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Large Infrared Nonlinear Optical Response of C60
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C(0 buckminsterfullerene exhibits a large ultrafast third-order nonlinear optical response. Degenerate
four-wave-mixing measurements in C(0-benzene solutions were performed using 50-psec pulses at l.064
Itm. The magnitude of the nonlinear susceptibility per C60 molecule is ~y~ =1.5&& IO ' m'V ' and of
the same size as that observed in polydiacetylene. In contrast to conjugated polymers, however, a dom-

inant positive real part of the nonlinearity is found, 3 times larger than the imaginary component. The
nonlinear response can be described within the model of a free electron in a spherical box, confirming the
complete delocalization of electrons on the C(,0 molecule.

PACS numbers: 42.65.—k, 33.20.Ea, 36.90.+f

Confinement of free or quasifree electrons on a nano-
meter scale has received considerable interest in optics re-
cently [1]. In semiconductor nanoparticles, for example,
carrier confinement leads to a singularity in the density of
states at the band gap which in turn gives rise to an en-
hanced nonlinear optical response near the associated op-
tical transition compared with nonconfined materials [2].
Such particles are commonly termed quantum dots. On
the other hand, conjugated polymers such as polyacet-
ylene and polydiacetylene show sizable ultrafast non-
linearities due to the one-dimensional nature of the delo-
calized tr electrons [3]. Fullerenes [4-9] also possess
highly delocalized electrons and so are expected to exhibit
nonlinear optical behavior similar to conjugated poly-
mers. In addition, however, the three-dimensional nature
of the particles should also be apparent in this response.
In this Letter we report the observation of infrared non-
linear optical response of C60-buckminsterfullerene-
benzene solutions which shows some similarity with that
of conjugated polymers. As a result of a dominant real
part of the nonlinearity and the relatively small size of
the molecule, however, more favorable solid-state proper-
ties can be expected, making this class of materials in-

teresting candidates for nonlinear optical devices.
C60 buckminsterfullerene was prepared and purified as

described in the literature [8,9]. Magenta solutions up to
a maximum concentration of 500 mg/L were prepared in
benzene. The absorption spectra of the samples are com-
plex consisting of a series of closely overlapping peaks be-
tween 450 and 700 nm with a first absorption maximum
near 593 nm. In general, the similarity of this spectrum
with that of 3-BCMU polydiacetylene in chlorobenzene
should be noted [10].

Nonlinear optical measurements were performed using
the forward degenerate four-wave-mixing technique as
described elsewhere [11]. The laser used was a passively

mode-locked amplified Nd-doped yttrium-aluminum-
garnet laser emitting 50-psec pulses at 1.064 pm of up to
5 mJ energy. This technique is based on diffraction from
nonlinear optically induced transient gratings and allows
the magnitude of the nonlinear optical response to be
measured. The observed response corresponds to a modu-
lation of the material s refractive index associated with
the light-induced polarization of the delocalized electrons.
In centrosymmetric materials, such as buckminsterful-
lerene, the induced polarization can be described by [12]

where gt 1 is the third-order nonlinear susceptibility, E
the applied electric field of the laser pulse, and ~ the per-
mittivity of free space. Therefore g provides a measure
of the magnitude of the cubic nonlinear response. In
molecular systems it is usual to normalize the nonlineari-
ty to one molecule, in which case one obtains the hyper-
polarizability y from

(3)/NL 4

where N is the density of molecules per unit volume and
L is the Lorentz field factor associated with the shielding
of the electric field experienced by the molecule in its
local environment. Experimentally one observes the dif-
fraction efficiency g of the laser-induced grating which
corresponds to (P;„d/E) . The cubic nonlinear suscepti-
bility can be derived by comparing the intensity depen-
dence of the diff'raction efficiency with that of a material
of known nonlinear response such as neat benzene
(gt 1=2&10 ' m V ) [9]. As the intensity I is pro-
portional to F, g depends quadratically on I as shown in
Fig. 1 for a 15-mg/L solution of C6o buckminsterful-
lerene. This confirms that the nonlinear response origi-
nates from a third-order susceptibility. By accounting for
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FIG. l. Intensity dependence of the diffraction efticiency of
the laser-induced grating in a 15-mg/L solution of C6p buck-
minsterfullerene in benzene. The solid line is a fit with a slope
of 2, typical of a third-order nonlinear susceptibility.

concentration effects as described below, the magnitude
of the hyperpolarizability of a C60 molecule can be calcu-
lated and is found to be ~y~ =(1.5 ~0.3) &&10 m V
It is again interesting to note that this value is similar to
that of polydiacetylene solutions (~ y~ =2.0X 10
m V ) [13]. The temporal decay of the nonlinearity
was investigated with the same laser using a phase-
conjugation setup [121. It was found to decay within the
pulse width of 60 psec.

