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A phase-matched grating to enhance the second-order diffracted signals generated by forward degenerate four-
wave mixing has been proposed and demonstrated for the first time to the authors’ knowledge. Experiments
have been performed with a cw Ar:Kr laser at A = 488 nm, with a linear—nonlinear sandwich of glass slides
and Alizarin Yellow-doped films of epoxy resin. Finite-difference simulations have been used to model the
process successfully, with finite beam size effects and deviations from an ideal Kerr response of the material
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taken into account.
results.

1. INTRODUCTION

The coupling between electromagnetic waves propagating
in a nonlinear medium gives rise to a number of interest-
ing phenomena. Specifically, the transfer of energy be-
tween two interfering laser beams (two-wave mixing) and
the subsequent generation of new beams (four-wave mix-
ing) has been demonstrated in a wide class of materials.'?
Photorefractive crystals have been studied in detail with
regard to such effects.®>* Closely related, at least for-
mally, are materials characterized by the Kerr effect. In
these media the refractive index is governed by the fol-
lowing relationship:

n=ng+ naol, D

where I is the local electric field intensity, ng is the back-
ground index, and ny is the nonlinear index. When two
coherent pump waves intersect at a narrow angle in such
a medium, the resulting interference pattern perturbs
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The possibilities for optical processing applications are assessed in the light of these

the local refractive index and produces a grating. The
writing beams scatter from the grating and can generate
new diffracted beams. This process is known as forward
degenerate four-wave mixing. The pitch of the induced
grating is such that the angle of incidence for each writ-
ing beam is also the Bragg angle for the grating. As a
result, the first-order diffracted beam from each pump ap-
pears in the path of the other. The strongest spatially
distinguishable order will therefore be the second, and it
is these waves that are of primary interest here.

The second-order diffracted beams are not phase
matched over significant propagation distances, and so
the energy associated with these orders is small. How-
ever, by introducing linear spacer layers into the nonlin-
ear medium one can form a grating of gratings. This
permits some degree of phase matching, thus enhancing
the diffracted sidelobes. This concept is not dissimilar to
that proposed for stratified volume holographic elements
in which interfering beams would write a permanent
grating into thin layers of holographic material separated
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by homogeneous buffer layers. Such a structure is pre-
dicted to exhibit unique diffraction properties as well as
those obtained from standard volume holograms.®>’

Here we assess the possibility of using phase-matched
gratings to amplify the second-order diffracted beams ob-
tained by nonlinear multiwave mixing. First we explain
the concept, using expressions derived from the coupled-
wave theory (CWT) of permanent gratings. A more de-
tailed numerical examination is made that employs a
finite-difference (FD) approximation of the paraxial-wave
equation. Finally, experimental results are presented
and assessed in the light of the modeling.

2. PHASE-MATCHED GRATING

As an approximation to the nonlinear scattering problem
and to introduce the idea of phase matching, an analo-
gous problem is first considered: that of diffraction from
a lossless, permanent grating. It is assumed that the
holographic grating has been written by two plane waves
of equal intensity, intersecting at an angle #, and is then
read by a single probe beam incident at the Bragg angle
0 = 6/2. The index distribution of the grating is given
by

n(x) = ny + An cos(Kx), 2

where ng is the background index and An is known as the
modulation depth. The grating vector K is given by

K- 27 o 2n¢ sin(6/2) ,

A, hy 3

where A is the vacuum wavelength of the reading and
writing beams and A, is the grating period. This prob-
lem, schematically shown in Fig. 1, has been extensively
examined by means of CWT.® It provides simple ex-
pressions for the variation of intensity with propagation
distance for the various scattered beams. To a first ap-
proximation these expressions can also be used to rep-
resent the nonlinear process of four-wave mixing. The
diffraction efficiency of a diffracted order is defined as the
ratio of the intensity in that order to the intensity of the
incident beam. The expressions associated with the first
three scattered orders, to a good approximation, are as
follows®:

np = cos({), (4)

np = sin*({), (5)

s = % 6)
where

(= o @

Q X ®)

~ AgZno(An)
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The second-order diffraction efficiency n, can be written
in terms of the phase difference A%, between the incident
beam propagating at 6/2 and the diffracted beam at 36/2:

Ny = ————t ©

where Ak, is illustrated and defined in the reduced phase
diagram shown in Fig. 2 as

Ak, =k, — k. (10)

