the middle of the wire) cannot be expressed
in a closed form as a function of V, for arbitrarily big systems.
As such we resort to our numerical integration scheme. Before
addressing the dynamics, however, we first analyze the ground-
state electronic structure of the gated wires for different values
of the gate potential V,. Displayed in Fig. 4 is the adiabatic
variation of the eigenvalues for a non-spin-polarized chain with
N = 30 sites (without localized spins) as a function of the gate
potential V, (the gate is applied to 10 sites in the middle of
the chain, i.e., at the sites with indexes going from i; = 11 to
i = 20). Note that energy-related quantities on all the figures
are in units of the hopping integral y. For V, close to 0, the
discrete energy spectrum spans in the range [—2y,2y]. With
the increase of V, the level spacing distorts as the eigenstates
are affected differently by the gate. Certain eigenvalues grow
nearly linearly with increasing V, (these are shown as red
squares in Fig. 4). The spatial distribution of these eigenstates
is predominantly concentrated in the gated region; i.e., they
correspond to the region where the local on-site energy has
been modified.

For extremely large values of V, (V, > 4y) the chain is
effectively split into three energetically decoupled parts, the
gated middle and the two identical unbiased ends on the
left-hand side and on the right-hand side. More interesting
for us is the range of intermediate gate voltages, for which the
three parts of the wire are substantially affected but not yet
decoupled by the gate voltage. For such V, avoided crossings
occur between states localized in the gated and nongated
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FIG. 4. (Color online) Schematic of the gate dependence of the
ground-state energy spectrum of Hy. According to their weights
at the three subsections of the chain Q; yr = Zie LMR lcin|> we
distinguish three types of states depending on which of the three
partial weights is the greatest. We use black circles for the case of
Qr, red squares for €2, and green diamonds for Q5. Note that the
eigenstates corresponding to the two ungated regions (€2, and Qz)
are degenerate by symmetry, as the gate is applied in the exact center
of the wire. The inset shows a magnification of an area of intermediate
V,, illustrating the situation of avoided crossings. A short chain with
N = 30 sites is used for simplicity.
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FIG. 5. (Color online) dFT[As;(¢)](k,w) for different values of
the gate potential: (a) V, = 0.2y, (b) V, = 2.2y, and (c) V, = 4.6y.
The color shade is identical to that in Fig. 3.

regions. This gives rise to additional low-frequency lines in
the dynamical spectrum as described by Eq. (6). As we will
demonstrate in the Appendix the presence of these avoided
crossings around the Fermi level for certain intermediate
V, yields an enhanced transmission through the gated wire
(waveguide) at low frequencies.

The two-dimensional dFT images (Fig. 5) of the spin dy-
namics in the presence of the gate bring additional dimension
to the electron spectroscopy analysis. The difference here with
respect to the case depicted in Fig. 3(d) is that a gate has
been applied to the middle of the chain in the ground state;
ie., V, Zmie[il,h] C?Tc,- has been added to ﬁel att = ty. Again
we use the half-filling case, py = 0.5 (one electron per atom).
From the figure it is immediately noticeable that the effect of
the variation of V, on the excitation spectra is quite similar
to the effect of the band filling in the nongated case. Due
to the gate potential, the relative electron populations of the
gated and gate-free parts of the chain change (the gated region
is depopulated). For intermediate values of V, [see Fig. 5(b)]
the excitation spectrum is rather a superposition of two spectra
with band fillings below and above 0.5 (approximately 0.2 and
0.6). Furthermore we find a substantially increased population
of the low-frequency modes for all k£ vectors, i.e., of states
forbidden by symmetry for V, = 0. For large V, [see Fig. 5(c)]
the middle part of the wire becomes almost completely
depleted and the (k,w) portrait corresponds effectively to
the excitation spectrum of a single chain with a band filling
po ~ 0.75, which is similar to the nongated case presented in
Fig. 3(f).