The optical nonlinearity consists of both a real and an

imaginary component. The imaginary part accounts for
changes in absorption (saturable or induced) whereas the
real part constitutes a change in refraction. Organic sol-
vents such as benzene only possess a real positive non-
linear response originating from the optical Kerr effect
[12]. By observing the dependence of the total nonlinear
response of a solution as a function of solute concentra-
tion it is possible to derive both the sign and magnitude of
the real part and the magnitude only of the imaginary
part of y [13]. Figure 2 shows the dependence of the
square of the susceptibility on the concentration, which
should be a parabola. Obviously the real part of the non-
linearity has the same sign as the solvent response and is
therefore positive. At high concentrations a leveling off
of the concentration dependence can be seen, which is
frequently observed in molecular systems and indicates a
strong tendency for aggregation of the solute. By fitting
the dependence as described in Ref. [13] one obtains a ra-
tio of the real to the imaginary part as y~/yl =3.2, i.e.,
the real part dominates. This behavior is diAerent from
that of conjugated polymers where the imaginary com-
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ponent is usually at least the same magnitude as the real
[13].

The similarity between the nonlinear optical behavior
of C60 buckminsterfullerene and typical conjugated poly-
mers may be attributed to the fact that the electrons in

both systems are substantially delocalized. A simple
model for the optical response of conjugated carbon
chains was proposed by Rustagi and Ducuing [14]. The
molecules were treated as one-dimensional boxes contain-
ing delocalized z electrons. This so-called "free-
electron" model predicts a large real nonlinearity away
from optical absorption bands. Because of the fact that
imaginary components sometimes dominate in conjugated
polymers, this model does not always lead to a quantita-
tive understanding of the nonresonant processes in poly-
mers. It is simple to extend this model to describe delo-
calized electrons on a spherical surface. By solving the
Schrodinger equation of this system we obtain an expres-
sion for the energy levels of the electrons which corre-
spond exactly to the simple one-dimensional solution.
Following the procedure outlined in Ref. [14] one can
calculate the hyperpolarizability of the sphere by fourth-
order perturbation theory as

r

128L ' 440 ( )
Q e

2 + 140
9~6~ 6 3~8~ 8 10 10

where L is the circumference of the sphere, a the width of
the electron shell, e the electron charge, and N the total
number of delocalized electrons (N =60). y is complete-
ly real and, for large N, positive. Taking a circumference
of L =22 A derived from standard bond lengths and
spherical geometry and an electron shell width of 2.5 A
into account, the position of the first absorption max-

Concentration (gtl)

FIG. 2. Concentration dependence of the nonlinearity of C6p

buckminsterfullerene in benzene.
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imum can be calculated to be 550 nm and the hyperpolar-
izability to be y=2&&10 m V from Eq. (3). This is
in good agreement with the experimental data, and there-
fore suggests the existence of a delocalized z-electron sys-
tem around the surface of the nearly spherical C60 buck-
minsterfullerene as also indicated by the increase in elec-
trical conductivity and the detection of superconductivity
in doped material [15]. The increase in the ratio of the
real to the imaginary part of the nonlinearity compared
with that in conjugated polymers is consistent with a de-
crease in the electron-vibration coupling characteristic of
a more rigid spherical molecular system. Such a feature
is most desirable for applications in integrated nonlinear
optical devices. In addition, the magnitude of the non-
linearity in the solid state can be extrapolated from the
solution data and is expected to be approximately 10
m /V (=10 esu). This is a remarkably large non-
resonant value which should exceed those obtained from
conjugated polymers. Initial measurements of nonlinear
prism coupling in thin films of C60 yield a value

g I ) = (6 ~ 4) x 10 esu in the solid state, which
confirms the predictions from our solution data.
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