The reason for this relationship is as follows: A differen-
tial field element diffracted from the grating will always
have a constant phase relationship with the writing beam.
Whether it adds constructively or destructively will de-
pend on the phase of the existing diffracted beam, and so
the process depends on the phase difference between the
generating and generated fields. If the differential field
element were added only to increase the amplitude of the
diffracted beam, namely, if it were added in phase, the
resultant field should always be an increasing function
of distance. This process could be achieved in practice
by switching off the induced grating when the diffracted
beam is out of phase with the pump. The waves are then
allowed to propagate in a homogeneous medium until
their phase difference is again zero. The grating is then
reintroduced. Periodic repetition of this grating—buffer
layer system forms a grating perpendicular to K with a
grating vector of magnitude Ak, that phase matches the
second-order diffracted beam.

3. ANGULAR RESPONSE OF A
PHASE-MATCHED GRATING

Consider a periodic system of lossless grating—buffer
layer pairs, shown in Fig. 3, irradiated by a pump beam
E, incident at the Bragg angle for the grating layers.
Within an individual grating, an elemental length Az can
be treated as a source radiating in the direction 30/2 with

Write Read

eh\‘\/('Eb
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Z

Fig. 1. Holographic phase grating written by two plane waves
interferred at an angle 6 and then read at the Bragg angle 6/2.
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Fig. 2. Phase diagram for a grating being read at the Bragg
angle of incidence.

6/2

Fig. 3. A system of grating—buffer layers forms a grating of
gratings that can phase match the signal E; to the pump E,,.

an elemental field dE,, whose magnitude per unit length
is constant:

|dE,|
dz

— koqlE,|. (11)

This assumes that the amplitude of the pump wave E,, is
not depleted. The phase of the field element will depend
only on the phase of the pump radiating in the 0/2 direc-
tion. Integrating over the length of a grating layer gives
the diffracted field as

Bu(Ly) = 20 |Ellexp(~ jk,Ly) = exp(jhiLy)],  (12)

where L, is the length of a grating section. Propagation
in the following buffer layer will then simply alter the
phase according to the local refractive index. One can
then track the evolution of the diffracted order through
the system, taking into account local changes in refractive
index. The diffraction efficiency for signal beam E, will
therefore be given by

7:(2) = |Es(2)P/|E,|* . (13)

Assuming no losses and perfect phase matching, the to-
tal diffracted field after N nonlinear-linear layers will
be N[E (L,)], and so the diffraction efficiency will be
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N?[ny(L,)]. If the phase relationships were not pre-
served between layers® the intensities would add, giving a
diffraction efficiency of N[7,(Lg)]. The phase of the ele-
mental field depends only on the phase of the writing
beam, whereas the modulus, g, will be a function of the
modulation depth of the refractive index. A comparison
with results from a more rigorous CWT approach® shows
that ¢ = An. Obviously, for a permanent grating this is
fixed, whereas in the nonlinear problem it will depend
on the local intensity and nonlinearity. Using a repre-
sentative value for g, one can use Eq. (12) to obtain the
optimum grating and buffer layer thicknesses for a given
crossing angle. Conversely, given layer thicknesses and
indices, the diffraction efficiency can be deduced as a func-
tion of writing beam crossing angle #. This is the angu-
lar response of the system and depends on the amplitude
depth of the induced grating only through a scaling fac-
tor. Such an angular response is shown in Fig. 4. In
this example four 1-mm grating layers of refractive in-
dex of 1.59 are separated by 1-mm glass-buffer layers
of index 1.52. The operating wavelength was taken as
A =0.488 um. The evolution of the diffraction efficiency
with propagation distance is shown in Fig. 5 and repre-
sents the response at the optimum crossing angle § = 1.1°.
As expected, for near-perfect phase matching the diffrac-
tion efficiency from the fourth nonlinear layer is 16 times
greater than that obtained from one layer given the ab-
sence of loss.