IV. COMBINED QUANTUM-CLASSICAL SPIN DYNAMICS
IN THE PRESENCE OF A GATE

The inclusion of dynamic local spin impurities in the
model requires the numerical integration of the set of coupled
nonlinear EOMs of Eq. (3). For a small number of classical
spins the dynamics of the itinerant spin density is qualitatively
very similar to what is described by Eq. (6). The frequency-
domain analysis of the classical spin trajectories by means
of dFT reveals the characteristic signature of the discrete
electronic spectrum with only additional modulations in the
amplitudes. We focus now on the case in which S, is driven
by a local magnetic field into a precession, hence it acts as
a spin-pump (see cartoon in Fig. 1). It is important to note
that what we refer to as a local magnetic field B = (0,0, B%)
is only instrumental to trigger and sustain a uniform Larmor
precession of Sy; i.e., it does not produce any Zeeman splitting
in the itinerant electrons spectrum. We consider now the

PHYSICAL REVIEW B 84, 155436 (2011)

dFT(S; (1)

T
-410.06

0.03

002f . . 0- b LL‘. st

1 1 el
0 500 1000 1500 0 05 1 15 2 25
t (fs) oh/y

FIG. 6. (Color online) Time evolution of the x components of
the localized spins, S7(t) (blue solid line) and S;(¢) (red dashed
line) [left] and the corresponding spectra, dFT[S; (#)](w), [right] for
three different gate voltages (a), (d) V, = 0.1y; (b), (e) V, =2.2y;
and (c), (f) V, = 4.6y. The frequency domain is represented by the
dimensionless quantity iw/y and ®;, = hw,/y = 1.16fory = 1eV.
Note that in the case of V, = 2.2y different scales are used for the
magnitudes of S7(¢) and S5 (¢) and their spectra [axes corresponding
to S5 (¢) are marked in red and are shown on the opposite sides of the
graph].

following situation: The quantum-classical spin system is in
its ground state until ¢ = #;, when the first local spin S; starts
fluctuating to form a small misalignment with B. This sets the
entire quantum-classical spin system into motion. The typical
trajectories of the transverse components S (¢) and S5 (¢) and
their frequency-domain dFT images for different values of the
gate voltage are presented in Fig. 6.

In this case the excitation of a transverse spin density at
t = 0 by the initiation of the Larmor precession is very similar
in nature to the excitation induced by tilting one local spin
investigated before (Sec. III). In fact it indeed develops in a
very similar way in the early stages of the time evolution.
Just like in Fig. 2 a nonequilibrium transverse spin-density
spin packet is sent along the wire and both the localized
spins respond each time the packet reaches them. Figure 6(a)
displays the case of a very small gate voltage V, < y. The
frequency-domain image of the precessional motion of S7 ()
has the signature of the discrete electronic spectrum with an
amplitude envelope that peaks at the Larmor frequency wp, =
2By /h. The dFT-portrait of the probe spin S;(¢) is very
similar to that of S (¢). Although significantly down-scaled
in amplitude, it has the electronic-structure modes imprinted
in its classical motion in the same way as it is for the driven
spin. This qualitative behavior is observed for V, =0 and a
range of small voltages V, < y but it changes dramatically
for gate voltages V, > y [see Figs. 6(b) and 6(c)]. The case
of extremely big voltages V, > 4y (depicted in the bottom
panel) is a trivial one for which the electrostatic barrier V,
is completely opaque to the electrons and the probe spin S,
does not respond to the Larmor precession of S; (note also the
rarefaction of modes in the S§ spectrum due to the effective
shortening of the chain by 2/3).
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FIG. 7. (Color online) (a) Time evolution of the energy transfer,
AE(t), between electronic and localized spins for V, = 2.2y. The
inset shows the maximum value of the energy transfer, A Ey,., for
a fixed duration of simulation (2 ps) as a function of V,. A red
arrow indicates the particular voltage for which A E(¢) is plotted. (b)
Evolution of the electron populations of different parts of the chain for
V, = 2.2y: left (black solid line), middle (red dashed line), and right
(green dotted line). The two black dashed horizontal lines show the
equilibrium populations of the gate-free parts (upper line) and of the
gated middle section (lower line), i.e., the populations corresponding
to the case when the gate is applied in the ground state.

Special attention must be devoted to the intermediate V,
regime in which the dynamics of the probe spin is qualitatively
different and uncorrelated to that of the driven one [see
Fig. 6(b)]. The typical outcome of the real-time dynamics
at such intermediate voltages y < V, < 4y is that the probe
spin starts accumulating very big transverse deflections. This
is then fed back into the pumping spin which also deflects
more but still preserves, to a great extent, its precession about
the magnetic field.

It is worth noting that this self-amplification of the spin
dynamics does not come at a total energy cost, as the model
system described by Eq. (3) is completely conservative.
As such we simply observe a conversion of electrostatic
energy into “spin energy” in the form of a spin amplitude
transverse to the driving magnetic field. This accumulation
is related to the increasing energy transfer from the itin-
erant electrons to the localized moments, as illustrated in
Fig. 7(a). Such an energy transfer is defined as AE(t) =
|AEa(r) — AEs(t)|, where AEes(t) = Eeys(t) — Eeys(fo),
Eq(t) = Tr[p(t)Ha (1)), and Eg(r) = —gupS(t) - B. The to-
tal energy conservation AE,(t) = —A E () has been verified
within a relative error of 107°%. The amplification of the
energy transfer® is characteristic of this V, range (y < V, <
4y) [see the inset of Fig. 7(a)]. The frequency-domain image of
the localized spin trajectories [see Fig. 6(e)] fory < V, < 4y
shows a substantial qualitative difference for the driven and the
probe spins. While around wy, the shape of the spectrum of S,
is similar to the two extreme V, cases, a significant amplitude
is accumulated now at low frequencies. The main difference
from the small V, case, however, is in the spectrum of S,
which shows practically no response at the Larmor frequency
but has very large amplitudes in the low frequency range.

This behavior in the classical spin dynamics, characteristic
of certain gate voltages, stems from the dominance of the
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FIG. 8. (Color online) (a) dFT[s; (¢)](k,w) for V, = 0. (b) The
difference between dFT[s? (t)](k,w) for V, =2.2y and for V, =0
defined as A = |dFTIs; (1)1(k,w)v,=22, — dFT[s; (O)I(k,w)v,=o|- The
color shade represents the absolute value of dFT[s;(¢)](k,w) and A,
respectively, and is logarithmically scaled for better contrast.

low-frequency modes in the electron dynamics at those V.
The effect can be seen also in the much simpler case of a
non-spin-polarized uniform atomic wire subjected to a sudden
switch of an electrostatic gate in the middle. In the Appendix
we consider the charge dynamics associated to this situation
and analyze the lowest frequency components entering in
Eq. (6). The initial charge excitation, similarly to the transverse
spin polarization in the model above, is triggered by a local
electrostatic perturbation at the first site. It follows from Eq. (6)
that, for certain values of V, for which two adjacent adiabatic
eigenenergies (e;,e;11) around the Fermi level come closer
to each other in an avoided crossing, the dynamical charge
amplitude at the opposite end of the wire exhibits a peak at that
particular very low frequency (e;+1 — ¢;)/h. In other words, a
certain gate voltage condition is created for resonant charge
transfer between the three parts of the chain at low frequencies.
This, in the case of itinerant transverse spin polarization,
promotes the enhanced reaction of the probe spin to the spin
pumping produced on the other side of the gate.

The electronic part of full quantum-classical spin dynamics
in the presence of the gate (Fig. 6) is, in many respects,
similar to the charge-only case, described in Sec. III B and in
the Appendix. As before, we construct the two-dimensional
dFT portraits of the spin-density evolution. Providing
additional k-resolved information, these give another per-
spective for interpreting the dramatic increase of the low-
frequency oscillations of the probe spin at certain gate voltages,
when compared to the case of frozen S; and electrons at
t =ty — 8t relaxed to the external gate potential (Fig. 5).
In the latter case, the increased low-frequency occupations
(with respect to the nongated case) were attributed to the
split of the one-dimensional system into subsystems with
different average electron densities. Here we find a similar
dFT pattern, now in the presence of dynamically coupled
local spins and a gate abruptly introduced at ¢ = fy. Those
two additional time-dependent factors result in a significant
variation in time of the electron distributions in the gated and
nongated segments of the chain [see Fig. 7(b)]. The dFT image
in this case can be interpreted as a superposition of spectra
corresponding to different pg, resulting in a smearing of the
low-frequency structure previously present in the (k,w)-space
image. A comparison of the results for V, = 0and V, = 2.2y
is presented in Fig. 8. We find that the full dynamical V, =0
portrait is rather similar to the results obtained for frozen
impurities (see Fig. 5), the only additional feature being the
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adiabatic excitation at the Larmor frequency of the driven
spin. The difference (point-by-point subtraction of the contour
plots) with the corresponding gated case, depicted in Fig. 8(b),
shows that it is indeed mainly the lower frequency band of the
spectrum (for any wave vector) that gains occupation in the
gated case.