4. FINITE-DIFFERENCE SIMULATION OF
PERMANENT AND INDUCED GRATINGS

CWT has been extensively used to give a more rigorous
analysis of FD four-wave mixing.'®? This has added
greatly to the physical understanding of the process, but
the use of a plane-wave approximation implies that ef-
fects that are due to finite beam sizes cannot be accounted
for. For example, in highly nonlinear media beam dis-
tortions that are due to self-phase modulation can mask
any mixing effects.!®* When phase-modulation terms are
retained in plane-wave theories they simply alter phase-
matching conditions, yet they are responsible for the more
dominant self-focusing and -defocusing effects. Here, we
simulated the nonlinear interaction, using a FD represen-
tation of the nonlinear paraxial-wave equation,'* formally
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Fig. 4. Angular response of the second-order diffracted signal
from a periodic grating—buffer layer system.
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Fig. 5. Evolution of the second-order diffraction efficiency when
the signal has been phase matched by the addition of an orthog-
onal periodicity.

equivalent to solving the nonlinear Schrodinger equation.
This means that, to an approximation, a continuum of
plane waves is considered, in contrast to the four or six
waves treated in a numerical solution of the coupled-wave
equations. Although the FD method has difficulties of
its own, the problem to which it is being applied here is
ideally suited to it. This is due largely to the fact that
the spectral domain in which scattering takes place is
well defined a priori. Boundary conditions, which often
represent a problem with beam propagation techniques,
are therefore easily applied. This is in contrast, for ex-
ample, to the radiation modes of a waveguide induced
by large refractive-index variations in the transverse
direction. For the problem under consideration such
variations do not exist. It is also assumed that for the
near-normal propagation the index variations in the prop-
agation direction do not induce substantial reflections.

The FD method, as applied to the paraxial-wave equa-
tion, is commonly used to analyze optical propagation.
Although the calculations are made in the space domain,
the presence of the different waves is clearly revealed by
means of a conversion to the angular space domain by use
of a fast Fourier transform. This is equivalent to using a
lens to image a near-field distribution into a far-field dis-
tribution. Because of Parseval’s theorem the squares of
the Fourier amplitudes represent the intensities of the
plane waves propagating at the different angles. The
diffraction efficiencies can then be easily obtained.

As an example, and to demonstrate the validity of the
program, scattering from a permanent grating is first
considered. Here a comparison is presented between re-
sults obtained by CWT and a FD simulation of a per-
manent, lossless grating with the following parameters:
no =159, An=8x1075 and A, = 21.35 um. A Gauss-
ian beam of radius wy = 50 um was considered incident
at the Bragg angle in air of §/2 = 0.655° for an operat-
ing wavelength of A = 0.488 um. The incident beam am-
plitude profile is shown in Fig. 6. After the waves have
propagated 6 mm, new waves have been generated that
interfere producing the characteristic pattern shown in
Fig. 7. The Fourier transform of this spatial distribution
is shown on a logarithmic scale in Fig. 8. The pump and
strong Bragg-diffracted waves are clearly present, propa-
gating at 0.655° and —0.655°, respectively. The weak
second diffracted order, referred to here as the signal, is
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also clearly seen, together with even weaker higher or-
ders. The diffraction efficiencies can either be calculated
by considering the square of the Fourier amplitudes at
discrete angles or by integrating over the spectral band-
width of the various propagating beams. The former
alternative corresponds to CWT results, and the latter
corresponds more closely to a detection measurement in
the far field.

Comparisons of the diffraction efficiency for the Bragg
beam, calculated by use of the CWT expression of Eq. (4)
and the FD method, are shown in Figs. 9 and 10. The

0.6 1
g 04
2
=
=%
5 021
0 + + + +
-200 -100 0 100 200

X (um)

Fig. 6. Gaussian intensity distribution at the grating input.
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Fig. 7. Intensity distribution after the Gaussian input beam

has propagated 6 mm in the grating at the Bragg angle of
incidence.
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Fig. 8. A Fourier transform of the field having propagated

6 mm gives the amplitude distribution in angular space at

that point. The pump and Bragg diffracted beams are clearly
present, along with higher orders.
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Fig. 9. Evolution and distance of the diffraction efficiency for a

Bragg-diffracted beam. The results for CWT and FD BPM are

coincident. The results from the FD simulation are indicated
by circles and have been calculated at the discrete angle 6/2.

Diff. Eff.
0.16 |
0.12 |
008 |

004

0

4000 6000 8000

2000

z (pm)
Fig. 10. Evolution with distance of the diffraction efficiency for
a Bragg-diffracted beam. The solid curve corresponds to CWT,
and circles to FD BPM. The results from the FD simulation
have been calculated by integration over the spectral width of
the diffracted order.

numerical analysis simulated propagation in a window
1.2 mm wide, using 1024 discretization points and a step
size of 10 um. For the FD method it is possible either to
calculate the efficiency at a discrete angle or to integrate
over the spectral width of the beam in question. When
the discrete approximation is used, the comparison be-
tween CWT and the numerical simulation in Fig. 9 shows
that the results are indistinguishable. For Fig. 10 the
FD efficiency was calculated by integration. The point at
which the results from the two methods diverge is related
to the beam radius of the incident wave, wider beams be-
ing approximated more closely by a plane wave. A simi-
lar comparison is made in Figs. 11 and 12, where the
diffraction efficiency of the second-order beam is consid-
ered. After the waves have propagated 8 mm there is
clearly a phase difference between the CWT results and
those obtained by discrete sampling of the FD angular
spectrum. In Fig. 12 the differences are even more ap-
parent; here the efficiency is calculated for the whole
beam as opposed to for a single spectral element. Fur-
ther analysis'® shows that this discrepancy occurs because
the perturbation theory neglects the changes of amplitude
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and phase of the pump beam; these changes slightly al-
ter the period of oscillation of the diffracted beams. The
finite bandwidth of the beam itself means that at any
one position there is always some spectral element of the
beam that is nonzero, and so the energy in the second-
order beam does not periodically reach zero.

Having established confidence in the FD scheme to
solve the linear paraxial-wave equation, we included a
nonlinear response in a straightforward manner. In the
absence of an experimental evidence for absorptive non-
linearity the following relationship was adopted as the
model of the nonlinear process:

A =Ry + noI?, (14)

where the complex dc index ny allows for linear absorp-
tion and I is the local field intensity. The exponent p is
introduced as a fitting parameter to account for nonideal

Diff. Eff.
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Fig. 11. Evolution with distance of the diffraction efficiency of
the second-order beam. The solid curve corresponds to CWT,
and the circles to FD BPM. The results from the FD simulation
have been calculated at the discrete angle 36/2.
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Fig. 12. Evolution with distance of the diffraction efficiency of
the second-order beam. The solid curve corresponds to CWT,
and the circles to FD BPM. The results from the FD simulation
have been calculated by integration over the spectral width of
the diffracted order.
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Kerr-type behavior. The resulting FD program was then
used to analyze the experimental results obtained from
phase-matched grating (PMG) nonlinear devices.

5. EXPERIMENTAL RESULTS

A. Sample Preparation and Experimental Setup

The concept of PMG’s was experimentally investigated
with the use of samples consisting of nonlinear layers of
dye-doped epoxy resin sandwiched by 1-mm linear buffer
layers of glass microscope slides. We formed the non-
linear layers by cutting holes in identical glass slides and
filling the 1-mm-thick cavity with the resin. The epoxy,
Araldite MY 757, was doped with a 1.5-g/L solution of
Alizarin Yellow in ethanol. This dye is characterized by
a strong, thermal nonlinearity in the blue wavelength.
The doping level was chosen as a trade-off between non-
linearity and absorption.

We performed all the experiments, linear and non-
linear, with a cw Ar:Kr laser, using the strongest line,
A = 0488 um. The refractive indices of the glass, n,
and of the epoxy films, n;, were measured by standard
techniques to be n, = 1.52 and ny = 1.59. We obtained
the linear absorption losses by illuminating each sample
with a 0.5-mW input beam and then detecting the trans-
mitted power. Assuming no losses in the glass, the lin-
ear absorption in the epoxy films was measured as a =
17 dB/cm.

Three samples were fabricated: S1, S2, and S4.
Sample S1 consisted of a single grating period and
is illustrated in Fig. 13. Samples S2 and S4 repre-
sented two and four grating periods, respectively. The
nonlinear experiments were performed with a standard
FDFWM setup? shown in Fig. 14. A 50/50 cube beam
splitter and mirrors were adjusted to produce a pair of
beams propagating in the same plane that interfere after
the focal plane of the lens, L. The crossing angle is deter-
mined by the focal length of L and the beam separation.
This arrangement produces beams that are diverging as
they overlap. This has the important advantage that
the resulting interference region is long enough to con-
tain the samples and wide enough to include a reasonable
number of grating periods off which the incident beams
might diffract. The angular divergence of the beams
themselves also relaxes the tolerance on obtaining the
required crossing angle. The period of the induced grat-
ing, however, will not be uniquely defined over the overlap
region. This feature is accounted for by use of the FD
representation of the interaction.