V. CONCLUSIONS

In summary, we have employed atomistic dynamical
simulations to investigate the effect of an electrostatic gate as a
means of controlling the indirect coupling between two distant
localized spin impurities in a finite metallic wire comprising
one hundred atoms. One of the impurities, precessing in
external magnetic field, plays the role of a spin pump and the
response of the second (probe) spin was analyzed as a function
of the gate potential applied to the interconnecting wire. We
identified a range of external gate potentials for which the
spin pumping is extremely efficient and leads to a substantial
excitation of transversely polarized itinerant spin density in the
nongated parts of the chain. This, in turn, produces a massive
low-frequency swing of the probe spin. Such a resonant
effect has been related to gate-induced avoided crossings in
the electronic structure of the interconnect. For certain gate
voltages these occur in the vicinity of the Fermi level and
assist the enhanced transfer of charge or spin across the barrier.
Evidence for this effect is also identified in the Fourier portraits
of the calculated time-dependent spin distribution.
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APPENDIX: THE CHARGE-ONLY
ANALOG—QUASIANALYTIC SOLUTION

We consider the eigenstate-resolved dynamical amplitude
A, corresponding to a mode with frequency w,,,, associated
with the transitions between the eigenstates e,, and e,. The
system is the simplified wire used for the spectroscopic
analysis of Fig. 4; i.e., it is a non-spin-polarized 30-atom-long
chain. Analogously to the spin-polarized case, the t =t
excitation is applied simply as a potential shift at the first
atomic site. From Eq. (6) the dynamically driven charge-
accumulation amplitude at site 7 is defined as

i * *
A, = CimCiy E CromCin P (1),
il

(AD)

such that

pii() =y Al e (A2)
is the dynamic electron occupation at site i. This quantity is
calculated at the last site, i = N, i.e., at the opposite side of the
chain with respect to the perturbation. In Eq. (A1) ¢;,, = (i1¢m)
are the on-site components of the eigenvectors |¢,,) of the
non-spin-polarized Hamiltonian I:Iel(Vg) for which the gate
voltage V, is applied (between the sites i = 11 and i = 21).
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FIG. 9. (Color online) Adiabatic variation with the gate voltage
of a few eigenvalues around the Fermi level (we have used ¢y = 0
and |y| =1 eV, hence Er = 0 at V, = 0). Marked with black lines
are the pairs of eigenstates (i,i + 1) which give rise to the highest (in
absolute value) dynamical amplitude AINI 41 at the last site N.

From all the pairs of adjacent eigenstates (e;,e;+1), which
give rise to the lowest frequency modes [w; ;11 = (ej+1 —
e;)/h] in the dynamics, we identify in Fig. 9 those which have
the highest (in absolute value) amplitude Afvl +1- For small gate
voltages these are the eigenstates around the Fermi level but
as V, increases the modes with the largest amplitudes tend to
arise where avoided crossings of eigenstates occur. These are
also the modes with frequencies close to the lowest possible
frequency for that particular gate voltage.

The actual highest amplitude at the last site, corresponding
to the highlighted modes in Fig. 9, are depicted as a
function of V, in Fig. 10(a), together with the quantity

AN = /Zi(A{t’[ +1)?. This represents the pessimistic esti-

mate (considering all modes orthogonal in phase) of the

0.04
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=
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FIG. 10. (Color online) (a) The maximum single-mode ampli-
tude AY _and an estimate for the total low-frequency amplitude AY
(see text for details) as a function of the applied gate voltage. (b)
The frequency of the mode related to the pair of eigenstates (i = 15)
around the Fermi level, adiabatically evolved with the gate voltage

and (c) its corresponding amplitude as defined in Eq. (A1).
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total low-frequency amplitude corresponding to all pairs of
adjacent eigenvalues. Such curves demonstrate the resonant
nature of the dynamical site-occupation as a function of the
gate voltage. Figure 10(a) also shows that the low-frequency
charge excitation peaks for intermediate gate voltages (for this
case V, ~ 2.5 y) can be related to the observed enhanced
low-frequency coupling between the itinerant and localized
spins for the intermediate V, range. Interestingly, the two
A(V,) curves coincide for very low and very high voltages,
showing that in this case the entire dynamics is practically due
to just one mode (marked in black in Fig. 9). In the intermediate
regime it is clear that there is more than one low-frequency
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mode which has a significant amplitude, although the one
marked in Fig. 9 gives the leading contribution.

For a particular pair of adjacent eigenstates there are a
few instances where the adiabatic eigenvalues come closer
together as a function of the gate voltage. In Figs. 10(b)
and 10(c) we analyze the dependence of the frequency
and the amplitude corresponding to the pair of eigenvalues
just below and above the Fermi level in the ground state
(i = 15 for the 30-atom chain at half filling). We find that
the dynamical charge amplitude on the last site peaks (as
absolute value) every time the frequency passes through a
minimum.
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