Diffracted beams were monitored with photodiode P
connected to an oscilloscope. A lens of focal length 33 cm
was chosen. We measured the separate beam profiles
and their combined interference pattern as a function
of position by scanning the intensity profiles with a slit
mounted upon a photodiode. An example is shown in
Fig. 15, where the crossing beams have been recorded
just before they fully overlap. The experimentally mea-
sured points have been fitted with Gaussian profiles.
The resulting interference pattern is given in Fig. 16.
Another interference pattern, measured after the beams
have propagated a further 7 mm and have crossed over,
is shown in Fig. 17. A comparison between these plots
shows the extent of the beam divergence. This is implied
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not only by the increased width of the profiles but also
by the change in periodicity of the interference patterns.
This is caused by the phase curvature of the beam wave
fronts. The consequence of this in a nonlinear medium
would be a diffraction grating whose periodicity would be
chirped in the propagation direction. By careful fitting,
assuming Gaussian field profiles, it was possible to de-
duce from such intensity measurements the following pa-
rameter values: minimum beam radius wy = 50 um and
crossing angle # = 1.31° in air.

The resulting interference region is schematically rep-
resented in Fig. 18, where the minimum beam waists oc-
cur on the z = 0 axis. It is expected that the response

1mm Glass Slides

| Epoxy Filled Cavity

|
i

Fig. 13. Sample S1. A single nonlinear epoxy resin layer
sandwiched between two glass slides.

BS L S

<

T

Fig. 14. Experimental setup for degenerate forward four-wave
mixing: BS, beam splitter; L, lens; S, sample; P, photodiode.

Intensity A.U.
124

1

0.8

Z(um)

Fig. 15. Separately measured input beam intensities fitted with
Gaussian profiles.
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Fig. 16. Resulting interference pattern produced by the two
Gaussian beams.
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Fig. 17. Interference pattern after the beams have propagated
a further 6 mm.
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of a sample will depend on its position within this region,
partly as a function of the number of interference fringes
and partly as a function of their spacing. It is these fac-
tors that cannot be accounted for in a plane-wave theory.

B. Material Characterization
A number of experiments were performed to establish the
nature of the nonlinearity. First, we measured the step
response by monitoring the diffracted beam intensity in-
duced by the samples after the pump beams had been
switched on. The nonlinear mechanism is slow and ther-
mal in origin. The steady state corresponds to the for-
mation of a permanent grating, the definition of which
degrades by diffusion processes. As a result, throughout
the subsequent experiments the maximum dynamical re-
sponse was measured to represent the nonlinear effect.
In Fig. 19 the diffracted power is plotted as a func-
tion of the pump power. A simple best fit, using a power
law, shows that the behavior is characterized by an expo-
nent of 1.3. This result was obtained for various crossing
angles and is in contrast to an ideal Kerr response, which
would exhibit an exact cubic dependency. The departure
from the ideal behavior is not fully understood. Accord-
ing to Fig. 19, the parameter p in Eq. (14), which accounts
for the nonlinear effects in the FD simulation, is, to a good
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approximation, given by p = 0.15. Usually the nonlinear
index n, is treated as a physical constant. Here, because
Eq. (14) is phenomenological in origin, it is best treated
as a fitting parameter.

C. PMG Measurements

The experimental results concerning the PMG are re-
ported in Table 1, where the diffraction efficiencies for the
three samples are listed. For each sample we maximized
the diffraction efficiency by translating it within the in-
terference region. This may considered akin to sampling
different spectral components of the beams. At the front
of the overlap region only components with a larger than
average crossing angle are interfering, whereas at the end
of the region only the narrow crossing angle components
are present. The average diffraction efficiency value, re-
sulting from many measurements made at a constant in-
put power of 0.5 mW per beam, has been quoted for each
device. Because the intensities of the input beams were
not equal, an asymmetry has been induced in the efficien-
cies of the signal beams. Here results for the stronger
diffracted beam are given.

X (um)
500 7
300 1
100 1
-100 4

300 1

-500 + + + t |
0 10 20 30 40 50

Z mm

Fig. 18. Schematic of the interference region produced by di-
verging Gaussian beams.
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Fig. 19. Dependence of the second-order diffraction efficiency
on input power. The experimental data have been fitted with
a simple power law whose coefficient is 1.3. Had the response
been governed by the ideal Kerr effect the dependency would
have been exactly cubic.
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Table 1. Measured Diffraction
Efficiency for Samples S1, S2, and S3

Diffraction Efficiency (X107?)

Sample

S1 1.6
S2 2.6
S4 3.5

Diff, Eff,
4.0%x107

3.0x107°
2.0x10° |

1.0x10° |

0 : ;

Zzmm

Fig. 20. Evolution with propagation distance of the second-
order diffraction efficiency calculated for sample S4. Ex-
perimental measurements are also indicated, with circles
corresponding to measurements on samples S1, S2, and S4.

Diff Eff

6.0x10” _

Plane

-5
4.0x10° |} Wave
T Experimental
20x107 | Measurement
Gaussian
Beam
0

04 05 06 07

0/2 Deg

Fig. 21. Angular response of S4 calculated by use of the FD
simulation, assuming the Gaussian beam parameters measured
in the experiment. For comparison the results from plane-wave
theory have also been indicated.

D. Analysis of Experimental Results

We simulated the performance of the PMG, using the FD
program, given the experimental input conditions. The
stronger of the two pump beams was normalized to a
maximum intensity of 1.0 at the minimum beam waist.
The ratio of the pump beam field intensities was mea-
sured to be 0.79. We then calculated the diffraction ef-
ficiency as a function of propagation distance in S4 by
integrating over the spectral width of the new beam. The
optimal position of the sample within the chirped inter-
ference region was found and used throughout. This
procedure mimicked that used in the experiment. The
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evolution of the stronger diffracted wave is shown in
Fig. 20. Also indicated are the experimental values ob-
tained for S1, S2, and S4. We obtained the calculated
curve by varying the value ny to give close agreement for
the measured diffraction efficiency from S1. The non-
linear index thus found was ns = 1.2 X 107, Given
the normalized units of the field amplitudes, this gave a
maximum induced index modulation [A7n/2 = 1y (Imax)®?]
of approximately 1.3 1075. The upward trend of the ex-
perimental results, despite high absorptive losses, and the
correspondence with the theoretical predictions indicate
that phase matching has been successfully achieved. We
reconfirmed this conclusion by measuring the diffracted
signal from a sample with a single nonlinear layer with a
thickness twice that used in S1. This corresponds to an
exact phase mismatch, and accordingly the signal, if any,
was below the measurable threshold of the experiment.

Numerical simulations have confirmed, however, that
the experimental conditions were not optimal. The an-
gular response of S4 is shown in Fig. 21, assuming the
nonzero beam divergence measured in the experiments.
Also shown is the response calculated by the plane-wave
theory of Eq. (12). This would correspond more closely to
the foci of two, broad-area pump beams that are overlap-
ping. The phase curvature present in the crossing beams
after focus has shifted the resonance curve to a larger
angle and made it broader. This slightly relaxes the tol-
erance required for the angular control in the experiment.
To obtain the maximum output efficiency, twice that of
the one observed, a control of 6 to within 0.19 would be
required. This is beyond the capabilities of the current
experimental setup.

The narrow crossing angle to produce phase matching
in the three fabricated samples was determined by the
thickness of the linear and nonlinear layers. To obtain
phase matching at larger angles one must make an ap-
propriate choice of layer thickness. For example, under
the plane-wave approximation, glass and epoxy layers of
304 and 318 um, respectively, would move the resonance
to 2°. The advantage of operating at larger angles will
be offset, however, by a reduction in the length over which
the beams interact. This could, of course, be compen-
sated for by use of wider, more powerful beams.

6. CONCLUSIONS

Layered systems of glass and dye-doped epoxy resin have
been used to demonstrate, for the first time to the au-
thors’ knowledge, phase matching for FD four-wave mix-
ing. The use of focused beams meant that a plane wave
interaction could not be assumed. The experimental re-
sults were then successfully explained by use of a FD
analysis of the finite-sized beam interactions in a non-
linear medium. The results successfully demonstrate
the ability of PMG’s to enhance the efficiency of FD four-
wave mixing. PMG’s could be conveniently be used in
all-optical devices. In particular, high diffraction effi-
ciencies might still be obtained in an integrated wave-
guide in which the chip length prevents the use of narrow
crossing angles. They could also be employed in mate-
rial systems that are intrinsically short, such as liquid
crystals and multiple quantum wells.
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